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SUMMARY. In this paper we initiate the study of optimality in nested row column 

setting and establish, under the usual fixed effects model, optimality of certain non-binary nested 

designs which have not hitherto been considered in the literature. Some series of such optimal 

designs have been constructed. In case of a mixed effects model (with all but the treatment 

effects random), an analogous study has been made and optimality results indicated. 

1. Introduction 

The study of nested designs in a general framework was initiated 

in Srivastava (1978). In Srivastava (1981), a formalised general set up with 

nested structure was considered and its information matrix derived. Singh 

and Dey (1979) presented the analysis of designs in a situation where a two 

way (row-column) structure is present and it is nested within another (nuisance) 

factor called block. In Singh and Dey (1979) and in some subsequent 

papers (Agarwal and Prasad (1982 a, b, c)) various methods of construction 

of nested row-column designs are presented. 

Optimality study in the context of two-way elimination of heterogeneity 
is comparatively recent. The pioneering work is in Kiefer (1975). The 

subsequent papers in this area include Cheng (1981), Jacroux (1986), Shah 

and Eccleston (1986) and Bagchi and Shah (1989). So far, nested row-column 

set up has not been studied from the point of view of optimality. In the 

present paper, we attempt to fill up this gap. 

To start with, our plan was to prove the optimality property of the binary 
nested designs constructed by the earlier authors. But surprisingly, we end 

up proving that a class of non binary designs (termed BN-RC designs in 

Definition 2.5) perform very well, to the extent of being universally optimal 
under a fixed effects model. Under a mixed effects model (with all effects 

random), however, the relation between the variance components plays an 

important role in the determination of optimal designs. 
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The BN-RC designs are new in the literature and they give rise to 

interesting combinatorial problems. In this paper, we present a few series 

of them. 
2. Definitions and notations 

Definition 2.1. Suppose the experimental units can be grouped into b 

blocks, each of which is a p X q rectangle where row effects and column effects 

are orthogonal. Such a setting is called a nested row-column setting. 

In such a setting, there are altogether bp rows and bq columns, the rows 

and columns in the j-th block being numbered from (j?l)p-\-l to jp and 

(j?l)#+l to jq respectively. 

Suppose we want to compare effects of v treatments in such a setting. 
Let yijjc denote the observation from the (j9 k)-th cell of the i-th block. If 

treatment h is applied in this cell, then we assume the model 

?/m = 
?i+aij+yik+Th+etjk 

where ?i 
= effect of i-th block, a$/= effect of j-th row in i-th block, 

yik = effect of k-th column in i-th block and tji = effect of A-th treatment. 

Regarding the error components, we assume usual homoscedasticity condi 

tions to hold. 

Let L(vXb) denote the treatment X block incidence matrix, M(vxbq) 
the treatment X column and N(vxbp) the treatment X row incidence matrices. 

Let r? denote the replication number of the i-th treatment, 1 < i <I v. Then 

from Singh and Dey (1979), the C-matrix of a design in such a setting is given 

by 
C^Dr-p^MM'-q^NN'+^qyiLL' ... (2.1) 

where Dr = 
Diag (rv r29 ..., rv). 

Definition 2.2. If L is a binary matrix with entries 0 and 1 then the 

design is said to be a binary nested row-column design. 

Clearly such a design can exist only when qp < v. 

Notation 2.3. -&.#(_?, q, b9 v) will denote the class of all connected nested 

designs with v treatments under the set-up considered in Definition 2.1. 

?_3 (p9 q9 b9 v) will denote the subclass of binary designs of &n(p> ?> b9 v). The 

parameters #, q, 6, v of a nested design will have the meaning in Definition 2.1. 

<&(b,k,v) will denote the class of all proper and connected block designs with 

b blocks, each of size k: and v treatments. 

We shall denote a BIBD with parameters (v9 6, r9 k9 ?) by BIBD (v9 b9 k). 

Also, an Youden square design with block size k and v treatments will b? 

denoted by YSD (v9 k), 
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Definition 2.3. (Agarwal and Prasad (1982a). A nested row-column 

design which is binary and has its C-matrix completely symmetric is termed 

a balanced incomplete block row-column (BIB-RC) design. 

With the notation of (2.1), let K = 
NN'-p-1 LU. 

Definition 2.4. (a) If a nested row-column design d in J&n (p, q, b, v) 
is such that K ? 0 and M is the incidence matrix of a BBD, then we call it 

a balanced nested row-column design and denote it by BN-RC design 

(P> Q> b, v). 

A BN-RC design need not be binary. 

(b) A nested row column design with K = 0 and M the incidence matrix 

of a group divisible design with parameters (v, b, r, k, Al5 A2, m, n) is called a 

group divisible nested row-column design and is denoted by GDN-RC design 

(p, q, b, v, A1? A2, m, n). When m ? 2 and A2 
= 

A1+l, it is called a most 

balanced group divisible nested row-column design and is denoted by 
MBGDN-RC design (p, q, b, v, Al9 A2) in conformity with the definition of 

most balanced group divisible design (Coniffe and Stone (1974)) in the one 

way set-up. This design was termed an extreme regular graph design 
of type 1 and was proved to be ^/-optimal of type 1 in Cheng (1978). 

3. The search for optimal designs 

3.0. Two illustrative examples : Normally we expect binary balanced 

designs to perform better than non-binary designs in a given set-up. But 

in the present context, we find the truth to be the contrary. To illustrate 

the point, we consider two examples below. 

Example 3.0.1. Suppose an experiment involves three 2x2 arrays and 

four experimental treatments are to be compared. A natural choice for a 

design would be 

1 

As against d, let us consider the highly non-binary design 

d0 : 
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Elementary computations yield the following regarding variances of BLUE's 

of elementary treatment contrasts : 

/\ 
Vfa-n) =2cr2ford 1 

> ? = 2,3,4 
cr2 for da 

/\ 
V(t?-Tj) 

= 2a-2 for d or d0, 2 < i ̂ j < 4. 

Strangely enough, the performance of the design d0 is at least as good as or 

better than that of the design d in respect of the elementary treatment 

contrasts. 

Example 3.0.2. This time suppose there are six 2X2 arrays and once 

again we have to administer four treatments. Consider the rival designs 

d' = 2 replications of d 

d'o 

This time it can be easily verified that V(t??Tj) 
= 

a2?2 using the design d? as 

/\ 
against Vfa?Tj) 

= <r2 using the design d' and this is true for any pair of 

treatments. 

Clearly, d1 is the design one would naturally suggest as it is 'balanced' 

in all senses. However, d0' is, as a matter of fact, universally optimal in the 

entire class of competing designs. This is indicated later in Corollary 3.1.1(a). 
The designs of type d or d' were studied by Agarwal and Prasad (1982a). 

3.1. Optimality results : Let ^ be a nonincreasing criterion (defined 
over the class of all C-matrices of order v) in the sense that ijr(b C) ^ fJr(G) 
whenever the scalar b is > 1. Then we have the following main theorem 

of this paper. 

Theorem 3.1.1 : Suppose there is a design d* in J&N (p, q, b, v) such that 

(i) K is null and (ii) Md* is the incidence matrix of a design which is 

ijr-optimal in J&. (bq, p, v). 



SEABCH FOR OPTIMAL NESTED BOW-COLUMN DESIGNS 97 

Then d* is ip-optimal in ,&_v (p, q, b, v). 

Proof : Follows immediately from the observation that 

Ci^Dr-p^MM'-q^K ... (3.1.1) 

whenever d e &N (p: q9 b, v). 

Corollary 3.1.1 : (a) A BN-RC design, when it exists, is universally 

optimal within ^_v (p, q9 b9 v). 

(b) An MBGDN-RG design, when it exists, is optimal with respect to all 

generalized criteria of type 1. 

Proof follows from Theorem 3.1.1 and the well known optimality proper 

ties of BBD and MBGDDs or ERGD's of type 1. Recall the numbering of 

the columns as stated after Definition 2.1. 

Theorem 3.1.2 : (i) A set of necessary and sufficient conditions for a 

design in a?v (_?> ?, b9 v) to have K = 0 is the following 

(a) mt = UiJ9 (J?l)_p+l < t <J_p 

Ii/ = p. uiJ9 1 < j < 6, 1 < i < v9 

where the uys are non-negative integers satisfying 

v b 

(b) 2 S ??y = q.b. 
?=1 j=l 

(ii) In order that a design in &# (p9 q9 b9 v) satisfying the condition in 

(i) also has the entries of M as nearly equal as possible, the uys must also satisfy 

(c) (q/p)[pM<uij <(g/p) ([?/?]+1) 
where [x] denotes the integral part of x. 

Proof : Easy. 

Before we go to the actual constructions of optimal designs let us examine 

the conditions (b) and (c) of Theorem 3.1.2 more carefully. 

Lemma 3.1.3 : If q<p and there exist integers uy satisfying (b) and 

(c) of Theorem 3.1.2 then v divides q. 

Proof : If q < p, then there can be at most one integer i0 satisfying 

(_/_>) [_>/*_ < ;? < (_/_>) (lp/?]+i). 
Bl-13 
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So (c) implies u\j = ?0 = [(q/p) ([p/v]+l)L 1 *< j *< b, 1 < i < v. But this 

together with (b) of Theorem 3,1.2 implies ?0 
= 

qjv, i.e. v divides q. Hence 

the result? 

Lemma 3.1.4 : When v does not divide q, a necessary and sufficient condi 

tion for the existence of a set of integers Uij satisfying the conditions (b) and (c) of 
Theorem 3.1.2 is given below : 

(i) (qlp)[plv]<[qlv] 

(?) (qlp)(b?lv]+i)>[qlv]+i. 

Proof : Easy. 

Bemark 3.1.1. Theorem 3.1.2 shows that a nested design with K = 0 

is necessarily non-binary. But in view of Theorem 3.1.1, such designs are 

really the appropriate candidates for being optimal, not the binary ones. In 

particular, if p, q, v, b are such that both a BN-RC design (dx) and BIB-RC 

design (d2) exist, then 

so that the former is uniformly better than the latter. Examples of nested 

settings when both a BIB-RC and a BN-RC design exist are given in 

Section 3.2 after Theorems 3.2.2 and 3.2.4. 

Bemark 3.1.2. When v divides p and v does not divide q, the conditions 

of Lemma 3.1.4 do not hold. But the set of conditions obtained by inter 

changing the roles of p and q in Theorem 3.1.2 is satisfied by the design with 

the following incidence matrices : 

M = (p/v) J(vxbq), L = (pqjv) J(vXb), and the entries of N are [qjv] 
and [q?v]+l. 

In view of this remark and Lemma 3.1.4, we make the following assump 

tion without loss of generality. 

Assumption 3.1.5. If v divides one but not both of p and q, we refer to 

the one divisible by v as q. 

If v divides neither of p, q we refer to the smaller one as p. 

3.2. Methods of construction of optimal nested designs. This section 

presents a few methods of construction for BN-RC designs and one method 

of construction of MBGDN-RC designs. 

Case 1. p< q < v : 
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Theorem 3.2.1 : Suppose a BIBD (v, b, q) and a YSD(q, p) (see Notation 

2.3) exist. Then a BN-BG design with parameters p, q, b, v exists. 

Proof : For each j, 1 < j < 6, the q treatments in the j-th block of the 
BIBD are used in forming the YSD arranged in a pxg array. That this 

constitutes the j-th block of the required nested row-column design is easy 
to see. 

For our next result, we will utilize the notion of cyclic difference matrix 

defined below. 

Definition 3.2.1. Let G = (X, +) be a group. Let A = 
((<t>if))i<i*t,i*j*n 

be a matrix with elements of the group as its entries. Let Dy denote the collec 

tion of all cyclic differences of the pairs of elements in the i-th row of A at 
distance j. More specifically, 

Dij 
= 

{(atu?o*w')> u?u' z=j(mod n)}, 1 < j < n? 1. 

For any element g ^ 0, g e G, let Xij(g) denote the number of times g appears 
t 

in Dij. Let S Xij(g) = 
?j(g). If \j(g) = 

A?, a constant for all g ̂  0, 
<-i 

geG, 1 < j < n?1, then A is said to be a cyclic difference matrix. 

We shall denote a cyclic difference matrix A by A (v, t, n, A/, 
1 < j < ??1) where v is the size of the group, t, n are the numbers of rows 

and columns respectively, and A; is as above. 

Theorem 3.2.2 : Let there exist a cyclic difference matrix A(v, t, q, A;, 
1 < j ^q). Then there exists a BN-BG design with parameters p, q, b = tv, 

v for any integer p satisfying 2 ̂  p ^ j?1. 

Proof : Let G be the underlying group of the cyclic difference matrix. 

Let Tig 
= Ai+ p'q(g), geG, 1 < i < t, where Ai is the i-th row of A 

and pq (g) is a column vector of length q with all elements equal to g. 

Let P be the permutation matrix of order q, as follows : 

L zM o J 

Let Big denote the p X q rectangle, the A-th row of which is 

The collection of the rectangles {ify, g e G, 1 < i < t} constitutes our 

required design. 
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To prove that this is a BN-RC design it is enough to show that 

the columns constitute the blocks of a BIBD. To show this, let a, ?eG9 
a ^ /?. From the assumptions, there are ?j sequences in the family {Tiff9 

g eG9 1 < i ̂  t} in which a and ? appear at distance j. (The meaning of the 
term distance' is as in Definition 3.2.1.) In the corresponding rectangles Rig 
the number of columns in which both a and ? appear is pj9 where pj is given 

ff-i 

in Lemma 3.2.3 below. Thus the pair a, ? appear together in ? = __ 
pj?j 

columns of the nested design. Since ? is independent of a, ? the result 

follows. 

Lemma 3.2.3 : Let ai9 1 < i < q be q symbols. Let APXq 
= 

((<%)) 
be the cyclic matrix given by ay 

= 
Oi+j^i (modq)> 1 < P>. 1 ̂  j ^ ? Let k9 rri 

be integers such that 1 < k < m < q and m?k ? 
j. Then the number pj of 

columns of A in which both aj? and am appear is given by 

' 
P-J ifl<j<mmlp?l,q?p) 

P+j?q ifq-I>j> M< (_?> ?-_?+!) 
Pi^i 

j 
%p-q ifq?p+l<j<p?l 

L0 ifp?Kj<q-p+l 

Proof: By simple enumeration. 

Example 3.2.1. If v = 
qt+1 is a prime power, let a denote a primitive 

element of GF(v). Then the matrix A = 
((ay)) with ay 

= ai+#, 0 < i < j 

^ q? 1 is a cyclic difference matrix, with Xj 
= 1 lor each j, 1 ̂  j <, g?L 

Corollary 3.2.2. A BN -RC design (p9 q9 b = ?v, #) existe whenever v 

?= gtf +1 is a prime power and 2 < p < g. 

Remark 3.2.1. If in particular, p 119 then a BIB-RC design exists (see 3.4 

of Agarwal and Prasad (1982b)). The design constructed here is uniformly 
better than this BIB-RC design as explained in Remark 3.1.1. 

Gase 2. p\q. 

Theorem 3.2.4 : A BN-RG design (p9 q 
= 

tp9 6, v) exists, whenever a 

BIBD (v, b, p) exists. 

Proof : The j-th block of the design is obtained by the juxtaposition of t 

latin squares of order p with the p treatments occurring in the j-th block of 

the BIBD as symbols, 1 < j < b. 
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Corollary 3.2.4 : A BN-BC design(p 
? 

q 
= 2, b =- ( 

9), v\alivays exists. 

Bemark 3.2.2. The design d'0 of Example 3.0.2 is a member of this series 

with v ? 4. 

Bemark 3.2.3. If in particular v = 4 ?-fl and v is a prime power, then 

a BIB-RC design with the same parameters exists by 3.3 of Agarwal and 

Prasad (1982b). 

Case 3. p < v < q. 

Theorem 3.2.5 : If there exists a BN-BC design (p, q*, v, b) where q* 

divides q, then a BN-BC design (p, q, v_ b) also exists. 

Proof : Let i = 
q/q*. Then the j-th block of the new design is obtained 

by the row-wise juxtaposition of the ^'-th block of the given BN-RC design 

i times, 1 < J < b. 

Theorem 3.2.6 : Ifq~p (mod v) and a BIBD (v, b, p) exists, then a BN 

BC design (p, q, b, v) exists. 

Proof : Let Gv denote the group of residues mod v. Let the treatments 

be identified with the elements of Gv. Let j?< denote the p X1 vector 

representing the i-th block of the given BIBD (v, b, p). 

Let By 
= 

Bi+pp(j), j e Gv, where pp(j) is a column vector of length p 

with each element j. Let Mi denote the pXv rectangle of which the j-th 

column is By, j e Gv. Let S = 
(q?p)?v. (S is integral from the assumption.) 

Let Li denote a latin square of order p with the entries of 2?< as symbols. 
Then the row-wise juxtaposition of S copies of Mi and one copy of X< is the 

i-th block of the required BN-RC design, 1 < ? < 6. 

Case 4. v < p <q. 

Theorem 3.2.7 : If q 
= 

p (mod v) and p 
== 

px mod v, 0 < px < v, and 

a BIBD (v, b, p?) exists, then a BN-BC design (p, q, b, v) exists. 

Proof : 'Letp=p1+S1v, px<v and q=p-\-S2 v, Sv d2being positive integers. 

Starting with the i-th block of the given BIBD we construct the px X v array 

Mi in the same way as in Theorem 3.2.6. Let B be a dt X S2 block matrix with 

entries as latin squares of order v with the v treatments as symbols. Let Mi 

be the px X S2 v array obtained by row-wise juxtaposition of S2 copies of M{. 

Then 

ft- JL Li Mi 
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is the i-th block of the BN-RC design, where _L< is a latin square of order p 
with symbols same as in the first column of Si. 

Construction of MBGDN-RC designs. 

Theorem 3.2.7 : An MBGDN-RC design (p 
= 2, q 

== 4, b = ta, v == U9 

?l9 0, ?2 
= 

1) exists for all positive integers t. 

Proof : Let a<, 1 < i ̂  2t and 6<, 1 ̂  i < 2? denote the treatments 

belonging to the two groups respectively. Let us index the blocks by the 

ordered pairs (i, j) 1 < i, j < ?. Then the (i, j)-th block is as follows. 

a2U Hi 

, 1 < i, j < ?. 

L&2?-1 a2? &2? a2f-lJ 

That this is actually an MBGDN-RC design is easy to see. 

By Corollary 3.1.1 (b), this design is ^/-optimal of type 1 within <&_v(2, 4, 

t29 U) whereas by Corollary 3.1.1 (a), the other designs constructed in this 

section are universally optimal within the respective classes. 

4. Investigation under mixed effects 

By a mixed effects model, we mean that all effects except treatment 

effects in the linear model are random with expectation zero. 

In this situation, we find, optimality results are very sensitive to the 

relation between the unknown variance components. In other words the 

designs do not behave uniformly (with respect to a given optimality criterion) 
over the feasible range of variation of the variance <r|, <r\9 o%, respectively of 

the block effects, row within block effects and column within block effects. 

Let w =(cr2)-1 

Wl 
____ 

(o*+qo%y* 

w* 
= 

{o^+po'lr1 

u>z 
= 

(o"2+go*|t+i)crc+_pgor|)-1 

(4.1) 

U =* 
W?Wi?Wg+Wz 

n = 
pqb 

where the parameters have the same meaning as in Definition 2.1. Then the 

C-matrix of a nested row-column design under a mixed effects model with 

the above parameters is given by 

Cd(M) 
= w Dr-^-w^p-1 MM'-(w-w2) q-1 NN' 

+(w?wx?w2+wz) (pq)~l LL'?wz n** rr' ... (4.2) 
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Notation as in (2.1). 

We observe the following : 

Theorem 4.1 : (a) lfu<0, (see (4.1)) then a BIB-BC design, if it exists, 
is university optimal within J&n (p, q, b, v). 

(b) lfu>0, then a BN-BC design is universally optimal within <& jy (p, ,q b,v) 

provided it satisfies the additional condition that the rows constitute the blocks 

of a BBD. 

Proof : Let us first note that 

w > wv w% > wz. ... (4.3) 

Hence the result (a) follows immediately from the expression in (4.2), 

in view of the fact that a BIB-RC minimises the traces of each of the matrices 

MM', NN', LL' and rr'. 

To prove (b), we rewrite (4.2) as 

Cf 
= u C?>+E 

where E *=* 
(wx+w2?wz) Dr?p-% (wz?wz) MM' 

?q-l(w1?w3)NN'?n-lw3rr'. 

Now it is enough to verify the sufficient conditions for universal opti 

mality for the matrix E, in view of corollary 3.1.1.(a) since the coefficient of 

C(P is assumed to be positive. But those conditions are immediate from 

definition of a BN-RC design and the additional property assumed. 

Bemark 4.1, The BN-RC designs constructed in Theorems 3.2.1, 3.2.2, 

3.2.4 (with t = 
1), 3.2.6 and 3.2.7 satisfy the additional property mentioned 

in Theorem 4.1(b) and hence are universally optimal in the relevant class under 

a mixed effects model satisfying u > 0. 

5. Concluding remarks 

The findings in this nested row-column setting are interesting in some 

respects. 

(i) In this setting, we have an example of a nonbinary design which 

performs uniformly better than a binary design (when they co-exist) under 

the fixed effects model (see Remark 3.1.1). 

(ii) The optimality property of designs is very much model sensitive 

under a mixed effects model with all (nuisance) factors random. When u < 0 
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(see 4.1), the relative performance of the competing BIB-RC and BN-RC 

designs is just the opposite of that under a fixed effects model. Again when 

u > 0, their behaviour is similar to that under the fixed effects model, provi 

ded the BN-RC designs satisfy the additional row-property (see Theorem 4.1(b)). 

Whether a BN-RC design without this row-property has any importance 
under a mixed effects model is yet to be seen. 

In case BN-RC designs do not exist, it may be possible to obtain high 

efficiency by making use of BIB-RC designs, whenever they exist. From 

the relation C* ? ?^? C stated in Remark 3.1.1, it is evident that this 
ai q?1 az 

later type of designs will be quite efficient even when q is moderately large. 
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