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ABSTRACT

The definition of the bybrid sum of arbitrary matrices is given, and it is shown that
this definition generalizes the previous work done for the hybrid sum of Hermitian
positive semidefinite matrices. It is shown that hybrid summability of two matrices is
equivalent to the consistancy of set of linear equati These equations are then used
to derive many properties of the hybrid sum, in particular commutativity and
associativity. The shorted operator and matrix gyration are generalized and their
relationship to hybrid addition is discussed.

1. INTRODUCTION

Duffin and Trapp [9] were led to the concept of a hybrid sum of a pair of
square matrices of order nX n from the hybrid connection of two n-port
electric networks. Let the impedance matrices of these networks be A and B,
with the first p ports connected in parallel and the remaining (n— p) ports
connected in series, then the impedance matrix of this hybrid connection
was shown to be the hybrid sum of A and B. Duffin and Trapp established
interesting properties of such a matrix operation when the matrices con-
cerned are both nonnegative definite (n.n.d.). The object of the present
paper is to extend the concept to more general situations when the matrices
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20 SUJIT KUMAR MITRA AND GEORGE E. TRAPP

may not be n.n.d. and may not even be square, and to examine the extent to
which the properties remain true in such a general context.

In the next section, the definition of hybrid addition is given. This
definition includes an arbitrary generalized inverse. In order to obtain
meaningful results, conditions are imposed which assure that the hybrid sum
is independent of the choice of generalized inverse. This restriction prohibits
some pairs of matrices from being hybrid summable. However, under this
extended definition of hybrid addition, the Hermitian nonnegative definite
matrices are hybrid summable.

It is shown that the hybrid sum of two matrices is uniquely defined by a
linear set of equations. The equivalence of the hybrid matrix to a set of linear
equations is used to establish various properties of hybrid addition. In fact
commutativity and associativity of hybrid addition follow directly from this
equivalence.

The shorted operator has been defined and studied by Anderson [1]. If a
matrix is hybrid summable with the zero matrix, then we define the
generalized shorted operator (which is conceptually closely related to that of
the Schur complement {7]). The concept of the shorted operator may be used
to extend many of the results obtained for hybrid addition to more general
matrix operations, generalizing the results in [3]. Finally the matrix gyration
is considered, a concept originally introduced and studied by Duffin,
Hazony, and Morrison [8]. Various properties of the gyration are exhibited
and the relationship to hybrid addition is demonstrated.

2. THE HYBRID MATRIX

We begin with the following notation. 91 (A) will denote the range
(column space) of A and R(A) the rank of A. Let A and B be complex
matrices each of order m X n and p, g be positive integers such that p<m
and g < n. We partition A and B as follows:

All All
All Aﬂ

A= , B similarly,

where A, is p X g. The (p,q) hybrid sum of A and B, denoted H(A,B:p.q)
is given by:

Hll Hl2

H(A,B:p,q)= , where

21 Hﬁ
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the H, are given below.
Let G=(A,, + B,,)” where C~ is any generalized inverse of C; that is, a
matrix which satisfies the equation CC “C= C, then

H,;=A,GB,

Hyo=A,)G(Byy—Ap)+ Ay,

H, = A, +(By — Ay))CGA,, (21)
Hey=Ago+ Boo — (Agy — By )G (A — Byg).

1If A and B are Hermitian nonnegative definite (n.n.d.) and p=gq then
H(A, B; p, q) agrees with the definition given in [9].

Hereafter we will abbreviate H(A,B;p,q) by H(A,B) or even by H
whenever (p,q) or (A, B;p,q) are respectively clear from the context.

For the definition of H to be meaningful in a physical setting, it must be
independent of the choice of generalized inverse. Accordingly, the operation
of hybrid addition will be restricted to pairs of matrices for which this is so.
Such a pair will henceforth be termed (p,q) hybrid summable, the (p.q)
being omitted whenever their values are clear from the context. The in-
variance of H,, under the choice of g-inverse is equivalent to requiring that
A,, and B,, be parallel summable. A,, and B,, are parallel summable if
M (A)C O (A, + B;,) and DM (Af))C O (A}, + B). See Rao and Mitra
[11, p. 188] for a definition of parallel summability of a pair of matrices. The
concept of a parallel sum of a pair of n.n.d. matrices was introduced earlier
by Anderson and Duffin {2].

The following theorem gives additional conditions necessary to assure that
two matrices be hybrid summable.

THEOREM 1. A and B are hybrid summable if and only if

(a) A, and B,, are parallel summable
(b) M (Ap— Byy)C M (A, +Byy)
(c) DM (A3 —B)C (A} + B}
The proof is omitted since it follows directly from the fact that if U and V

are nonnull, UW ~V is independent of the choice of a generalized inverse of
W if and only if M (V)C OL (W) and O (U*)C DN (W*) (see [12]).

CoroLrary 2: If A and B are n.n.d. then they are (p.p) hybrid
summable for any 0K p<n.

For any n.nd. A and B, the conditions of Theorem 1 are fulfilled.
Moreover, the hybrid sum H(A,B) is the same as that considered in [9].
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Consider the system of equations
(8) Apxi+ Agxi =y} (1) xg=x7
(b) Agyxi+ Apxi=ys  (f2) ==
() BuxP+Buxg=y (g1 yy=yi
(d) By + Bury =y  (€2) y,=yy
(e) ry=x{+xf (h) yo=yi+ys.
In the context of electrical networks these equations can be identified with

Kirchhoff's current and voltage equations for a hybrid connection. For an
interpretation of the x's and the y's the reader is referred to [9).

THEOREM 2.
(i) For each x, and x, there exists a choice for the remaining ten vector
variables obeying equations (a)—(h) if and only if
O (Byy) C M(A ), + By}, M(Ay— Byg) C OM(A,, + Byy) (22)

e 2()ii) Further 1, and x, so determine y, and y, uniquely iff, in addition to

OM(Af) C M(Af+ BY), FN(Ad — B)C (A}, + By (2.3)

(ii) If (2.2) and (2.3) hold then

(y' )=H(A.B)( ’l) (2.4)
Yo To

where H(A, B) is as defined in (2.1).

Proof. Using (gl). (a), (c) and (e) eq. (g2) may be replaced by the
equivalent equation

(82)'(Ay + Byy)af=By,x, + (Bio— Ajg)xs.
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The ten equations so obtained after proper rearrangement could be written

as follows
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It is thus seen that given x, and z,, for each choice of x{' satisfying (g2)’,
there is a unique choice of the remaining nine vector variables satisfying the
remaining nine equations. For (g2)’ to be consistent for arbitrary x, and x, it
is necessary and sufficient that O (B, Bjy— A1)C O (A, + By)), but this

-
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condition is equivalent to eq. (2.2). Consider the general solution to (g2)":
xf=(Ay+By) (Bux+(Be—Ap)%)

+{I-(Ay+ By) (An+ B“)}U
where U is arbitrary. Substitution in

Y =yP=Anx{+Aprf=A, a0+ Apx,
and in

Yo =y + yP=(Ap,x7 + Agexf) + (Byyay + Bpoxy)
= Agx{+ By (x, — x{) + (Age + Bao)xe

leads to unique answers independent of U iff (2.3) holds.
Part (iii) of Theorem 2 is straightforward.

THEOREM 3.

(i) If A and B are hybrid summable so are B and A and H(A,B)
= H(B, A) (commutativity).

(ii) H[{H(A,B),C)= H[A, H(B,C)] (associativity) if all the hybrid opera-
tions involved are defined.

Proof. Interchanging A, with B, (i=1,2;j=1,2), x° with x* (i=1,2), y?
with y° (i=1,2) does not alter the system of equations (a)—(h). Hence part
(i) of Theorem 3 follows from parts (ii) and (iii) of Theorem 2 and Theorem
1. For associativity consider the equations
(e) Cuxi+Cxs=yi (i1) yy=y;
() Coxf +Cxs=yi (2 yy=y’
(@) = =xf+xP+xf (i3) yr=yr
(h1) xp=2x§ G ye=ys+yd+ys
(h2) x,=x7
(h3) x, = x

in addition to eq. (a)—(d).

We first show that, given x, and x,, there is a choice of the remaining

fourteen vector variables satisfying the fourteen equations (a)—(d), (e)’—()".
Given assumptions imply that for each x, and x, there exists a choice of
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the ten vector variables x{, x{, x{, x2, yf. y2. y}. yf. y, and y, satisfying
(k1) HyyxP + Hpxd =y (I3) x,=xP+x{
(2) Hyyx' + Hpoxf = ys  (kd) 2p=x
(5) y, =yt
(k6) yo=y3'+y§
in addition to (e)’, (f)’, (h3)’ and (i3)’, where
(o Ho)-minm
H21 Hﬂ
Also given x and x there exists a choice of the ten vector variables xf, x,”.
%8 %3 yis yis y3h s yi and g3 satisfying
() xt=xf+xp  (4) yt=yf
(12) x3 ==} (15) y'=yy
(13) xf =x7 (16) yg =y +ys
in addition to (a)}—(d)
(11) and (k3)=>(g)’ (14) and (k5)=(il)’
(12) and (k4)=(h1)" (15} and (k5)=(i2)’
(13) and (k4)=>(h2)’  (16) and (k8)=>(j).
Thus it is seen that given x; and x;, there exists a choice of the fourteen
vector variables x%, y& (i=1,2; @ =a,b,c), y, and y, satisfying the equa-

tions (a)—(d), (e)’—(j)’. Further, from part (ii) and (iii) it follows that y,, y,
so determined are unique and

( % )=H[H(A,B),C]( n )

Y Xg
A similar reduction shows
( n )= H[A.H(B,C)]( x )
Yo xo

thus establishing part (ii) of Theorem 3.
The following theorem gives a partial factorization result. We only state the
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result for factorization from the left; a similar result holds for the right.

THeOREM 4. If A and B are (p.q) hybrid summable matrices of order
mXn each, then:

(i) A®* and B* are (q,p) hybrid summable matrices and H(A* B®)
=[H(A.B)I*
(ii) FA and FB are (p.q) hybrid summable if

F=( E 0 )
J K
and E is nonsingular of order p X p, 0 is a null matrix of order px(m—p), J

and K are arbitrary matrices of order (u—p)Xp and (u—p)X(m-—p),
respectively, moreover

H(FA.FB) = FH(A,B) where 1-“=( E o )
2] K

Proof. (i) virtually follows from the corresponding result on the parallel
sum (Theorem 10.1.8 in [11]).
To prove (ii) check that

m=( EAy, EA,, )
JA+ KAy JAp+ KAy,

FB= ( EB,, EBy, )

JB,,+ KBy,  JB,;+ KBy,

satisfy the conditions of Theorem 1.
Hence FA and FB are hybrid summable and if

H(FA,FB)=( Hy ’112)
Hil Hu

we have H), = P(EA,,,EB,,)= EP(A,,,B,,)= EH,, where

H(A.B)=( Hy, "m)
Hﬁl Hu
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and P(A,,,B,;)= A (A}, + B);) " B,, is the parallel sum of A,, and B,,.
Hyy=EA,,(EA,,+ EB,)) [E(Byg— Ayg)] + EA ;g =EH\y
Hyy=JAy, + KAg, +[J(Byy— A,y;) + K(By, — Ag,)|(EA,, + EB,,) EB,,
=2JH,, + KHj,,
Hoo=J(A g+ Byg) + K(Agg+ Byo)[J(By, — Ayy) + K(Byy — Agy)]

X (EAy;+ EB,)) [E(Byy—Ay)]
=2JH g+ KHyg

This concludes the proof of Theorem 4.

3.0 STRONG HYBRID SUMMABILITY

In this section, a slightly different definition of hybrid addition is given.
This definition is more closely related to that considered in [9] for n.n.d.
matrices.

The matrices

A=(A,, Au) and B=(B,, B,,)

Ay Ap By By

are strongly hybrid summable if
() Ay, and By, are parallel summable
(B) OMM(A)C OM(A))), IM(Byg)C OM(By,) (3.1)
() ON(AZ) C OM(A}), ON(BY) C ON(BY,).

It is clear that if A and B are strongly hybrid summable then they are hybrid
summable.
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The strong hybrid matrix may be simplified as follows:

Hy=A, (A, +By,) B,=D

H,,=DL

Hy =RD (3.2)
Hyy=S,+ S+ RDL

where L=(AjA o+ B\1By;), R=(A,A[+ By By]) and S, = A, —
Ag A A g Sp= By, — By, B,1B), are respectively the generalized Schur com-
plements S(A/A,,) and S(B/B,,) of Carlson, Haynsworth, and Markham
(7).

Any two n.n.d. matrices are (p,p) strongly hybrid summable. We next
consider when the (p,p) can be replaced by (p,q). The following Lemma
will be needed, see [10] for a proof.

Lemma 1. Let A, B be n.n.d. matrices and A,, B, be leading principal
submatrices of A and B, respectively. Then
R(A+B)=R(A,+B,)=R(A)=R(A,) and R(B)=R(B,). (3.3)

It is not difficult to see that Lemma 1 would be true for any pair of
principal submatrices A, and B, of A and B provided the submatrices are
conformably defined.

THEOREM 5. Let A and B be n.n.d. matrices of order nX n and let p, q
be integers such that s=max (p.q) < n. If A, and B, are the s X s principal
submatrices of A and B, then A and B are strongly (p,q) hybrid summable
if and only if

R(A;+B,))=R(A;+B,). (34)

Proof. Let t=min(p,q), A, and B, be leading principal minors of order
tX ¢t of A and B, respectively. To fix our ideas we may assume without any
loss of generality that ¢t=p and s=q. Let us write

A2l.l Aﬁll

welan ) ()
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Necessity of condition (3.4) is seen as follows:
() and (y) of (3.1)=

M(Af1.)C M(A) C TN(A])C (AL + BY)
OM(B.,) C ON(B3,) C ON(B},) C ONL(AD, + BY)=
OM(AS ,+ Bg,,) C ONL(AD + BY,)=(3.4).
To establish sufficiency of (3.4), check that since A and B are n.n.d.,
M(A),) = M (Ag), IM(B,,)=IM(By)

Hence

M(Ag) C M(Ayy),  D(Byg) € IM(Byy).
Also

M (A1) = T(Ag) C TM(Ay+ By)= (A, + Byy).

Thus parts of (a), ( 8), and () follow from nonnegative definiteness of A and
B. The rest of («), ( 8) and (y) follow from (3.4) and Lemma 1. Observe that

(34) =R(A;+B,)=R(A;+B,)
=R(A,)=R(A;), R(B,)=R(By) (using Lemma 1)
=M(A})=IM(A}), OU(B})=M(B})
=IM(Af)C IM(A}+Bf)=IM(A}+B})

Also since

M(Ag2) C M(AD), OM(A})=I(A})
= O(A})CM(A})-

Similarly we establish 91 (Bg,)C 9N (B},) and the proof of Theorem 5 is
concluded. |

Notice if p# g then in Theorem 5 we must have that det(A, + B,)=0 and
therefore we have the following:

CoroLLARrY 5. If A and B are positive definite then A and B are (p.q)
hybrid summable iff p=q.

The following theorem gives an expression for a generalized inverse of the
hybrid sum of a strongly hybrid summable pair of matrices.
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TueoRreM 8. Let H, be defined as in (3.2), then

( Hyy+HyHoF HoHyy  —HiHF~ ) (35)
= F"Hy,Hy, F~
with F= Hey— Hy H7H,g = S(H/ H,,) is one choice of a g lized i
of
H-( Hy  Hy ) (3.6)
H!.l Hﬁ

Proof. Theorem 6 follows from Theorem 1 of Bhimasankaram [4]. See
also Burns et al. [6] in this connection.

Let H be the matrix obtained by multiplying H to the left by permutation
matrix (0 I"‘”) and to the right by ( 0
L, o .-

of H as determined by eq. (3.2) is so close to that of (3.5) that one is tempted
to speculate that a generalized inverse of the hybrid sum of A and B can be
expressed as the lower hybrid sum of a pair of matrices (possibly A~ and
B 7). A lower hybrid sum corresponds to a lower hybrid connection of
networks in which the first few ports are connected in series and the
r ining ports are ¢ ted in parallel. There is one more reason which
gives strength to this speculation. Let us look back at equations (a}—(h) to
which a reference was made in. Theorem 2. If instead of the y's being
expressed as linear functions of the x's as in (a)—(d), one considers the x's as
determined linearly by the y's (using appropriate generalized inverses of A
and B), the resulting system of equations is easily seen to be the equations
for a lower hybrid connection of networks, a result which may otherwise be
expected from the duality theory of Bott and Duffin [5]. This indeed is the
intuitive setting for a result deduced algebraically in Rao and Mitra [11, p.
189), that a generalized inverse of the parallel sum of a pair of matrices A
and B can be expressed as a sum of their generalized inverses (A~ and B 7).

I"). The algebraic structure
q

THEOREM 7.

(i) A pair of matrices A and B are strongly hybrid summable iff each pair
of matrices formed out of A, B and the null matrix 0 is hybrid summable.

(ii) If A and B are strongly hybrid summable H(A, B) is hybrid summable
with 0 and

H[H(A,B),0]= H(A,0)+ H(B,0). (a.7)
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Proof. The proof of Theorem 7 is straightforward and is therefore
omitted.

The operation of hybrid addition with the null matrix is equivalent to
shorting out the first p ports (the ports which are connected in parallel) in a
hybrid connection of electrical networks. We shall write H(A,0)= S{A) and
term this the generalized shorted operator. Anderson [1] has defined the
shorted operator of n.n.d. matrices, the new definition extends his work.
With A partitioned as before, we have

S(A)= ( 0 0 )
o Age—AgAniA)e

Since A is hybrid summable with the null matrix, S(A) is independent of the
choice of a generalized inverse of A),. In terms of shorted operators (3.7)
could also be rewritten

S(H)=S(A)+5(B),
a relation established in Duffin and Trapp [9] for n.n.d. matrices.

4. GENERALIZED MATRIX GYRATION AND HYBRID ADDITION

Duffin, Hazony, and Morrison [8] have used the hybrid connection in
network synthesis problems. In their synthesis they consider the gyrator
which is a nonreciprocal network element first used by Tellegen. Their study
of the gyrator led them to the concept of matrix gyration. Let A be
partitioned as before and A,, be square (that is, p=gq) and invertible. The
gyration of A denoted I'(A) is given by

ALl —AR'A
F(A)=( 1 o n “_l ) (4.1)
ApAf Age—AgiA[1 Ay

The gyration is a partial inverse defined for partitioned matrices since
()
Yo x

( n )=I‘(A)( Y ) (4.3)
Ye Xg

When A, is rectangular or even square singular (4.2) may not uniquely
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determine x,, y, in terms of y,, x;. A generalized gyration of A may therefore
be defined as follows:
C= ( Gy Gy )

C!l Gﬂ

is called a generalized gyration of A if for an arbitrary x, and y, given by
y, = A, u, + Apx, (with an arbitrary choice of u,), x,, y, given by

Yo Xg
together with y,, x, form a consistent system obeying (4.2).
Using the definition above, the following Theorem is easily shown.

THeoREM 8. G is a generalized gyration of A iff
A=A, G A,
ALGyu=—-A,G)hA,
Gy A=A GlHA, (4.5)
Goo+ Gg1Ajg=Age+ Ay G+ A, C 1A .

THEOREM 9. A g I solution to a g lized gyration of A is given
by

G, =Aq

Cu=—AfAp+[I-AJA, U

Cau=Ag AL+ V[I-A,AfL] (4.6)
Goo=Ag— Ay A[ A+ Ag [I-AJALU—-V[I~AA[ A,

where U and V are arbitrary matrices of appropriate order.

Theorem 9 follows from the expression to a general solution of the linear
matrix equation BX=C. (See for example [11, p. 24]). When A is hybrid
summable with the null matrix, Gy, in (4.6) simplifies to Ag, — A5, A A, and
is independent of the choice of generalized inverse of A,,. With A
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partitioned as before, let

A= Ah —A . (4‘7)
-AL A

A" is termed the signed adjoint of A. A" appears as the adjoint of A under
an indefinite inner product of the type considered by Anderson, Duffin and
Trapp [3]. The following Theorem is easily verified.

TueoRem 10. If G is a generalized gyration of A, then G* is one choice
of a generalized gyration of A®),

An important class of generalized inverses are the reflexive generalized
inverses. We therefore call G a reflexive generalized gyration of A if G is a
generalized gyration of A and A is also a generalized gyration of G. A direct
calculation yields that if G,, is a reflexive generalized inverse of A,,, then G
is a reflexive generalized gyration of A. Summarizing we have:

Tueorem 1. G is a reflexive generalized gyration of A if and only if
the matrix G in addition to satisfying (4.5) also satisfies the condition

G =GhA,Gyy (4.8)

In [9), the gyration of the hybrid sum was useful; we now consider that
problem in our framework. Let the matrices A and B of order m X n each be
strongly ( p,q) hybrid summable, and let the matrix D be defined as in (3.2).

Put

_(pD o _(pp- o
QL—( 0 1,..-,) Cr ( o I ) (4.9)

n=q

where D~ denotes a generalized inverse of D, possibly representing distinct
choices in Q, and Q.

Tueorem 12. If A and B be strongly (p.q) hybrid summable and T(A),
[(B) denote g lized gyrations of A and B, then Q,[T(A)+T(B)]Qj is
one choice of a generalized gyration of H, the strong hybrid sum of A and B.

Proof. In view of Theorem 7, arbitrary generalized gyrations of A and B
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could be expressed as

I‘(A)—( AL —A,‘,Au+[1—A,—,A,,]U)

AllAl-l+v[I—AllAl_l] Age—ApAAy

P(B)=( . By ~ BBy +[1-B)1B,,]S )'
By, By, + T[I_ BuBﬁ] Bgo— By, B Byg

where S, T, U, and V are arbitrary matrices.

Now Q,[T(A)+TI'(B)]|Qp may be written

..( AL +Bj —L+[I—A,‘,A"]U+[I—B,}B“]S]Ql'
R+ V[I-AjA[]+ T[1-By,B] Sa+Sp

This may be simplified to obtain

Q,.( AL +B; L )?"
R Sy+Ss

here we have used the facts that O (D)= 9N (A)N 9N (B) and M (D*)
= 9N (A*)N M (B*). But D, =D "D(A;+B,;;)DD~ =D DD ", since
A+ By is known to be one choice of a generalized inverse of D, the
parallel sum of A, and B,,, therefore we have

( D, ~-D DL )

RDD,~  S,+S,
Hence
QuIr) +r(Ben=( 5 ~Haths )
Hg, Hy; Sy
as required.

Possible extensions of this work include a more thorough study of gyrs-
tions, for example minimum norm gyrations, and the extension of hybrid
addition to Hilbert space. These topics are currently under investigation.
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