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1. Introduction. A positive dynamic programming problem is determined
by four objects, S, A, ¢ and r. S and A are non-empty Borel subsets of Polish
spaces, ¢ is a transition function on § given S x A and r is a bounded, non-
negative, Borel mensurable function on S x A. We interpret S as the state space
of some system and A as the set of actions available at each state. When the sys-
tem is in state s and we take action a, the system moves to a new state s accord-
ing to the distribution ¢(-/s, @) and we receive an immediate return r(s, a).
The process is then repeated from the new state &, and we wish to maximise the
total expected return over the infinite future.

A plan = is a sequence =y, my, -+ -, where m, tells you how to choose an action
on the nth day, as a function of the previous history h = (81,81, * -, Ga_y, 82},
by associating with each h (Borel measurably) a probability distribution x.( - /A)
on the Borel subsets of A. Certain types of plans are of special interest. A semi-
Markov plan is a sequence fy , fa, - -+, where each f, is & Borel measurable msp
from S x Sinto 4, and fa(81, 8.) is the action we take on the nth day if we start
instates, and thestate on the nth day is s. . A Markov plan is asequence f, , fz, - - -
where each f, is a Borel measurable map from S into 4 aad f.(s8) is the action
we choose on the nth day if the nth state is s. A stalionary plan is a Markov plan
in which f, = f for some Borel measurable map f from S to A and all .

A plan = associates (Borel measurably) with each initial states a total ex-
pected return /(=) (s). We shall assume that the structure of the problem is such
that the optimal return ¥* = sup, I(#) is & finite function on S. [Note that we
are not assuming that v* is bounded).

This problem has been studied by Blackwell (1], Strauch [6] and Barbosa
Dantas {2]. An example due to Blackwell shows that e-optimal plans need not
exist (see Example 4.1 in [6]) and moreover, that the optimal return need not be
Borel measurable. The purpose of this note is to impose certain topological
conditions on A, ¢ and r and show that under these assumptions there will exist
e-optimal plans and that the optimal return will be Borel measurable. Specifically,
we shall prove the

TueoRreM. Let S be a Borel subset of @ Polish space, A a compact metric space
and r a bounded, non-negalive, upper semi-continuous (abbreviated, hereafter, by
usc) function on S x A. Assume, furthermore, that (8n , Gn) — (S0, @) tmplies
9(+ /84, @) converges weakly to g(- /30, @). Then, for any ¢ > 0, there exists an
e-optimal semi-Markov plan = (that s, I(xr) Z v* — ¢)) and, moreover, the optimal
return v* 1s @ Baire function of the second class.

Note tbat if S is countable and A finite, the conditions of the above theorem
are fulfilled.
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2. Proof of theorem. Throughout this section, the conditions imposed on S,
A, g and r in the theorem stated above will remain operative.

The proof of the theorem rests on a selection theorem due to Dubins and
Savage (3]. We state it here in a form somewhat different from that in which
Dubins and Savage have stated it but which is immediately applicable to our
problem.

SeLECTION THEOREM. Let u be a bounded usc funclion on 8 x A. Define u*:
S — (—w, ®)by: u*(s) = maxwa u(s, a). Then u* 13 usc and there exists a
Borel measurable function f from S to A such that u*(8) = u(s, f(s)) forallse S.

The proof may be found in [3], page 38 or in [5].

We shall also require the following:

Lenya. Lel v be a bounded usc function on S. Then w: S x A — (— 0, ) de-
fined by: w(s, @) = [v(-) dg(-/s, a) 7s usc.

Proor. First, note that if v’ is any bounded continuous function on S, then
it follows from the condition imposed on ¢ that the function (s, @) — [ v'(-) dg-
(-/s, a) is continuous. Next, asv isa bounded usc function, thereexistsa sequence
{va} of bounded continuous functions on S such that v, | v (by Theorem 3.3.8 in
[4]). Hence, the functions w, on S x A defined by w.(s,a) = f va(-) dg( /s, a)
are continuous, and, by the dominated convergence theorem, w, | w. Conse-
quently, w is usc ,which completes the proof of the lemma.

Proor oF THEOREM. In the dynamic programming problem, denote, for each
n 2 1, by u,” the optimal return over n days of play. Each u.* is then a bounded,
non-negative function on S, and, moreover, ut T ' (say). We shall show by
induction that each %, is usc on S. Note that

(1) %*(s) = maxea 7(s,a) forall ses,

30 that it follows from the Selection Theorem that w,* is usc. Suppose forn = m,
un" is usc. Then it is easy to see that

(2) uma(s) = maxeea [r(s, @) + [un'() dg(+/s, 0)] forall ses.

The lemma above together with the inductive hypothesis ensures that the
second term inside square brackets on the right-hand side of (2) isuscon S x 4,
80 that the entire expression within square brackets is usc on S x 4. Thus, the
‘max’ is justified in (2). Consequently, it follows once again from the Selection
Theorem that ums i8 usc on S. As ™ is a point-wise limit of the usc functions
u,", it i3 a Baire function of the second class. From (2), we get

3) upaa(s) Z (s, @) + [ua(-) dg(-/s, a)) for all 5, a and m.
Keeping s and a fixed, let m — « in (3). By the monotone convergence theorem,
we have:

(4) u*(s) Z [r(s, 0) + [u*(+) dg(-/s, a)] for all s and a.
'I;heore!.n 2 in (1) now implies that the optimal return (over the infinite future)
’ Aégai;n' from the Selection Theorem and (1) and (2), we get the existence of
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Borel measurable maps, f, ,n 2 1, from S to A such that

(5) u°(3) = r(s, fi(s)) forall se8

and

(6)  unia(8) = 7(8, fos1(8)) + [ ua"(-) dg(-/5, fasa(8))  for all ¢ and n.

Now we can construct an ¢-optimal semi-Markov plan as follows: Let ¢ > 0 and
let g be a fixed (but otherwise arbitrary) Borel measurable map from S to 4.
Define

S, = {s: u'(s) 2 u'(s) —d and, for n 2 2,
S, = {8 usa(s) < u(s) — ¢ u"(8) 2 u'(s) — .

The sets S, are Borel, disjoint and U%., S, = S. Define g = fa on Sa, n 2 1,
and for m 2 2, define gn(s, §') = g(s') if s ¢ S;uSu---v S.,, and
gm(8, 8') = facmer(s'),if 52 Sa, n 2 m. Thenw = {g1, g2, -} is our required
semi-Markov plan. For, it is easy to see, using (5) and (6), that if
s¢ Sa, I(x)(s) 2 u,"(s) 2 u*(s) — e Consequently, I(x) 2 u* — ¢ which
proves that (as e is arbitrary) v* = u* and  is ¢-optimal. Moreover, the optimal
return is a Baire function of the second class. This completes the proof of the
theorem.

ReMagrk 1. Qur theorem is the dynamic programming analogue of Theorem
2.16.1 in [3].

ReMARK 2. Blackwell has given an example in [1), which satisfies the condi-
tions of our theorem, but for which an optimal plan does not exist. The same
example shows that e-optimal stationary plans need not exist. Whether or not,
under our conditions, ¢-optimal Markov plans exist, we have not been able to
determine.
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