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A stochastic integro-differential system (*) X(t, o) = A(w) X(t, w) +
JEB(t — s, w) X(s, w) ds + b(w) P(o(, w)) subject to o(t, w) = <c(w), X(¢, w)),
t > 0 is considered where the integrals are interpreted as Bochner integrals.
Existence and absolute stability of random solutions of (*) are studied.

1. INTRODUCTION

The purpose of this paper is to study the existence and absolute stability of
a random solution of a stochastic integro-differential system of the form

X(t, w) = A(w) X(t, w) + J; "Bt — s, w) X(s, w) ds + bw) Boft, w),
oft, w) = (c(w), X(t, @)),  tER,, ©)
where

(1) wef, where 2 is the supporting set of the probability measure
space(f2, &, u),
(i) X(¢, w) is the unknown 7» X 1 random vector for every ¢t > 0,
(iti) b(w) and ¢(w) are # X 1 constant random vectors,
(iv) A(w) is a constant # X n random matrix,
(v) B(t, w) is an n X n random matrix kernel, and

(vi) @(o) is a real valued function defined on the real line R.

The integral in (S) is interpreted as a Bochner integral. Further assumptions
concerning the functions in (S) will be stated in Section 2.

Absolute stability of deterministic integro-differential systems of type (S)
has been studied recently by Corduneanu [1] using some results of Grossman
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and Miller [4]. Our approach to the problem will be similar to Corduneanu [1].
Stochastic integro-differential systems were studied by Prakasa Rao and
Rama Mohana Rao [6] and Tsokos [7].

2. PRELIMINARIES

Let R" be the Euclidean n space with norm || x| = sup | x;|. If 4 is an
n X n matrix, define || A || = sup || Ax ||/l x || (= sup; 2x | ai. ). Let L( p, n)
be the Banach space formed from all X: £ — R® with finite pth moments
(p=1) and define || x| |, = (E(|x]I?)"?. Here E is the expectation
operator. Let J = [0, o0). X: J X £ — R" is a stochastic process. It can
also be thought of as a map X: J — L( p, n)if | || X(2, w)|| |, < 0. In this case,
we say that X' is L-differentiable if the difference quotient

(X(t + by w) — X(t, ))/h @1)

converges in norm topology on L( p, n) as | # | — 0. If almost all the sample
paths of X’ are differentiable, then we say that X is SP-differentiable. X is
called SP-integrable if, for almost all its sample paths, _[: | X(t, w)|| dt exists
and is finite. If, considered as a map from J into L(p, n), X is Bochner
integrable, we say that X is L,-integrable.

Let C, = Cy(J,L( p, n)) be the space of all continuous functions from [
into L( p, n) with the topology of uniform convergence on compact sets. The
space C. is a locally convex space whose topology is defined by the following
family of seminorms:

| x(t; w)‘n = sup ] x(t’ “-’)” |p s n=l.
oign

By a random solution of (S), we shall mean a function X € C,(J,L(p,n))
satisfying (S) p a.e. Any random solution of (S) is said to be absolutely stable
if| X(t, w)| — O as t — co pa.e.

3. SoME Basic REsULTs

We shall now obtain some elementary results which are necessary to
obtain the main theorem on the existence and stability behavior of solutions
of (S). Suppose the following conditions are satisfied.

(i) ess-sup |l A(w)l = B < <0
(i) ess-sup | b(w) = d < co; (AD)

(iii) ess-sup || ((w)l| = ¢ < o0;
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(i) N B(t, o)l € Ly(Ry , Ler(82, -, p));

t
(ii) ess-sup fo || B(s, w)|| ds < m(t) where me C[R,_, R);
and

ova <
(i) sup | | B(s, o)l o < l(u) ~ where  leC[R,,R]. (A2)
Define formally
t
L, w)=A B(t — u, w) di
Wty @) = A() + [ Bt — u, w) du 31
and
¢
R(t,w) =1+ [ R(t — u, ) (s, w) du, (32)
0
where I is the identity matrix. Under the assumptions (A1) and (A2), it was
shown in [6] that
Il (2, w)” ELw(‘Q’ &, p), || R(2, o) eLm('Q’ o, ©) forte R,, (3-3)

and the integrals in (3.1) and (3.2) exist as Bochner integrals.
In fact,

IR < 1+ [ 6+ mi) da

¢
exp [ (B + m(w) du| = ()

(say). (34)
Furthermore, R(t, w) is L,-differentiable and

R(t, w) = A(w) R(t, ) + fo “B(t — s, w) R(s, ) ds. (3.5)

We shall now state a probabilistic version of sufficiency part of a theorem of
Grossman and Miller [4].

THEOREM 3.1. Suppose that (A1)(i) and (A2)(i) hold and there exists a
random variable o(w) such that a(w) = 0 a.e. p and
det(s] — A(w) — B(s, w)) £ 0  a.e. u for Re(s) > —a(w), (A3)

where B(s, w) is the Laplace transform of B(s, ) i.e.,

B(s, w) = [ e#B(t, w) d. (3.6)

Then
| R(t, w)|eLy(R,, R) as. (3.7)
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Proof. Let D be the sct of all w € 2 such that || A(w)| < o, o(w) = 0and
det(sI — A(w) — B(s, w)) 7 0 for Re(s) > —o(w). w(D) = 1 by hypothesis.
Take any wo € D. || B(t, wy)l € Ly(R,., R) and det(sI — A(wy) — B(s, w,)) 5 0
for Re(s) = 0 since —a(wg) << 0. Hence, by [4, Theorem 2.8],

| R(2, wo)ll € Ly(R, , R)
for every wq € D. In other words,
| R(t, w)| €Ly(R,., R)  as. 1l
As a consequence of (3.3) and (3.7), it follows that
| R(t, w)ll € Ly(R, , L2, 4, 1)) (3-8)
Let f(t, w) = b(w) D(o(t, w)), where P satisfies the following condition:
®(o) is a continuous real valued function on R such that ¢®(s) > 0 for

o # 0 and there exists p > 0 such that | §(o)] < ¢ for e R. (A4)

TueoReM 3.2. Under the assumptions (Al), (A2), and (A4), any random
solution of

X(t, 0) = A(w) X(t, w) + .[: B(t — s, w) X(s, w) ds + f(t,w)  (3.9)
can be represented in the form

X(t, w) = R(t, w) X(0, w) + fo ‘Rt — s, ) f(s, w)ds,  (3.10)

where R(t, w) is the associated integral resolvent defined by (3.2).

This result is a special case of [6, Theorem 4.1].

4. EXISTENCE AND STABILITY

Since
olt, w) = <c(w), X(t, @), @.1)
it follows from (3.10) that
o(t, ) = (e(w), R(t, w) X(0, @)y + [ (e(w), R(t = 5, w) B(w)> Do, w) -
° 4.2)
Let

h(t, w) = (c(w), R(t, @) X0, @), (4.3)
k(t, w) = (c(w), R(t, w) b()>. (4.4)
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The stochastic integral equation (4.2) can be written in the form

o(t, w) = h(t, w) + fo "Rt — s, w) D(o(s, w)) ds, (4.5)

where the integral on the right-hand side of (4.5) is a Bochner integral. In
view of (A1), (3.3), and (4.4), it follows that

k(t, w) ELl(R+ ’Lco('Q’ A, I")) (46)
Let

Rsw) = [ “eR(t, w)dt,  Re(s) >0. (4.7)

Since || R(t, w)l| €Ly(R, , Lo(R2, &, 1)), (Al) and (A2) hold, and from the
fact that the second term on the right-hand side of (3.5) is a convolution,
it follows that

| R(t, w)| €Ly(R, , R)  ass. (4.8)
Furthermore,
| R(t, )l < [ A()ll | R(2, w)l| + f: | B(t — s, w)l || R(s, w)l| &5 (4.9)
and hence
| R(t, w)| eLo(R, o, )  for every te R, , (4.10)
by (A1), (A2), and (3.3). Therefore,
I R(t, )| € Ly(R,. , Lo, &, 2)). (4.11)
Taking Fourier transforms on both sides of (3.5), one obtains the relatider
sR(s, ) — I = A(w) R(s, w) + B(s, w) R(s, ») (4.12)
after some calculations. Hence,
R(s, w) = [sI — A(w) — B(s, )] (4.13)

The existence of the inverse follows from (A3).
We shall now state and prove the main theorems of this paper.

THEOREM 4.1. Under the assumptions (A1)-(A4), the system (S) has at
least one random solution for any initial condition X(0, w) € L( p, n).

Proof. In view of (4.3), (4.4), (3.8), (4.11), and (Al) and the fact that
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X(0, w) eL( p, n), it follows that h(z, w), A'(t, w), k(t, ), K'(t, ») exist and

h(t’ w)’ h'(t’ w) ELI(R+ ,L,(Q, A, ©)s (4'14)
k(t, w), k'(t, w)eL(R, ,L (2, o, @) (4.15)

Since (4.14) holds,
h(t, w) € BC(R, ,L (2, o, p)), (4.16)

where BC(R, ,L,(R, &, p)) is the Banach space of bounded continuous
functions from R, into L (2, o, p).
Define the integral operator T on C(R, ,L,(®, 7, n)) by

(To) (¢, w) = h(t, w) + fo ‘Rt —s,0)D(o(s, w)ds, teR,, (417)

where the integral is a Bochner integral. In view of (A4), (4.14), and (4.15),
(To)(t, w) e L(R2, o, p) for each t € R, . Furthermore,

(T (2, w) — (To) (to; w)il5

<Nt @) — Mta, My + o | k(e — s, @) — k{ty — 5, ), ds

t
< A2, w) — h(ty , w)ll, + ‘Pcdf ' | R(t — s, ) — R(ty — s, w)ll, ds
0
t
+9cd [ I R(to — 5, ), ds. (4.18)

Clearly the first term on the right-hand side of (4.18) tends to zero by (4.16)
as t — t,. Since || R(t, w)|| e L\(R, ,L.(R2, &, p)), the last term approaches
sr0, From [6, Lemma 3.2], R(t, w) is L,-differentiable. In particular, it
follows that the integrand of the second term of (4.18) tends to zero. Further,
the integrand is dominated by a continuous function n(s) by (3.4) which is
integrable on [0, ¢,]. Hence, by the Lebesgue dominated convergence
theorem, the second term converges to zero. Hence,

(Te)(t, w) — (To)ty , W), — O ast— 1.

This shows that (To)(t, w) e C(R, ,L (R, &/, pn)). In fact, the operator T
defined by (4.17) is continuous from C(R, , L,(R2, &, p)) into itself. This can

be shown be a method similar to [5, Lemma 2.1]. It is easy to see from (4.17)
that

To) ()l < sup LKt ), + 9 [ IR @l de =7 (say). (419)
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Consider the set
2 = {o(t, w): o(t, w)e C(R, »Lo(2, oA, ) ot ), <7 forallzeR,}. (4°20)

Equation (4.19) shows that T2 C Z. Furthermore, TX is relatively compact
in C(R,. ,L,(R, 7, u)) by the Ascoli-Arzela theorem, since T2 is uniformly
bounded by (4.20) and T2 is equicontinuous as the right-hand side of (4.18)
tends to zero as t — ¢, and is independent of 0. Hence by the Schauder
fixed-point theorem, there exists at least one fixed point o. Hence there exists
at least one random solution o(t, w) € C[R, ,L,(£2, &, p)] satisfying (4.5).
Equation (4.1) proves that there exists at least one random solution
X(t, w) € C[R, ,Ly(R, o, )] satisfying the system (S). f

THEOREM 4.2. In addition to assumptions (A1)—~(A4), suppose the following
condition is satisfied.

(AS) There exists ¢ = O such that for every A € R,
Re{(1 + idg)e(w), [ — A(w) — B, w)]?b(@))} <O ae.p.  (421)

Then, any random solution X(t, w) of (S) with X(0, w) € L( p, n) is absolutely
stable; i.e.,

lim|| X(t, )| =0 ace.p. (4.22)

Proof. It is already shown in Theorem 4.1 that a random solution of the
system (S) exists almost surely under assumptions (Al1)-(A4). Let X(t, w)
be any such random solution. In view of results in [3, pp. 196-199], there
exists a solution X(t, w) equivalent to X(t, w) such that X(t, w) satisfies (S)
almost surely where the integrals are now defined sample pathwise and we
shall prove that

lim || 2(, )| =0 ae.p, (4.23)

which in turn proves (4.22).

Note the definitions of A(t, w) and k(t, w) given in (4.3), (4.4) and their
properties from (4.14) and (4.15). Let D be the set of all w € 2 where essential
supremums (with respect to ) of A(, ), #'(, w), k(2, w), ¥'(t, w) are finite
and (AS) holds. Fix any w, € D. Consider the deterministic integral equation

o(t, wg) = h(t, wy) + J.t k(t — s, wy) Pa(s, wy)) ds, teR,. (4.24)

It follows from [2, Theorem 3.2.2] that any solution &(¢, w,) of (4.24) satisfies

6(t, wy) >0  as t— cO. (4.25)
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Since || R(t, wo)ll € Ly(R, , R) and || R(t, wy)ll e Ly(R, , R), it follows that

| R(t, w)l -0  as t— co. (4.26)
But

X(t, wo) = R(2, wp) X(0, w,) + J: R(t — s, wy) b(wg) P(o(s, wy)) ds, (4.27)

by (3.10), and the convolution product tends to zero as t — oo if at least one
of the factors does. Hence,

lim|| £(t, w)| =0 a5 t— co.

Since this holds for every w, € D with u(D) = 1, it follows that (4.23) holds,
which in turn proves (4.22). |

Remarks. 'Tsokos [7] studied absolute stability of stochastic differential
systems of the form (S) when B(Z, w) = 0. He further assumes that o(t, w) =
{d(t, w), X(2, w)>. His approach is to reduce the study of the system to the
study of a nonlinear stochastic integral equation of the form (4.5) and then
apply the stability results of (4.5). It seems to us that his results are valid
only when (¢, ») is independent of ¢ since the kernel for the system (1.0),
(1.1), of Tsokos [7] in the reduced stochastic integral equation will not be a

- convolution kernel when ¢(2, w) depends on t.
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