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Summary

Problems of truncation at known and unknown points in quantal
assay are considered. Methods of maximum likelihood and of minimum
chi-square for estimating the parameters are discussed. Other quick but
rough procedures of estimation, including a graphical iterative procedure,
are outlined. Tables of * Truncated Probits ' and of * Truncated Logits,’
which facilitate the graphical procedure are presented. Numerical ex-
amples illustrating the use of these tables are worked out.

1. Problems of truncation

Quantal assay as a convenient experimental scheme has attracted
the attention of research workers, since this observational set up is
particularly useful in situations wherein it is not possible to observe
directly a characteristic of an experimental unit, but only the numbers
of experimental units, having the characteristics above fixed levels of
the characteristic are possible to be observed. Many variations in this
kind of observational set up and several kinds of adjustments in the
method, to suit the particular experimental conditions have been studied.
Adjustments for natural mortality in a drug-assay, the Wadley’s problem
of non-observable number of experimental units and the staircase method
of estimation are some of the interesting instances of this nature. They
are discussed by Finney [5].

The general quantal assay experiment can be formuiated as follows :
The purpose of such an experiment is primarily to estimate the para-
meters (or certain parametric functions) of the frequency distribution
of z, say, f(z, A), of a characteristic z, 2 being the parameters. Let
the assay be performed over m levels. Corresponding to each level,
a subset E, of the domain of x (or of a suitable transform of z) is
chosen and fixed. Considering 7, experimental units, the number of
them, say 7, having tolerance in E, is observed. In the familiar
drug-assay, E, is (—oo, z,) where (—oo, o) is taken as the domain of
z, the log dose. The estimation procedure depends on the nature of the
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E/s and the form of f. Methods of analysis for this case, taking par-
ticular forms of f, such as the normal and the logistic, are discussed
by Finney [6] and Berkson [1].

In quantal assay, truncated distributions are frequently come across,
especially in time mortality. Meynell [6] discusses the genesis of truncat-
ed distributions of biological tolerances and gives an account of such
phenomena. Though, in most cases, the points of truncation are un-
known, there are instances in which they are predetermined by the
method of experiment or by the selection of data. In case the points
of truncation are unknown, tentative values of them are to be used in
iterative procedures for determining other parameters, as shown below.
Bliss and Stevens [3] have considered truncation at known points in a
different context. We shall consider here truncation at known and
unknown points, considering a somewhat general form of the density
function—the scale and location parametric form—of which the normal,
logistic and many other known laws are special cases.

A problem which is conceptuaily different but statistically related
is that of ‘censoring.’” By censored observations in quantal assay, we
mean that the set E, is not (—oo, #,) but (a., ). In truncation, the
domain of the tolerance variable is truncated to a subset E (independent
of i) of the domain of a variable x and the tolerance distribution is
derived from the distribution of z; E’s are of the form (k, z,) where k
is the lower point of truncation. In censoring, the tolerance variable
has a domain (which may be a truncated domain or not) and the sets
E, are of the form (a,, z;). We shall reserve problems of censoring for
a future communication.

The maximum likelihood (M.L.) and minimum chi-square (M.C.)
methods of estimation of the parameters of the distribution of tolerance,
truncated at known points and whose untruncated density function is
of the form fAf(a+pBz), « and B being the parameters, are considered in
sections 3 and 4, after explaining the notations in section 2; section 3
deals with lower truncation and section 4 deals with lower and upper
truncation simultaneously. In section 5, the problem of unknown points
of truncation is solved; the solution depends upon the solution to the
problem of known truncation points in an iterative process. In section
6, numerical examples are worked out. Section 7 contains tables of
truncated probits and of truncated logits, which are useful in following
the rough graphical iterative procedure suggested in section 3.

2. Notations

Let us consider an experiment in which m sets of 7, subjects are
stimulated to levels z,, i=1, 2, --., m, the response being of a quantal
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nature. Thus at stimulant level z,, the number of subjects giving one
type of response is 7, out of n,.. Let p=7,/n. In general, denoting
P(E,) by @, one can write the likelihood of quantal assay, in the form,
(2.1) L=T]

(ﬁ: )0,':(1—0,)"-'1 .
Let us consider the basic distribution
-+ AX
22) Fo@={""reuz,

and denote the lower and upper points of truncation by k& and k' re-

spectively. The following is a list of notations that will be of sub-
sequent use:

e=a+pk, d=a+pk,

1/6=1—F*(k),

1/ *=F*(k')—F*k),
fi=fla+Bz), f.=flatpk), S =f(a+pk)
Frk)=F*; F*k)=F*,

(2.3) F(x)=0[F*(x)—F*k)], F(x)=F.,,
fr=f.(-F),
Z=f—f¥,
vi=(p—F)/0Z,,
w=21] F(1-F),
wi=filZ,,
wl=f*|Z,,

s0 that w—w{=1,

w=wix,—wik.
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3. Lower truncation at a known point

8.1 Exact M.L. and M.C. estimates
Let us first consider truncation below at k. The function @ in (2.1)
takes the form F(z) as in (2.3). One obtains, by differentiating (2.3),

F _ o i1
(8.1.1) -aa——ﬂlﬂ f.(1—F)],
8.1.2) —aa%=0[f.z‘—kf.(l—i'«)] .

The scores (S., S,) and the information (L., L,, I,;) are obtained by
the usual procedure of finding the first derivatives and the expected
values of the second derivatives (using E(p)=F'). Using the notations
in section 2, and dropping subscripts 4 for all elements inside the >
sign for convenience, one easily obtains

(8.1.8) S.=3 nwy
(3.1.4) S,=3] nwyu
(8.1.5) L.=%nw
(3.1.6) L,=>nwu
(3.1.7) I,=3 nwu'.

The usual iterative solution for the maximum likelihood estimates a*,
p* for a, § with a,, f, as initial values, are obtained from

(8.1.8) S.=(a*~a,)L.+(8*—B.) L.,
(3.1.9) S,=(a*—a))L,+(8*— B,y -

By Berkson’s [2] procedure, the minimum chi-square normal equa-
tions are obtained by multiplying each term of the maximum likelihood
equations, by the corresponding factor,

(3.1.10) [Fl—p)+p(1—F)] | F(1—F),
since they minimize the chi-square statistic
@.1.11) 2} [~ F)* | FQQ—F)) .

3.2 Simpler approximate iterative solution
Following Berkson [2] it is easy to show that the maximum likeli-
hood and minimum chi-square estimates can be approached in the limit
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if, in the normal equations, (p—F') is replaced by
(3.2.1) Z[(ag+Box) —(a+ )] .
To show this, let

Y=o,+px+Yy, yY*=a+pc.

Writing

F={""" f(ayz,
and noting that

oF
8.2.2) W_0f,

oF — _
(3.2.8) o of. 1—F),

and considering F' as a function of (a+§z) and of (a+ k) and replacing
(p—F) by the first term in the Taylor expansion, one obtains

(3.2.4) p—F=0Z[Y—y*].

The equations to be solved are thus, for the M.L. estimates,
(3.2.5) 3 nw(Y—y*)=0,

(3.2.6) St nwu(Y —y*)=0,

and for the M.C. estimates, similar equations with each term multiplied
by the corresponding factor of the form of (3.1.10).

8.8 Iterative graphical procedure

The observed proportion p, corresponding to a given x, equated to
its theoretical value, gives

=4+ 8k a+px

3.3.1) +@-| " rda={""rexz.
This can be used for an iterative process that would lead to good initial
values for a and 8 for other methods. If tentative values for «, and
B (such as those corresponding to the untruncated distribution, that is,
by taking p as the left side), are available, then from the observed p’s
and the known k, the left side of (3.3.1) can be calculated and by re-
ferring to the table of the distribution function of the standardized
variable, values of a+pBx can be obtained. By plotting a+ Az against
2, the values of « and 8 can be estimated. The value can again be im-
proved by the same procedure. This method is illustrated in section 6.

The graphical method is justified as follows: Let p’ denote the left
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side of (8.3.1) and p{ be its value at (a,, f). Denoting the values of
F*, f. and f at (a, B) by F¥, f., and f, respectively and noting that

(3.3.2) P—F*=[1-F*k)(p—F),
(3.3.3) p—F=0(p—F*)
(3.3.4) P —F*=(p'—p)+(pi—F¥)+(FF—F*),

and replacing (p'—p}) and (F}—F*) by the first terms in their respec-
tive Taylor expansions, one obtains

(3.3.5) P —pi=(1—p) folla+ k) —(a+BiK)]
(3.3.6) F¥—F*=fl(ay+ Box) —(a+px)] .

Using (8.3.5) and (3.8.6) in (3.3.4) and using (3.3.3) and (3.3.4) in the
scores (3.1.3) and (3.1.4), one obtains

3.3.7 W] Z) o —F)fo+ (a0 + Biw) — (a + )]
+fulla+ k) — (a0 + Bok))S (nw/Z)(1~p)=0

and similarly modified equations.
Noting that

F*=(1/6)(F+F%¥) and 1—F*=(1/0)(1—F)
and using the notation
wr=fY[F*(1—-F*)],

the graphical procedure suggested, using the initial values, in so far as
it takes care of the weights, is equivalent to the following equation

(3.3.8) 2 (nw* [f S B —F ) fo+ (@ + fo) — (x+ px)] =0 ,

and a similar equation. If the point a,+ 8.k is also looked upon as an
observed point in drawing eye-fit lines, the two sets of equations are
similar, and, though, the graphical procedure is not equivalent to the
solution of these equations, it helps in obtaining estimates which are
reasonably good and which can be profitably used as starting values for
the more difficult iterative processes. While computing, it would be
helpful, if the likelihood or the chi-square is computed at each stage to
determine when exactly to stop the process, for otherwise, by an un-
suitable eye-fit line one may get involved in a divergent graphical itera-
tive procedure.

8.4 Tables needed for analyais
The procedures described above can be followed easily if the four
quantities,
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(1/62), (FloZ), w, w

are tabulated for different values of (a+ fz) and of (a-+8k). To follow
the graphical procedure, tables of truncated probits and of truncated
logits which give values of (x+ fx), corresponding to normal and logistic
tolerance distributions respectively, for given values of (a+ k) and p in
the equation (3.3.1), have been prepared. Skeleton forms of these tables
for

100 p=01 (01) 99 and
5+ a+pk=1.0(1.0)7.0 for probits
=2.0(1.0)7.0 for logits,
are presented at the end of this paper.
Extensive tables for
100 p=01 (01) 99 and
5+a+8k=0.4(0.1) 7.3 for probits and
=1.6(0.1)6.0 for logits,

are available with the author.

4, Lower and upper truncation at known points

This case requires modification only with regard to the weighting
coefficients. Working on lines similar to the last section, one comes
across

Z¥=fi—f(A—-F)+f(Q—-F),
and the following weighting coefficients (with subscripts dropped)
w=f|Z*,
W= —f(1-F)|Z*,
wO=f-(1-F)Z*,
so that W WP+ wN=1, and
y*=(p—F)[0*Z*,
u* = w2+ wPk+wOh'
which are to be used just as the corresponding elements of the last

section.
The graphical procedure is also similar, the only change being that
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the left side is to be taken as
PF*(K')—F*(k)X1—p),
since on equating p to its theoretical value, one gets
p={F*=)—F*(K))/[F*(k)—F*k)] .

5. Truncation at unknown points

5.1 Estimation of truncation points when other parameters are known
Considering truncation above at k&’ and below at k, the equations
giving estimates of k, &’ are

G.1.1) al“;—fl’=2[n(p—F)IF(I—F)][%]=0. 8=, ¢

Using
3 — —6r.0~F
6
aF .
and 2 —of-F,,

in (5.1.1), one obtains the scores as

S.=X[Mp—F)/F]

and S,=3n[(1—p)—(1-F))JQ1-F),
so that the equations to be solved are

X (np/F)=N,
and 32 {»(1—p)(1—-F)]=N.

Writing these explicitly in terms of the unknowns, one obtains
N—TIFt—F$)—(F*~FO)[S r][(FF—F]=0,

and an equation in which =, is replaced by (n,—7,) and F'* and F'* are
interchanged; because of this symmetry, we do not sometimes write the
second equation separately. It could be seen that when «, § are known,
this amounts to solving F'* and F'* from these two simultaneous equa-
tions, from which k, ¥’ can be uniquely obtained, using a table of the
standardized integral.

These equations are polynomial equations of mth degree and of
first degree in the two arguments F'* and F'*. We shall show that
there is one and only one admissible set of solutions. An admissible
value of k is leas than x,, the minimum level of stimulus chosen for the
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experiment and similarly an admissible value of %’ is greater than z..
Let us substitute in the two functions the sets of values (0, F?, ..-, F'¥%)
and (FF, --., F%, 1) respectively for F* and F'*; these values are in
increasing order. The signs of the polynomial in one of F* and F'*
could be seen to be alternating between successive values, the value of
the other being fixed. So there is an odd number of solutions for both
k and k' lying between each (z,, z.,,) and since there are only m roots,
this odd number is one. The remaining root for % is in the range
(—oo, x;) and for kX’ in the range (z., o).

Several methods for solving these equations are available, and they
are described by Scarborough [7]. However, we suggest here one method,
that of finer and finer tabulation, using simultaneous linear interpola-
tion, for two variables, to locate the root at each stage. The equations
can be written as follows:

gn(F¥)+F*g, (F*)=0,
gE(F*)+F¥*gi_(F'*)=0,

where g and g* are polynomials of degree indicated by their suffixes.
Now, each polynomial is to be evaluated at two tentative points (con-
veniently 0 and F¥ for F'* and F% and 1 for F'*) at which the left
sides change signs; these two points are to be used to obtain linear ap-
proximations as is done in linear interpolation. Then on substitution,
there are two linear equations in two unknowns F'* and F'*, which can
be solved simultaneously to obtain improved values. This is to be used
again with one or other of the initial values such that the left sides are
of different signs and the process continued until stable values are ob-
tained.

5.2 Estimation of truncation points when other parameters are un-

known

The procedure to'be adopted for the case of (a, §) unknown is the
iterative procedure for obtaining (a, §) given tentative values k, &’ as
suggested in the foregoing section, and the improvement of the values
(k, k') with the help of these (a, 8). Let the values at the ith stage
be denoted by s, for (a, 8) and F* for (F*, F'*). The convergence is
proved thus: Consider the likelihood function. Substitute a trial value
F* to determine s, by the graphical procedure or by solving the like-
lihood equations. Using the s, to determine an improved value F'! from
the polynomials, the process is continued. Let us consider any set F',
8.. Since F'*' is obtained from s, by maximizing likelihood L,

Lptsr, s & Lps, 5y
and since F**' is used to obtain s,, by maximizing L,
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Ly, -..,Zbr“‘. "-
Hence L at the ith stage is less than L at the (i41)st stage.

6. Numerical examples

6.1 Truncation at known point

Caldecott, Frolik and Morris [4] compared the effects of X-rays and
thermal neutrons on dormant seeds of barley. The stimulus in this case
is a Alux of 4.65x10' Nth/em'./sec. at various levels of designated time,
the response being the incidence or otherwise of abnormal cells. Cells
with one or more of bridges or fragments are considered abnormal. The
following is an extract from their Table 1.

Table 1. The effect of thermal neutrons on frequencies of bridges
and fragments in treated dormant geeds of barley.

Treatment Cells observed Abnormal cells (%)
3 102 46
6 88 65
9 93 81
12 9% 92

The tables of truncated probits, whose summary is presented in sec-
tion 7 are used. The value of k, the lower point of truncation, is taken

Stimulvs
e 4

40
Graph 1. Iterative graphical procedure.
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as zero. The initial values of a, B are obtained by plotting the untruncated
probits against z. Graph 1 gives the eye-fit lines and Table 2 presenta
the computations.

Table 2. Computations for iterative graphical procedure

T.P. : Truncated probit
Firat stage (Initial values)

x n p Probit a+pz F F(1—F) bl
3 102 46  4.8996 4.88 0.2554  0.1902  22.45
6 88 65  5.3853 5.39  0.5266  0.2493 5.38
9 93 81 5.8779 5.90 0.7498  0.1876 1.80
12 9% 92  6.4051 6.41 0.8922  0.0962 0.77
a=4.37, f=0.17. 30.40

Second stage

T.P. a+pz F F(1—F) "
5.2611 5.16 0.3147 0.2157 9.98
5.6526 5.64 0.5500 0.2419 1.31
6.0803 6.12 0.7937 0.1637 0.15
6.5632 6.60 0.9139 0.0787 0.05
a=4.68, f=0.16. 11.49

This process is continued to the twelfth stage, the chi-square values
decreasing up to the eleventh and increasing at the twelfth. The values
of @ and 8 and that of chi-square are given below for these stages:

Stage @ B x Stage a 8 xn
3 4.92 0.16 6.25 8 5.50 0.12 3.13
4 5.09 0.15 4.96 9 5.55 0.12 3.11
5 5.20 0.14 4.41 10 5.63 0.12 2.59
6 5.33 0.13 4.07 11 5.70 0.12 2.20
7 5.44 0.13 3.2 12 5.74 0.11 2.88

The eleventh stage estimates of « and 8 can be taken as the mini-
mum chi-square estimates, since the fit is good or if more accuracy is
required the normal equations can be solved with these values as initial
values.
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6.2 Truncation at unknown point
We shall use the same data to estimate the point of truncation
a parameter.

‘Table 3. Computations to estimate a, B, and &

Stage I: ¢=-o, a=4.37, $=0.17, ¢ d 400 thr h
Probit a+px Fy 'x’ﬂ‘Fj Fy—F;
~
4.90 4.88 0.452 23.0300 -
5.39 5.39 0.652 19.3629 0.200
5.88 5.90 0.816 20.3550 0.364
6.41 6.41 0.925 21.1640 0.469
Stage II: ¢=—2.09, a=4.40, $=0.17, log L=C-87.26, C a constant.
T.P. a+fzr Fy n’n‘Fl Fy—-F,
-
4.92 4.91 0.464 23.7508 -
5.40 5.42 0.663 20.1587 0.199
5.89 5.93 0.824 21.4807 0.360
6.42 6.44 0.925 22.4520 0.461
Stage III: ¢=-0.65, ~=4.82, B=0.16, log L=C-~93.37.
T.P. a+px Fq '()['FJ Fy—F
.
5.25 5.30 0.618 31.5814 —
5.87 5.78 0.782 30.2684 0.164
6.26 6.26 0.896 34.7596 0.278
6.71 6.74 0.959 40.7846 0.341

Since the likelihood decreases at the third stage, the iterative pro-
cess is stopped. The convergence of ¢ to stable values cannot be reached
since the graphical method is approximate and that is the reason for
the likelihood to decrease. Further, the method of estimating s for
given (a, B) is fairly accurate and the second stage («, 8) has led to e=

—0.66 with log L=C-98.37. Since the probit yields actual « plus 5,

the final estimates are:

a=—0.60,

£=0.17 and k= —0.81 (from e=—0.65).
The value of k, taken as zero is fairly justified by this result.
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Table 4. Truncated probits

Staondardised lower point of truncation

1.0 2.0 3.0 4.0 5.0 6.0 7.0
W01 2.674% 2.7207 3.1546 4.0342 5.0125 6.0066 7.0047
202 2.9465 ?.9724 3.2750 4.0674 5.0250 6.0132 7.0089
.03 3.1192 3.1377 3.3745 4.0975 5.0375 6.0199 7.0132
204 3.2473 3.2A38 3.4A02 4.1307 5.0500 6.0246 7.0176
<05 3.3751 3.3671 3.5358 4.1611 5,0625 £.0333 7.922n
<06 3.4452 3.4555 13,6039 4.1908 5.0751 6.04u1 7.0264
L07  3.5141 3.5332 3.666] 4.2197 S.0876 6.0470 7.0308
L0 3.5949 3.6030 3.773A 4.2480 5.1002 6.N539 7,0353
09 3.6592 3.6666 3.7771 4.2758 5.1128 6.0629 7.0399
<10 3,71B4 3.7252 3.8273 4.3027 5.1254 6.0679 7.0445
oLl 3.7735 3,7797 3.9747 4.3296 5.1380 6.0750 7.0491
L12  3.8250 3.9308 3.7197 4.355R S.1507 6.0EX1 7.0%38
«13  3.8737 3.8791 3.7627 4.3016 5.1533 6.0R93 7.0585
+14  3.9198 3.9249 4.9038 4.4067 5.1760 6.0965 7,0633
«15  3,9637 3.9685 4.0433 4.4319 5.1888 6.1038 7.0681
<16 4.0057 4.0102 4.0813 4.4565 5.2015 6.1111 7.0729

«17 4£.0460 4.0503 4.1181 4.4808 5.2143 6.111%

-

7.0776
.18 4.0548 4.0890 4.1537 4.5040 N.2271 6.1260N 7.0028
.19 4.1223 4.1263 4.1893 4.5286 5.2400 66,1335 7.N07R
«20 4.1586 4.1624 4.2219 4.5520 5.2529 6.1411 7.0929
.21 421139 4.1975 4.2547 445752 5.2659 6.1428 7.0980
.22 4.2281 4.2316 4.2867 4.5982 5.2789 6.1565 7.1032
»23 4.261% 4.2648 4.3180 4.6210 5.2919 6.1643 77,1084
24 402941 4.2973 4.3486 4.,6435 5,3050 6.1722 7,1137
«25 423259 443290 4,3786 4.6659 5.3182 6.1802 7.1190
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1.0 2.0 3.0 4.0 5.0 6.0 7.9
28 4,3571 4.3601 4.4091 4,6881 5.3314 6.18H2 T.12644
27 4,3676 443905 4,4371 4.7102 5.3447 $,1963 7.1299
«28 4,4176 4.4204 4.4A06 4.7321 5.3580 6£.2045 7.17150
«29 4,40T) 6.4498 4£.4936 4.7539 5.3714 6.2127 7.1411
«30 4,.67H] 4.4787 4.5213 4.7756 S.3849 6.2211 7.1467
.31 4,504 4.5072 H.5486 47771 5.39R4 6.229% 7,1%25
«32 4.5328 445353 4.5756 4.8184 5.4120 A.2300 7,14%A3
«33 4,5606 4.5030 4.6022 4.8400 “.4257 6.24466 T.1042

34 4,5P80 &,5904 4.6286 4.8613 5.4395 6.2553 7.1701

£

«35 4.6152 4946175 6.6540 4.R882% 5.4533 6.2641 7.1762
36 4,0420 4.6443 4.6A06 44,9037 N.44T73 4.2720 7,125
-37 4.ALRE 4.06T08B 4.7063 4.9248 5.4513 6.282D T,1445
.38 4.6750 4.6772 4.7318 4.9459 5.49%4 6.,2911 7.17%5
-39 4.,7012 4.7233 4.7571 4.9669 S,5097 6,033 7,2012
<40 447471 57492 4.7B22 4,9880 5.5240 6.3N96 7.2774
o4l 4.7729 4.7749 4.9072 5.0079D 5.5384 A.3171 7.2142
42 4.7985 4.8005 4,8321 5.0301 5.553N 5.37R6 7.2700
«43 4.82640 4.D0259 4.85069 5.0511 S.5477 6.33A3 7,227hH
44 4.8494 4.A513 4,8815 5.0722 5.5825 6.3441 7.21345
45 4,8747 4.8765 4.9N61 5.0933 5.5974 6.3580 7,2415
46 4.8998 4.9016 4.9306 5.1145 5.6125 6.3681 7.2485
47 4.9250 4.9267 4.9551 5.1357 5.6277 6.3783 7.2%57
248 4.9500 4.9517 4.9796 5.1570 5.6430 6.3887 7.2630
.49 4.07750 4.9767 5.0040 5.1784 5.6585 6.3922 7.2705

«50 5.0700 5.0017 5.0284 5.1998 5.6742 6.4097 7.2780



«51
052
«53
«54
«55
.56
.57
.58
«59
«H0
61

.62
.63
b4
=65
«66
67
<068
69
-70
.71
.72
«73
74
«75

1.0
5.0250

5.0%01
5.0751
5.1002
5.1254
5.1507
5.1761
5.2016
5.2272
5,2%30
5.2789
5.3051
5.3314
5.3580
S5.3849
S.4121
5.4395
5.4073
5.4955
5.5240
5.5%30
5.5025
5.6125
5.6430

5.6742

2.0
5.0267

5.0516
5.0767
5.1018
5.1269
5.1522
5.1775
5.2030
5.2286
5.2543
5.28013
5.3064
5.3327
5.3593
5.3862
5.4133
5.4407
5.4685
fab966
5.5252
5.5541
5.5836
5.6136
5.6441

5.6753
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3.0
5.0529

5.0774
$.1019
5.12606
5.1513
5.1761
5.2010
5.2260
5.2512
5.2765
S.3021
5.3278
5.3538
5.3800
5.4065
5.4332
5.4603
5.4877
5.515%
H.5437
55724
5.601%
5.6312
S.6614

5.6922

4.0
52213

5.,2430
5.2648
5.28067
5.3087
5.3309
5.3533
5.3758
5.39085
5.4215
5.4447
5.4681
5.4918
5.5157
5.5400
5.5646
5.5895
5.614R
6.6405
5.6666
5.6932
5.7203
5.7480
5.7762

$5.8051

5.0
5.6900

5.7060
5.7222
5.7386
5.7552
5.7720
5.7890
5.B062
5.B8237
5.8415
5.8595
5.8778
5.A964
5.9153
5.9345
5.9541
S.9741
5.0944
6.0152
6-0364
6.0581
6.0804
6.1031
6.1265

6.1504

6.0
6.4207

6.4317
64429
bhatB42
6.46%R
6.6775
6.4895
6.5016
6.5140
6.5267
6.5395
6.5527
65661
6.5798
6.593A
6.6071
6.6208
6.637H
6.6532
6.6690
6.68°2
6.7013
6.,7191
6.7367

&. 7550

7.0
7.2857

7.2936
7.3016
7.3097
7.3180
T.3264
7.3350
7.3438
7.3528
7.3620
7.3713
7.3R09
7.3307
7.4008

T-4111

T7.446R
7.4789
7.4914
T.5043
7.5176

7.5314



TRUNCATION IN QUANTAL ASSAY

1.0 2,0 3.0 4.0 5.0 6.0 7.0
W76  5.7061 5.7071 5.7237 5.8346 6.1751 6.7738 7.5457

«77 5.7386 5.7396 5.7560 5.B649 6.2005 6.7933 7.5605
.78 5.7720 5.7730 5.7890 5.8960 6.2267 6.8136 7.5759
79 5.8063 5.A072 5.R229 5.9280 6.2537 6.8345 7.5919
«80 5.8415 5.,8424 5.8578 5.9610 6.2817 6.8564 7.6087
<81 5.8778 5.8787 5.8938 5.9750 6.3108 6.8791 7.6262
«82 5.9153 5.9162 5.9310 6.0303 6.3410 6.9028 7.6445
.83 59541 5.9550 5.9695 6.0668 6.3724 6.9277 7.6638
-84 5.9944 5.9953 6.N095 6.1049 6.4053 6.9539 7,684l
-85 6.0365 6.0373 6.0512 6.1446 6.4398 6.9814 7.7056
.86 6.08B04 6£.0812 6.0948 6.1862 6.4761 T7.0105 7.7285
«87 6.1265 6.1273 6.1406 6.2300 6.5144 T.0414 7.7528
+88 6.1751 6.1759 6.1889 6.2763 6.5551 7.0745 7.7789
-89 6.2267 642275 6.2401 6.3254 6.5985 7.1099 7.8071
«90 6.2817 6.2825 6.294B 6.3780 6.6452 7.1482 7.8376
«91 6234610 6.3417 6.3537 6.4347 6.6958 7.1900 7.8711
.92 6.4053 6.4060 6.4177 6.4964 6.7511 7,2359 7.9081
93 6.476)1 6.4T68 6.4881 6.5645 6.8123 T7.2872 7.9496
.94 6.555]1 6.5558 6.5667 6.6406 6.8812 7.3452 7.9969
«95 6.6452 6.6459 6.6563 6.7276 6.9604 7.4124 8.0521
«96 6.7511 6.7517 6.,7617 6.8300 7.0542 7.4927 8.1184
«97 6.0012 6.8818 6.8913 6.9563 T7.1705 7.5932 8.2022
98 T7.0542 T.056T T7.0637 T.1246 7.3268 7.7297 8.3172

«99 T.3268 7.3273 7.3354 7.3909 7.5762 7.9508 8.5061



01
.02
.03
«04
.05
U6
<07
08B
-09
10
11
.12
-13
.14
- 15
-16
-17
.18
19
«20
«21
.22
«23
24

«25
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Table 5.

Truncated logits

Standardised lower point of truncation

2.0
2.1931

2.3579
2.5021
2.6306
2.7466
2.8527
2.9505
3.,0415
3.1267
32068
3.2¢26
3.3540
3.4233
3.4190
3.5520
3.6127
3.6712
3.727R
3.7627
3.8360
3.8878
3.9383
3.9876
4.0358

4.0830

3.0
3.0813

3.1580
3.2307
3,2998
3.3657
3.4288
3.4895
3.5478
3.6041
3.65E6
3.7114
3.7627
3.8125
3.8611
3.9084
3.9547
4.0000
4.0443
4.0R78
4.1305
4.1725
4.2138
4.2544
4.2945
4.3340

1.0
4.0369

4,9731
4.1087
4.1440
4.1787
4.2120
4.2468
4.2802
4.3132
4.3458
4.3781
4.4101
4.4419
4.4733
4.5045
4,5355
4.5662
4.5968
4.6271
4.6573
4.6873
4.7172
4.7470
4.7767

4.8062

6.0
5.0200

S.0400
5.0600
5.0800
5.1001
5.1201
5.1402
5.1603
5.1805
5.2007
5.2209
5.2412
5.2615
5.2819
5.3023
5.3228
5.3433
5.3640
5.3847
5.4055
5.4263
S5.4473
5.4684
5.4895
5.5108

6.0
6.0137

6.0275
6.0414
6.0554
6.0695
6.0837
6.0980
6.1124
6.1269
fel4als
1562
61710
6. 188N
6£.2010
6.2162
6.2315
6.2470
6.2626
6.2783
62941
6.3101
6.3263
6.3426
6.3590
623757

7.0
T-0114

7.0227
7.0345
T.0462
7.0580
7.0700
7.n820
7.0942
T.1064

7.1188

7.1439
7.1567
7.1696
7.18206
T.195R
T.20%1
T.2225
7.2361
T.2499
7.2637
T.2778
7.2920
73064

7.3210



.26
.27
.28
.29
.30
.31
.32
.33
.36
.35
.36
.37
.38
.39
.40
241
Y
.43
Yy
.45
.46
.47
.48
.49

50

TRUNCATION IN QUANTAL ASSAY

2.0
4.1292
4.1746
4.2192
4.2631
4,3062
4.3488
4.3908
4.4323
4.4734
4.5140
4.,5542
459460
4.6336
4.6728
4.7118
4.7506
4.7693
4.8277
4.8660
4.9043
4.9424
4.9805
5.0186
5.0568

5.0949

3.0
4.3731
4.4117
4.4498
4.4876
4.5250
4.5621
4.5989
4.6355
4.6718
4.7079
4.7438
4.7795
4.8151
4.8506
4.8860
4.9213
4.9565
4.9918
5.0270
5.0623
5.0976
5.1329
5.1683
5.2039

5.2395

4.0
4.3357
4.8651
&.8945
4.9238
4.9530
4,9823
5.0115
5.0408
5.0700
5.0993
5.1287
5.1581
5.1875
5.2171
5.2467
5.2764%
5.3063
5.3363
S.3665
5.3968
5.4273
5.4580
5.4889
5.5201
5.5514

5.0
5.5322
5.5537
5.5754
5.5971
5.6190
5.6411
5.6633
5.6857
5.7082
5.7309
5.7538
5.7768
5.8001
5.8238
5.8473
5.8712
5.8954
5.9198
5.9445
5.9694
5.9946
6.0201
6.0460
6.0721

6.09286

6.0
6.3925
6.4094
6.4265
6.4439
6.4614
6.4791
6.4970
6.5151
6.5334
6.5519
6.5707
6.5697
6.6089
6.6284
6.64R1
6.6681
66,6884
6.7090
6.7298
6.7510
6.7725
6.7944
6.8165
6.8391
6.8620

7.0
T.3357
7.3506
7.3657
7.3810
7.3965
T.4122
T.4281
T.4442
7.4605
T4TT1
T.4939
7.5109
7.5282
7.5457
T.5635
7.5816
T.6000
7.6187
T.6377
T.6570
T-6766
7.6965
T.7169
T.7376
T.7586



.51

.58
«59
.60
-61
.62
.63
b4
«65
«66
67
-58
«69
.70
«71
- 72
«73
T4

«75

2.0
5.1332
5.1715
5.2099
542485
5.2873
5.3263
5.3656
$.4051
5.4450
5.4652
5.5258
5.5668
5.6083
5.6503
5.6928
5.7360
5.7799
5.824%
5.0698
5.9160
5.9632
6.0113
6.0606
6.1111
6.1629
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3.0
5.2754
5.3114%
5.3476
5.3840
54207
5.4576
5.4949
5.5325
5.5705
5.6089
5.6477
5.6870
5.7268
5.7672
5.8082
5.8498
5.8922
5.9353
5.9792
6.0241
6.0699
6.1167
6.1647
6.2139

6.2645

4.0
5.5831
5.6150
5.6473
5.6799
5.7128
5.7461
5.7798
5.8140
5.8486
5.8836
5.9192
5.9554
5.9921
6.0295
6.0675
6.1063
6.1458
6.1862
6.2274
6.2696
6.3129
6.3572
6.4027
6.4495

6.4977

5.0
6.1255
6.1527
6.1803
6.2083
6.2368
6.2657
6.2950
6.3249
6.3553
6.3863
6.4178
6.4500
6.4828
6.5163
6.5506
6.5856
6.6215
6.6582
6£.,6959
6.7346
6.TT44
648153
6.8575
6.9010
6.9459

6.0
6.8853
6.9090
6.9331
6.9577
6.9828
7.0083
7.0343
7.0609
7.0880
7.1157
T.1441
7.1730
T.2027
7.2331
T.26642
T.2962
7.3290
T.3627
T.3974
T.4331
7.4699
7.5079
7.5472
7.5878

7.6300

7.0
7.7801
T.8020
T.8243
T.8471
7.8703
7.8940
7.9183
7.9431
7.9684
T.9944
8.0209
8.0482
8,.0761
8.1047
8.1341
8.1644
8.1955
8.2275
8.2605
8.2945
8.3296
B.3659
B, 4035
B.4425

8.4830



«76
<77
«78
-79
80
«81

.82

-84
«85
86
87
.86
-39
«920
«91
.92
«93
=24
95
«96
97
-98

«99

TRUNCATION IN QUANTAL ASSAY

2,0
6.2161
6.2710
623275
6.3860
6.4467
6.5097
6.5753
6.6439
6.7153
6.7915
6.8716
6.9066
T.0475
Tal452
T.2511
7.3669
T.4950
7.638B8
7.8031
7.9955
8.2286
8.5262
8.9414

9.6442

3.0
6.3166

6.3702
6.4257
6.4830
6.5426
6.6045
6.6691
6.7367
6.8076
6.80823
6.9614
7.0455
7.1355
T7.2323
7.3373
7.4523
7.5796
T.7225
7.R860
8.0776
8.3099
8.56067
9.0212

9.7233

4.0
6.5475

6.5988
6.6520
6.7072
6. 7646
6.8244
6.8870
6.9525
T7.0214

T.0942

T.1714

7.2536
T.3417
T.4367
7.5399
7.6531
7.7787
7.9200
8.0818
8.2718
8.5025
8.7976

5.0
609924

7.0407
7.0907
7.1429
T.1972
7.2541
7.3136
T«3763
T.4423
7.5123
7.5867
T.6662
T.7515
T.8439
7.9444
8.0550
8.,1781
B.3168
8.4761
B8.6636
8.8918
9.1846

6.0
T.6737

T«7191
T.7664
7.8158
T.8674
7.9215
T.9784
8.0384
8.1019
8.1692
8.2410
8.3179
8.4007
8.4905
8.5886
B.6967
8.8172
8.9535
9.1104

T.0
8.5250

8.56£8
8.6145
B.6622
8.7122
8.7648
8.8200
B.8784
8.9403
9.0000
92.0762
9.1515
9.2328
9.3210
9.4175
9.5241
9.6431
9.7778

92.9332

9.295510.1167

9.521310.3410

9.811710.6299

9.2106 94595110.219911.0366

9.911110.293310.915711.7309
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