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A LAW OF ITERATED LOGARITHM FOR ONESAMPLE
RANK ORDER STATISTICS AND AN APPLICATION'

By PRANAB KUMAR SEN AND MALAY GHoOsH?
University of North Carolina, Chapel Hill
For one sample rank order statistics, a law of itcrated logarithm and
almost sure convergence to Wiener processes are established here. For the
one-sample location problem, a sequential test procedure based on rank
order statistics is proposed, and with the aid of the carlier resuits, it is
shown that this has power one and arbitrarily small type I error.

1. Summary and introduction. Motivated by a martingale property of one-
sample rank order statistics and the recent works of Strassen (1967) and Stout
(1970) on martingales, we consider here the following problems. First, under
minimal assumptions on the score function, a law of iterated logarithm for
one-sample rank order statistics is derived (see Theorem 2.1). Certain bounds
and asymptotic expressions for probabilities of moderate deviations for these
statistics are also derived (see Theorems 2.2 and 2.3). Second, under slightly
more stringent regularity conditions, almost sure (a.s.) convergence of one-
sample rank order statistics to appropriate Wiener processes is studied (see
Theorem 2.4). The proofs of these results are outlined in Section 3. In the last
section, for the classical one-sample location problem, a sequential test pro-
cedure based on one-sample rank order statistics is proposed along the lines of
Darling and Robbins (1968). Such tests have zero type II error and arbitrarily
small type I error. Results of Section 2 along with those in Sen (1970) on the
strong convergence of rank order statistics are utilized in the study of the pro-
perties of the proposed test procedure.

2. Statement of the main theorems. Let{X;, i > 1} be asequence of independent
and identically distributed random variables (i.i.d. rv) defined on a measure
space (Q, &, P), having a distribution function (df) Fy(x) = F(x — ), where
is a location parameter (unknown) and F e 5, the class of all df’s continuous
with respect to Lebesgue measure and symmetric about 0, i.e., for every Fe 57,
F(x) + F(—x) = 1 for all real x. For each positive integer n, let

@ X=X - X)),  Ry=p+DiaciXl—|X), i=L--.n,
where ¢(u) = 1, 4 or 0 according as u is >, = or < 0. Also, let
(22) T,=T(X,)=n" i en XJ(R(n+ 1), sgnu=2eu)—1,
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where J(if(n + 1)) = EJU,)), i=1,---.m Uy < --- < U, are n ordered
random variables (rv) from a rectangular (0, 1) df, and J(u), 0 Cw < 1,is a
non-decreasing score function satisfying the condition that
(2.3) 0L A= {jJu)du < 0.
Note that, by definition, J (if(n + 1)) = i(}) §3 S (1 — w)*~*du,i = 1,---,n,
so that by some routine steps
24 J(if(n + 1) = [iftn + DV + Df(n +2)
+ [(n =i+ D + DV.Gifn + 2)),

fori = 1, -+, n. Inpassing, we may remark that for J(u) = uand @-Y((1 + u)/2),
@(x) being the standard normal dI, the corresponding T, are the Wilcoxon signed
rank and the normal scores statistics.

THEOREM 2.1. If Fe 7, 0 = 0 and (2.3) holds, then
(2.5) lim sup, ., n*T,[A%(2]log log )] =1 a.s.,
(2.6) liminf, . mT,[4(2loglogm]t = —1 as.

The proof of the theorem is based on a martingale property of {n7,, n 2 1}
and a second theorem which we state below. Let ¢(1) be a non-decreasing posi-
tive function on [0, co) such that there exists a positive 4, (< oo) for which

2.7) r(1) = ¢*1) — loglog ¢ is nonnegative and non-decreasing in (3 1)

TreoREM 2.2. If Fe &, 0 = 0, and(2.3) and (2.7) hold, then for everye > Q,
there exist posilive numbers K (< oo) and v, such that
(2.8) P(mdT, 2 A[2(1 + €))¢(m), forsome m 2 n}

< Klexp[—r(n) — p¢'(n)}) . forevery nz 4y,
2.9) PmdT, < —A[2(1 + e)]ig(m), for some m 2 n)
S Klexp[—r(n) — o))} forevery n 2 1.

In fact, in the same fashion as in Cramér (1938), we may provide an asymp-
totic expression for the left-hand side of (2.8) and (2.9) under slightly more
stringent regularity conditions.

THEOREM 2.3. IfJe L, forsomer > 2, Fe 57, 8 = 0, and in addition 10 (2.7),
(2.10) lim, ., (log log 1)/¢*() = O and 71y = o(17Y),
then as n — oo,

(2.11) [¢(m)]~* log P[m\T,, > Ag(m), for some m 2 n} — —},
(2.12) [¢(m)~* log P{mT_ < — Ap(m), for some m 2 n} — —} .
Finally, we note that if we assume that Je L, for some r > 2, then, as in

Theorem 4.4 of Strassen (1967), we may strengthen the results of Theorem 2.1
as follows.
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THEOREM 2.4, If Je L, for some r > 2, Fe 57, and 8 = 0, then on defining
T,=0and
(2.13) T, = [T + (0 = [N(Toan — T)» t>0,
([5] being the integer part of s (= 0)), there exists a standard Brownian motion
& ={§(: 05 1 < ), such that
(2.14) T, = A&(r) + o[(r'(log 1)*'] ass., as t—o0,p>0,
where s = (r + 2)j4r (< 3). In fact, (2.14) implies (2.5) and (2.6).

3. Proofs of the theorems. For convenience, we start with the proof of Theo-
rem 2.2. Let <2, be the o-field generated by (S,, R,), where S, = (sgn X,, .- .,
sgn X,) and R, = (R,,, -+, R,,), n = |; clearly, &7, is T in n. Note that for
Fe 5, 0 =0, S, and R, are stochastically independent [viz., Hajek and Sidak
(1967, page 40)]. Write 7, = nT, for n = 0 and E, for £, . Then, by (2.2),

E(T)=0,
(3.1 BTN =ndl; A=t DRAXn+ D) S A < oo,
forall n>1.
Also, conditional on &2, R,,,.,, can assume all the values 1, ..., n 4+ | with
the common probability 1/(n + 1), and sgn X, ,, can assume the values + | and
—1 with the same probability }, independently of R,,,,,,. Finally, conditional
on &8, R,,, (1 £i < n)can assume the two values R,; and R,; + | with re-
spective probabilities (n + 1 — R,)/(n + 1) and R,;/(n + 1). Hence, for every
nz1,
En(rnulg‘?-) = X, sgn X, EoJasr(Rosrif(n + )| Z.]
+ Ejsg0 X JuedRasian/ (7 + 2)| F]
(3.2) = Thi5gn X ESu i Raanif(n + 2))] £5,]
= i (sgn X[ — (n 4+ D)T'RLV(Ryf(n + 2))
+ (7 + DR al(Ras + Di(n + 2)))
= Drsgn LA (Ryf(n + 1)) =T, by (2.4).
Thus, (T,, £3,, n 2 1} forms a martingale sequence when Fe 57, and § = 0.

Note that, by definition, ¢*(n) = n'¢(n) is increasing in #, and by (3.2), for
every real 1, {exp(iT,), €3, n 2 1} is a nonnegative submartingale on which the
classical Kolmogorov inequality yields the following:

PoT, = (24%1 + &))¥gp*(m), for some m = n)
(3.3) S Dieo Pomax, sucayy, exp(s, )2 exp[£,{24%1 + &))}p*(n,)]})
S Do exp(— 6241 + o)g*(m)}Efexp(s, 1‘-,“)} '
where we let n, = [n(1 + ¢/2)¥]and £, = (2(1 + €))dp*(n,)/An,, fork = 0,1, ..,
and P, denotes the probability computed under the hypothesis that F e -7, and
8 = 0. Also, note that for Fe %, 0 =0, S, and R, are stochastically inde-
pendent and that for every real x, (¢* + €7")/2 < exp(x'/2). Hence, on using
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(3.1), we obtain that for every r 2 0,

Efexp(iT.)] = Ejfexp{t Ziisgn XJ\(Ry(n + )]
= EJE(TI2.. exp (s sgn X /u(Ru(n + D)}|R,)
= EfI1:-i [3lexp{t/o(R.if(n + 1))}
(34) + exp{—t(Roif(n + 1N}
£ E[12. exp{3rI (R, /(n + 1))
= E[TI5 exp{30V.2(i/(n + 1))}
= exp((r'/2) T3 Lil(n + 1))
= exp(n'4,}2) < exp(n*4}[2).
Therefore, by (3.3) and (3.4),
P[T, = [24%(1 + ¢)}'¢*(m), for some m 2 n}
(3.5) £ Do exp{—21 + )¢*(m) + (mafn)(E + e)(n)}
= Ziweexp(—(1 + n¢'(n)}, p=«l—e)2.
(Note that for 0 < ¢ < 1, 0 < 7 < ¢/2.) Then, by (2.7), the right-hand side of
(3.5) can be expressed as
Zoexp{—(1 + n)r(m) — (1 + y) log log n,}
< exp[—(1 + 9)r{(n)] Lo (log n)~"*7 (for n21)
(3.6 = exp[—(1 + nr(m] Elwllogn + klog (1 + ¢/2)]-+=
= exp[—(l + 7)r(m][O((log n)™7)]
= {exp{—n¢’(n) — r(n) + 7 log log n]}{O((log n)~7)}
= {exp[—r(n) — n'(m])[O(1))
which completes the proof of (2.8). The proof of (2.9) follows on the same
line by working with —T, instead of T,. Hence, the proof of Theorem 2.2 is
complete.

Returning now to the proof of Theorem 2.1, we only prove (2.5), as (2.6)
follows similarly. By letting ¢*(n) = log log n, we have from (2.8) that for
everye > 0and n = ¢,

3.7 P{miT, = A(2(1 + ¢)log log m)* for some m = n)
< K(log n)~", (—0 as n—oo); p=c¢(l —¢)2,
and hence,
(3.8) limsup,_. {niT, (24’ loglogn)}} < 1 as.
So, to complete the proof of (2.5), we only need to show that
(3.9) lim sup, ., (T, (24 loglogn)™ ) 2 1 aus.
For this, define Z, = T,and Z, = T, — 7,_,, k = 2, and let
(3.10) Vo = B(Z) + i EAZP| 460) -
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Then, (i) E(Z) =0, E(Z,|#,.,) =0 [by (3.2)), (ii) 0 < E(Z)) = 4'g
A4* < oo [by (3.1)], and (iif) E(Z,'|<F,_) = E({ L1z sgn X{/u(Ruf(k + 1)) —
Jooi(Rycif 6O} -+ 580 Xy Ly(Ropf(k + 1)P| i) = Ef[ 420 sgn X Ju(Rygf(k + 1)) —
Ji Rucsdf KNP | Bin) + E K Rusf(k + DY B, L1} 40 2 EJINR,f(k+1))| By} =
A k> 2, as S, and R, are stochastically independent, Esgn X,|4,.,) = 0
and EX(Ry/(k + DY G} = k7 D ik + 1)) = 42, k 2 2. Thus, on
noting that

(3.11) d)=[X1, A2)/(nAY) — 1 as n—o oo,
we have from (3.10) through (3.11) that
(3.12) Voz XAl = ("Al)d-’ — o as n—oo.

Let us now define 2. = max [1, 2 log log V,] and K, = 44, "'}, so that both
u, and K, are Z&,_, measurable with
(3.13) K,—»0 as no oo, by (3.12).
Further, by assumption, J(u) is non-decreasing, so that by (2.4),
@G14) LG + 1) S Jaylim)
SI(G+Dj@n+1)), foralli=1,...,n—1.
Then, [Z| = /i(3)] = 4 < 4, and for k 2 2,
|2i] = 7w ~ Tocil
£ DEVMRG/(k 4 1) = TRl k) + Vi Rusf(k + 1)
< Dt max {[(ifk + 1)) = S (iR Wl + ik + 1))
— Juo(iftk + O} + max {1tk + DI Pulkik + D)1}
(3.15) S TR+ DIk + D) = A1k + 1)
+ max [[(1/(k + D) Valkf(k + D)1}
< 2ANuk/(k + 1)+ VL1 + D)}
= 2k|§3 J(u)utt du) + 2k|§3 J(u)(1 — u)~" du]

< 4kAj(2k — 1), by the Schwarz inequality.
Thus, by (3.11), (3.12), (3.13) and (3.15), we obtain that
(3.16) \Z,| < K, Vb, forall nz1,

where K, is «%,_, measurable and converges to 0 as n — co, and V, — oo as
n— oo. Hence, by Theorem 2 of Stout (1970), we obtain that

(3.17) lim sup, .. {T,[2V, loglog V] 4} = 1 .
Oa the other hand,
(3.18)  T,[2nA'log log n]~}
= {T.[2V, log log V,]t}{[ V. log log V,]/[n A log log n]}} ,
where by (3.11) and (3.12), for every » > 0, there oxists a positive integer n,(7),
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such that for n 2 m(n), the second factor on the right-hand side of (3.18) can
be made = 1 — 5. Consequently, (3.9) follows from (3.17) and (3.18), and the
proof of Theorem 2.1 is complete.

Since, under (2.10), r(n)/¢*(n) — 1 as n — oo, by choosing ¢ (> 0) sufficiently
small and noting that for 0 < ¢ < 1, = ¢(1 — ¢)/2, we obtain from (2.8) that
(3.19) lim__., ([¢(n)] " log Py [miT, > Ag(m) forsome m 2 n)) < —}.

So, to prove (2.11), it suffices to show that
(3.20) lim, _. ([¢(n)] " log Po[m*T, > Ag(m) for some m z n|) = —4.
For this, we note that
PmiT, > Ap(m) for some m 2 n)

(.21) 2 PAnIT, > Agin)} = PT, > Ag*(m)

= E[P{Z7.i5gn XS (Ryif(n + 1)) > A¢*(m)| R}

= P L1 sgn X ((n + 1) > Ag*(n)],
as conditional on R,, the distribution of T, is generated by the 2* equally likely
sign inversions of S,, and hence, agrees with the distribution of T * =
Th g0 X (if(n + 1)) (= Llay Uai say), whose distribution does not depend
on R,, and for which
(3.22) PlU, = ) (ifin+ 1)) =} for i=1,...,n.
Thus, EU, ;= 0,i=1, ..., n, and
(3.23) a7 D EUL =47 (2 49 lim, ,A'=A", 0L A< 0.
Let us write v,? = nA,Ylog n4,"), so that
(3.24) v, = O(n¥(log n)~1).
On the other hand, by the assumption that Je L,, r > 2, and the Holder in-
equality,

(3.25) maX,gisn

I ()| S S pr de (S day™ 5 K

where I/r 4+ 1fs =1 and K < co. Consequently, by (3.24) and (3.25), for
every ¢ > 0, there exists a posilive integer nyc), such that for n 2 nye),
max, g o, Mo(if(n + 1))] < ev,, so that by (3.22),

(3.26)  PULI > ev, ) =0 forall i=1,---,n (2 nfe))

Finally, as in (3.4), for every real 1,

(3.27) E[exp(t Tt U,)] S exp(ara’j2) .

Hence, by the same technique as in Rubin and Sethuraman (1965), one can

extend a classical result of Cramer (1938) to a double sequence of random vari-
ables, and obtains that under (2.10),

(3.28) [PelTa* > Ag* (I} — D(g(a))] — 1 s n— o0,
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where @(x) is the standard normal df, so that for large x,
(3.29) 1 — ®(x) = (2r)~d[exp(—x*/2)}x~Y1 + O(x%)}.
Thus, (3.20) follows directly from (3.21), (3.28) and (3.29), and this completes
the proof of (2.11). (2.12) follows on similar lines. Hence, the proof of Theorem
2.5 is complete.

Now, proceeding as in (3.15) but using (3.25), it follows that for Je L,, for
some r > 2,

(3.30) 1Z,] < KAnV", forevery n 2 1, K <e,
and hence, if we define a function g() on [0, o) by
(3.31) g(r) = Prlogy, 7>0,
it follows from (3.11), (3.12), (3.30) and (3.31) that
(3:32) PZ) > gV} B} = 0 as., as n— oo

Consequently, Theorem 2.4 can be proved directly from Theorem 4.4 of
Strassen (1967). For brevity, the details are therefore omitted.

Theorem 2.4 is of interest in providing asymptotic expressions for the OC and
ASN of sequential tests for Hy: § = 0 (vs. H: 6 > 0, say) based on {7} where
the Wiener process approximation simplifies the expressions considerably.

4. Sequential rank order tests for location with power one. We start with the set
up as in Section 2, and assume that Fe 57, and J(u) is continuous and strictly
increasing. Consider the null hypothesis

4.1) Hy: =0 vs.either H:0>0 or H,:80=+0.
It follows from Sen (1970) that if J € L,, then lim,__,, T, = »(6) a.s. (P,), where
in our notations,
(42)  9(8) =257 J(F(x — 6) — F(—x — 8)]dF(x — 6) — §iJ(u)du,
and the strict monotonicity of J(u) implies that (6) is >, = or < 0 according
as @ is >, = or < 0. Now, to test H, vs. H,, define
4.3) N = first integer n 2 n, suchthat T, > n7lc,; oo if
no such n occurs,

where {c,] is some sequence of positive constants such that n~c, — 0 as n — oo.
If H, is false, T, — 5(d) (> 0) a.s., as n — oo, and hence,
4.4) Py(N = 00) = lim, . P(N > n)
< lim,_. PT, < n7'c,) = 0.
Hence, if we agree to reject H, as soon as we observe that N < oo, while if

N = o0, we do not reject H,; then since Py(N < o0) = 1 for every 6 > 0, the
test has power 1. Again, when #, is true, by the law of iterated logarithm in
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Section 2, if lim sup, ... [(24n log log n)/c.’] < |, then,

4.5) PN < o) = P(T, 2 n~'c, for some n 2 np)
= Py(miT_[(A(2nlog log n)} = c,[(2 loglog a)} for some n > nm,)
< P(mT_[(A(2 log log m)}) = 1| for some n 2 n,)

which can be made arbitrarily small by choosing n, adequately large. In fact,
if we let ¢, = A(1 + ¢)[2n log log n]} where ¢ > 0, we obtain from Theorem 2.2
that the type I error can be bounded by K(log n,)~7, » = ¢(1 —~ ¢)/2, and this can
be made smaller than any preassigned e, 0 < a < 1, by proper choice of n,.

Now, as J(u) is assumed 10 be continuous inside (0, 1), we may as in Theorems
2 and 3 of Sen (1970), prove the following result:

If Je L, for some r > 2, then for every (fixed) ¢ > 0, there exist positive
constants C (< oo) and ng(¢), such that for n 2 ny(c),

(4.6) P{T, — 2(8)] > ¢} < Cnr,

where s = min (r— 1, k) if 2(k — 1) < r < 2k, k 2 1. If further, E(exp t(4)) < oo
for some ¢ > 0, then, for every ¢ > 0, there exist positive constants C and p(c),
0 < p(¢) < 1 and an n,, such that for n = n,,

4.7 PofiT. — 2(8)] > ¢} £ Cla(O)]" -
Consequently, for Je L,, r > 2, denoting by

(4.8) mf0) = (minn: a7, — 7(8) < —5(0)/2 = —<(8)} ,
we have from (4.3) and (4.6), that for every (fixed) 8 > 0,

Py[N > n} < Py|T, < n7'c,)
(4.9) S PofIT. — 2(0)] > «(8))
< Cn~, s> 1, forall azn* = max[m(f), n(c(8)],

where n* depends on 6 and F, but is finite for every finite . Therefore,

(4.10) Ey(N) = Lo nPy(N = n) = T2, Po(N > n)
S 0%+ O(E s n™) = 1* + O(n*)™™) < o0,

for every (fixed) & > 0. Thus, for Fe &7, 8 > 0,andJe L, r> 2, E(N) < .
Similarly, if E(exp{t/(#)}) < oo for some 1 > 0, we have by (4.7) and (4.10) that
E[exp{uN}] < oo for some & > 0.

We may remark that Darling and Robbins (1968) while dealing with the same
testing problem involving the Kolmogorov-Smirnov statistics confined them-
selves 10 ¢, behaving as (1 + ¢)[n log n}* instead of (1 + ¢)[n log log n)t. This
difficulty can be avoided by means of some recent results of Brillinger (1969) on
a.s. behavior of empirical processes. We may also remark that unlike the case
of sample mean, we do not need the assumption of a finite moment generating
function.



576 PRANAB KUMAR SEN AND MALAY GHOSH

Finally, consider the testing problem H, vs. H,. Define

(4.11) N = first integer n = n, such that |T,| = n7%,; oo if
‘no such n occurs,

where ¢, is defined in the same manner as before. If H, holds, T, — »(6) a.s. as
n — oo, where |7(8)] > 0 for 6 + 0 [by (4.2)]. Hence, |T,| — [9(6)| > 0 a.s., as
n — oo. Then, for every 6 + 0,

(4.12) PN = 00) = lim,_, Py(N > n) < lim,_, Py(|T,| < n7%,) = 0.
Results analogous to (4.5) and (4.10) can be obtained in a similar manner.

5. Acknowledgment. The authors are grateful to the referee for suggesting
various improvements.
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