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Let T = A + iB where A, B are Hermitian matrices. We obtain several inequalities
relating the I, distance between the cigenvalues of A and those of iB with the Schatten p-
porm of T. The majorization results which lead to these inequalities are also used to get
simple proofs of some known lower and upper bounds for the determinant of T.

1. INTRODUCTION

Let T be an n by n complex matrix. By the Cartesian decomposition of
T we mean the decomposition T = A + iB, wWhere 4 and B are
Hermitian matrices, called the real and imaginary parts of T, and
defined as

_T+T* _T-T*
T2 To2A

One major theme of this paper is the study of relations between the
eigenvalues of 4, those of B and the singular values of T. The history of
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134 T. ANDO AND R. BHATIA

this subject goes back to H. Weyl [19] who obtained inequalitieg
between the eigenvalues and the singular values of T. (Weyl called thege
aumbers “two kinds of eigenvalues” of T. Here we will study “three
kinds of cigenvalues”.) Following Weyl more inequalities of this type
were obtained by several mathematicians. An account of these results
may be found in the book [ 12] by A. W. Marshall and I. Olkin and in the
paper [1] by T. Ando.

Some of the inequalities we obtain can be interpreted as bounds for
the distance between the eigenvalues of matrices. The history of this
subject goes back to another paper of Weyl [18]. There, he showed that
if A and B are two Hermitian matrices with eigenvalues arranged ag
A2--2Aandp, 22, respectively, then

mlaxll,—y,|< |4 - B]. (1)

Here | A|| denotes the usual operator bound norm of 4 as an operator on
the Hilbert space C*. A powerful theorem of V. B. Lidskii [11] and H.
Wielandt [20] led to a very considerable generalization of this result. Let
]Il be any unitarily invariant norm on matrices. (See [12] for
definitions.) Let Eig|(A4) denote the diagonal matrix whose diagonal
entries are the eigenvalues of A listed in decreasing order as above. Then
the Lidskii-Wielandt Theorem implies that for any two Hermitian
matrices A and B we have

Eig, (4) - Eigy (B)]| < [ll4 - Bl @

for every unitarily invariant norm. The inequality (1) is the special case
of (2) for the operator norm.

The inequality (2) in this form was noted by L. Mirsky [14] who
conjectured that an analogous result should be true when 4 and B are
normal. More precisely, let Eig A denote a diagonal matrix whose
diagonal consists of the eigenvalues of a given matrix 4 in any order.
Given a permutation ¢ on n symbols let Eig, 4 denote the diagonal
matrix whose diagonal is obtained from that of Eig 4 by applying to it
the permutation o. Mirsky conjectured that if A and B are any two
normal matrices then

min |||Eig 4 — Eig, B|| < |||4 - B| 3)

for every unitarily invariant norm. A. J. Hoffman and H. W. Wielandt
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[9] bad already established this result for the special case of the
Frobenius norm. It turns out that (3) is false for some unitarily invariant
porms. For several known results on this problem the reader is referred
to the papers by V. S. Sunder [17], R. Bhatia, Ch. Davis, J. A. R.
Holbrook and A. Mclntosh [3], [4], [5], [6], [7].

In particular, Sunder [17] proved that in the special case when A is
Hermitian and B is skew-Hermitian then (3) is true when the operator
porm is used but false in all Schatten p-norms for 1 < p < 2. In this
paper we will show that if 4 is Hermitian and B is skew-Hermitian, then

min |[Eig A — Eig, B|,< |[4A—B|, for 2<p< (4
and
min |Eig A — Eig, B|, < 2'#"'2|A~B|, for 1<p<2.(5)

Here || 4|, denotes the Schatten p-norm defined as

Ml =(£4)" 1<pe 0

where s,,...,s, are the singular values of A4, and by the usual
convention

4l = maxs; = 4] ™

Sunder’s result is thus a special case of (4).

Several inequalities complementary to (4) and (5) are also obtained in
this paper.

The methods used here also lead to some results on a third problem
going back to the work of A. M. Ostrowski and O. Taussky [15]. They
showed that if in the Cartesian decomposition T = A + iB the matrix 4
is positive semidefinite then |det T| > det A. Some other authors have
obtained upper and lower bounds for |det T|. Our results give
refinements of some of these results and easier proofs of some others.

The unifying theme in deriving all these results is the concept of
majorization. We refer the reader to [1] or [12] for a detailed study of
this notion. However, for convenience, we very briefly give the basic
definitions and some propositions which we use in the next section.
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2. PRELIMINARIES

Let x = (X, ..., X,) be a vector in R". Denote by xgq) 2 - - - > xp,y the
coordinates of x rearranged in decreasing order. If x and y are two
vectors such that

k k
meslz wp k=L2....n ®)
J=1 =1
we say that x <,.y; in words, x is weakly submajorized by y. If —x <,
— y we say that x <" y; in words, x is weakly supermajorized by y.If both
the relations x <,y and x <"y hold we say that x is majorized by y and
denote this relation as x < y. Equivalently, x <y iff the inequalities (8),
hold and the last of them is an equality.

The following well known result ([1], [12, p. 115]) will be used
repeatedly in this paper:

Proposimion 2.1 Let x <y. Let g be a convex function on R. Then the
vector (g(x,),...,g(x,)) in R" is weakly submajorized by the vector

(g(yl)! ey g(yl))

Hence, if g is a concave function and if x <y then (g(x,), ..., g(x,)is
weakly supermajorized by (g(y,). . - -, g(ya))-

For convenience let us adopt the notation {g(x;)}, for an n-vector
whose j-th coordinate is g(x;).

Let X be a Hermitian matrix. Its eigenvalues arranged in decreasing
order are labelled as A, (X) > - 2 4;,5(X). We denote by Eig (X ) the
vector {X (X}, and by Eig 1(X) the vector {4, ;4 1j(X)},. That is these
two vectors consist of the eigenvalues of X arranged in decreasing order
and in increasing order, respectively. In Section 1 we used Eig| (X) also
to denote the diagonal matrix with A 4(X) as the j-th entry on the
diagonal. It is convenient to retain this duplicity of notation, it being
clear from the context whether we are talking of a vector or of a diagonal
matrix whose diagonal coincides with this vector.

With these notations the Lidskii~Wielandt Theorem mentioned in
Section 1 can be stated as:

THeoreM 2.2 (Lidskii-Wielandt) Let X, Y be two Hermitian matrices.
Then the following majorization relations hold

Eig| (X) + Eig1(Y) <Eig/(X + Y) <Eig{(X) + Eig|(Y).
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The second of these relations also follows from an earlier theorem of
Ky Fan. (See [12, pp. 241-242])

For an arbi:rary matrix T we denote its singular values as
(MZ--25, T) > 0. We denote by s (T)and s¢(T), r ively the
vectors {s,(T)}, and {s,_ ;. ((T)},. TR

Notice that if X is positive semidefinite, then A(X) = 54X). So for
positive semidefinite X and Y the Lidskii-Wiclandt Theorem gives

8 (X) + sH(Y) <si(X + Y)-<s|(X) + s)(Y). )

In Section 4 we will use a “multiplicative version” of the
Lidskii-Wielandt Theorem:

TueorkeM 2.3 Let X, Y be two positive definite matrices. Then the
cigenvalues of XY are positive and the following majorization relations

are satisfied
log Eig| (X) + log Eig(Y) <log Eig XY
<log Eig {(X) + log Eig|(Y). (10)

Here log Eig| (X) stands for the vector whose j-th component is
logl; 5(X) and so on. (For a proof of this result see, e.g., [1].)

3. THE MAIN RESULTS ON EIGENVALUES

To avoid repetition, let us fix the following notations for use
throughout this section. T will denote an arbitrary matrix with the
Cartesian decomposition T = A + iB. The eigenvalues of 4 and B will
be denoted by a; and B, respectively, ordered in such a way that
|eyf >« - > || and |By] > - -+ > |B,|. The symbol s; will always mean
s{T), i.e. the j-th singular value of T. When some other matrix X is
under consideration we will denote its j-th singular value by s;(X).

'THeoreM 3.1 The following majorization relations are satisfied
(e + iBa-yos}y < s}y (1

{% (5] + sf-}n)}j <{lay + iB,*};- (12)

Proof Let X = A2, Y = B? and use (9) to get
{loy + iBuju P}y < {s)(4? + B}, <{lo, + B}, (13)
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Next note that
A+B= %(T'T +TT?)
and
s{(T*T)=s(TT*) =s].
]
wx=¥, Y=I§—,use(9)andtheaboveowcrvations to get

(6 + i) <o+ B <D (g

The relations (11) and (12) now follow from (13) and (14). [

The relation (11) has been noted already by C.-K. Li [10]. We thank
Professor J. F. Queiro for bringing this to our notice.

Now note that the function g(t) = ¢* on [0, o0) is convex when p > 2
and concave when 1 < p < 2. So, using Proposition 2.1 we get from (11)

{lej + iBa-jeal"}; <{sf}; for 2<p, (15)
{Id} + iﬁ.-1+ llp}j <'{Sf}l for 1< p <2. (16)
In particular, we have
jzl |a1 + iﬁ._1+1|' S Z Sf for 2 S P, (17)
= j=1
121 s+ iBa-jurff 2 Y 87 for 1<p<2. (18
= ]-l

Repeat the same arguments using the relation (12) instead of (11) to
get

1
] + sl <y + B},  for 2<p,  (19)

1
5 {6 + 50500 <"{loy + iB|?), for 1<p<2. (20)

In particular, these give

1z .
WJZI(S}HZ-,“)”% Yl +igr  for 2<p, (1)
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. [ ]
-l—,,-z G +2 0 PP> Y |y +iB? for 1<p<2. ()
2% ja1 J=1

Next recall that for fixed nonnegative real numbers a,, a, the function
@+ a4)isa mopotonimlly decreasing function of t. It follows that
§f +8- g1 is dominated by (s} + s2_,.,)’? for p> 2. For 1< p< 2
{his domination is reversed. Hence, we obtain from (21) and (22) the
inequalities

1-an ,2: < ,Z, e, + 87 for 2<p, )

202N b > Y oy +ip)P  for 1<p<g2. (24)
J=1 J=t
The inequalities (17), (18), (23) and (24) can be summarized as

TueoREM 3.2 Let T = A + iB where A and B are Hermitian. Then
(a) for 2< p < o we have

min |[Eig 4 + Eig,(B)|, < [T|,, (25)
|T|, < 2'2~"* max |Eig A + Eig,(iB)|,; (26)
(b) for 1 < p < 2 we have
min | Eig 4 + Eig,(iB)|, < 2'#~'2|T|,, 27
IT|, < max |Eig 4 + Eig,(iB)| . (28)

If the diagonal matrices Eig A and Eig(iB) have on their diagonals the
respective eigenvalues of A and iB both arranged in decreasing order of
modulus then the minimum in (25) and the maximum in (28) are both
attained for the permutation o which sends (1,2,...,n) to
(n,n—1,...,1) while the minimum in (27) and the maximum in (26) are
both attained for the identity permutation.

Proof The inequalities have already been proved. Ounly the
satement about the extremal permutations needs proof. Recall from [ 1]
or [12, pp. 146-155] the following facts about lattice super-additive
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functions. These are functions ¢(u, v) defined for positive real arguments
u, v such that

$(uy,v,) + P, 0,) < Pluy V 13,0y V 03)
+ ¢(uy A uz, 0, A Dy),

for any u,, u,, v, v, Where v and A stand for “maximum” and
“minimum” as usual. If u;, 24, > ---2u,20and 0, 20, 2>...>

v, > 0 and ¢ is any permutation on n symbols then any such function
satisfies the inequalities

i ¢(“p vn-]+l) < !Z’ 4’(“1, ”.u))

j=1

n
< 2 ¢(u js vl).
=
The function ¢(u, v) = (u + v)' is lattice super-additive for all ¢ > 1 and
for 0 < ¢ < 1it s lattice sub-additive (i.e., — ¢ is lattice super-additive),
From these known facts one easily gets:

n n
Y g+ By < X oy + iBogol?
j=1 Jj=1

n
< Y oy +iBf
Jj=1

for 2< p < o, for every permutation o. Both the inequalities are
reversed for | < p< 2, |

Remarks 1. All the statements for 1 < p < co have already been
proved. The p = oo case follows by a limiting argument.
2. The following example shows that the above inequalities are

sharp:
01 0 i
A_(l o)’ B=(-i o)'

3. Itisinteresting to note that while in the case of Hermitian matrices
A, B the minimum in (3) is attained for the same permutation for every
unitarily invariant norm because of inequality (2), the situation is quite
different when we consider A and iB. Here the “best matching” of the
eigenvalues of 4 and iB becomes the “worst matching™ when we change
fromp>2top<2.
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4. Let us say that a unitarily invariant norm ||| ||| is a Q-norm if there
another unitarily invariant norm ||| such that ||| =
("|1‘t1'|||')”’. A Schatten p-normis a Q-norm iff p> 2. For 1 < k< n
the norms defined by (s3(T) + - - - + s}(T))'? are also Q-norms. The
majorization (11), in fact, yields the inequality

‘min ||Eig 4 + Eig,(iB)| < | T, (29)

for every @-norm |- |o.
Another family of inequalities can be obtained from the above

relations by the following considerations. Let p> 2. Using the
convexity of the function g(t) = t*2 on [0, ) and the inequalities (23)
and (17) we get

n L
2Ry P Y oy + Byl
j=1 j=1
R
=Y (lef? + 8,y
j=1

n
S22y (al? + B
i=1
n
=22271 % (el + |Bu-jeal?)
j=1
n
S2PREY (o + [Baeju[PR
Jj=1
n
=220 % oy + iy |
Jj=1

XY
i=1
Thus we have, for p > 2

LS2Y oyt iBu-yeal’s (30)
i =

=1
Yy + 8P < 227 Y o, 61)
J=1 i=1
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Same way, if 1< p< 2 then using the concavity of the _f\mction
g(t) = t*? on [0, o) and the inequalities (24) and (18) we obtain for all
1<pL2

f: g2 i |, + 8B, (32)
Jn[ l-l
5 b+ el <277 T of (3)
j=1 -

We can rcformulate these inequalities to get a theorem
complementary to Theorem 3.2.

TuroreM 3.3 Let T = A + iB where A and B are Hermitian. Then'
() for 2< p < 0 we have

|T|, < 2*~*" min |Eig A + Eig, (B} ,, (34)

max | Eig 4 + Eig,(B)], < 2'2~'7|T|,; (35)

(b) for 1 < p < 2 we have
||, < 2!%*~*" min |Eig 4 + Eig,(B)|,. (36)
4

max ||Eig A + Eig,(iB)|, < 2*#7*||T|,. 37

Remarks 1. Since the function g(t) = ¢ on [0, c0) is concave even
for 0<p<1 the majorization results (16) and (20) and their
consequences are valid for 0 < p < 2. However, only the results for
1 € p< 2 can be translated to norm inequalities.

2. The inequalities derived above give a complete set of bounds from
above and below for | T, in terms of the eigenvalues of A and B. It still

remains open to find a sharp bound like (2) for all unitarily invariant
norms. It is reasonable to make the following

ConsecTuRe  min ||[Eig 4 + Eig, (B)||| < /2| T} (38)

for every unitarily invariant norm. Further, in view of (24) and (31) one
may expect that in fact

lldiagle, + By, ..,y + B < V2TII- (39)
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Notie that since [|Eig AJl = 4] < JITl] and same for B the
triangular inequality for norms implies that the left-hand side of (39) is

dominated by 2|}
3. Fanand Hoffman [8] (see also [12], p. 240) have proved that if %

1<j< n, are the eigenvalues of A arranged in decreasing order
oy = > &, th?'}“m sls,for.allj. Same way B, <s,forallj. If A
mdymbothposntxvesemndcﬁmtethena,:amandﬁ,=ﬁm.Soin
this case |« + iB,| < /23, for all j and hence (39) s true for such A and

.4. Notethatfork =1,2,...,n, we have from a well known theorem
of Fan (see [12, p. 243])

X k k
Y 5< ;:;1 (5,(4) +5,(B)) = .;‘ (o] + (B

" k k
< ,; \/5(“12 +p)'7 = ng ﬁl"‘} +ip).
In other words {s;}, is weakly submajorized by {,/2|e, + i]},. Hence
Tl < /2 max]|Eig 4 + Eig, B (40)
Note that by the example in Remark 2 following Theorem 3.2 this

inequality cannot be improved.
5. In [13] M. E. F. Miranda has proved that

3 k
Z (a,f-,“+ﬁf..1“)€ Zs,z, ISkén—l, (41)
=1 j=1

n—

" a2 S 2 g2 n+l
sjﬂ(...,,S Z (aj +B})’ 2 <k<n (42)
1 j=1

j=

Note that the majorization (11) actually implies

k k
Y@+p )< Yt 1<k<n 43)
J=1 =1
Since

k k

Z “3—j+1 < Z ajz,

the inequality (43) is stronger than (41).
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Also note that the majorization (12) implies
% Y 6] +si- )€ l):l @ +p}), 1<m<n (44)
j=1 -

This, in tumn, gives

Zs g € Z @+p}), 1<m<n @s)

1
Now note that if [—;—] < k< nthen

2k-n 2k-n

2
Y Sje2n-n= Z Si-j+1 S 2 Su-jer-
i=1

So the inequality (42) of Miranda is weaker than (45) which, in turn, is
weaker than (44).

The referee has pointed out that the inequalities (41) and (42) are
immediate consequences of the relation

i i a] +B})9

that is the easiest part of (11) and the assumed orderings.

4. SOME BOUNDS FOR DETERMINANTS

Some known results on determinants follow easily from our results in
Section 3 and so are presented here.

In [16], J. F. Queiro and A. L. Duarte have proved the following
theorem of which we give a much simpler proof:

THEOREM 4.1 Let T = A + iB where A and B are Hermitian with
eigenvalues |a,| > - -- > |a,| and |B,| > - -- > | B.| respectively. Then

det T| < [] |aj + iBa-jus]- (46)
=1

Proof The function g(t) = 4log!t is concave on (0, ). So by (1)
and Proposition 2.1 we have

Y loglay + ifu_jiy| = Y logs,.
=1 =1
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Hence,

I le; + iBa- o > IH $;=|det T]. u
=1

=1

A lower bound for |det T| complementary to the above result is
ible when A-and B are both positive semidefinite. Such a bound was
derived by N. Bebiano [2]. Before coming to this let us make the
following observations.
Let T = A + iB with A positive definite. Then we can write

T = A'P(I +iA7'PBA™'P)4'2,

det T =det A-det (I +iA™'2BA™'7). (47
Next note that

|det(f +iA™'2BA™' )}
= det(l +iA™'2BA™'A)( - iA™'PBA~'?)
=det(l + (A7'2BA™ ')

= [T (1 + (547" 2BA™ ). (48)
=1
So, we have
|det T|=det4 ] (1 + s,(A'”’BA“’Z)z)”’. (49)
Jj=1

This is a refinement of the Ostrowski-Taussky bound |det T| > det 4.

We next prove the following result of Bebiano using the above
analysis:

‘THEOREM 4.2 Let T = A + iB where A, B are positive semidefinite with
eigenvalues ay > --- > a, and B, > - - > B, respectively. Then

|det T| > [] |o; +iBy]- (50)
j=1
Proof 1t suffices to prove the theorem when A, B are both positive

definite. By the equations (47) and (48) the inequality (50) will be
established if we show

(1454 2BA- ) > ] (1 + 27280, (51)
1 j=1

:-

]
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Since B is positive definite
s(AT'BBATR) = s (AT PB'RP,  j=12,...,m.

By Theorem 2.3 the sequence {log ss—y+1(A™*?) + log s,(B'P)}, iy
majorized by {logs,(d™"*B' )}y But s,_yy(A™") =" ang
s,(B'?) = B}". So we have

{log(aj 1B} ™)}, < {logs(4™'"B'P)},. (52
Now note that the function g(t) = log(1 + e*) is convex. So (52) and
Proposition 2.1 imply
log{(1 + a; 2p})}, <.{log(1 + s(A™'2B!2)M)},.
In particular, this gives

Y log(l + a; 2p7) < }21 log(l + s,(4™'2B'?)")
=1 =

= Y log(l +5,(47'?BA™'7)).
j=1

Hence, we have the inequality (51).

Remark If only A is positive semidefinite and B is an arbitrary
Hermitian matrix then an analogue of the bound (50) need not hold. To

see this choose
10 01
A=<o e)’ B"(l o)’

where ¢ is any positive number other than 1.
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