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PROBABILITIES OF MODERATE DEVIATIONS FOR
SOME STATIONARY ¢-MIXING PROCESSES

By MaLAaYy GHOSH AND GUTTI JOGESH Banu?
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and University of Oregon
Probabilities of moderate deviations of the sample mean from the

population mean are calculated for certain strictly stationary ¢-mixing
processes.

1. Introduction. Consider a strictly stationary sequence {X_, n = 1} of ran-
dom variables (rv's) defined on a probability space (2, .9, P). Define M as
the o-field generated by X,, ..., X, and My, as the o-field generated by X,,,,
X, It is assumed that

atuslr " -
for the events A4 e M,* with P(4) >0 and BeM[,,
(1.1) |P(B|A) — P(B)| < ¢(n), where ¢(i)’s are nonnegative
numbers satisfying
lz¢)ze¢@z -, lim_p(n)=0.

The condition (1.1) is usually referred to in the literature as the ¢-mixing con-
dition.

Central limit theorems (CLT's) for sequences of rv’'s satisfying (1.1) are
proved by Ibragimov (1962) under certain conditions on the moments of the
X,’s and on the ¢(i)’s. These results ensure under certain conditions convergence
in law of the sample sum S, = 37 X, (when suitably normalized) to the normal
(0, 1) variable. Berry-Esseen type results for such sums are available in Reznik
(1968) and Philipp (1971), and have been used by them in proving laws of the
iterated logarithm.

In this paper, we obtain probabilities of moderate deviations (PMD) for sample
means. We shall observe that our results generalize the PMD findings of Ghosh
(1974) under m-dependence. Included also are the PMD results of Rubin and
Sethuraman (R-8) (1965) in the i.i.d, case. R-S, however, consider also the
case when the X,'s are independent but not identically distributed.

We adopt the convention of denoting by K, (> 0), K, (> 0), r (> 0), etwc.,
generic constants. The word “strictly” will henceforth be omitted before ‘“‘sta-
tionary” for brevity. Also, in what follows, a, ~ b, will mean a_ /b, — 1 as

n—, co.
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The main result of the paper is as follows.

THEORBM. Skppose the stationary process {X,, n = 1} satisfies (1.1). Then, for
any ¢ > o,

(1.2) P(n—'S, — p > ca(log njn)d) ~ (2nc* log n)~4n-4**,
and

(1.3) P(|n—S, — p| > co(log n/n)}) ~ 2(2nc’ log n)~in—44
hold under the conditions

(1.4) E[ X[+ < oo, for some & >0;
(1.5) Ziadt(n) < oo

(1.6) 00" = V(X)) + 2 L7 Cov (X, Xy )) .

The proof of the theorem is postponed to Section 3. Certain basic lemmas
pertaining to the proof of the theorem are proved in Section 2. The results (1.2)
and (1.3) are the PMD results. Noting that x(1 — ®(x))/N¥(x) -» | as x — oo,
where N(x) = (2r)~} exp(—4x*), ®(x) = (2. N(y) dy, alternate representations
of (1.2) and (1.3) are as follows:

1.7 P(n-3(S, — np)ja > c(log n)}) ~ 1 — O(c(log mt) ;
(1.8) P(n4|S, — nylfo > c(log n)t) ~ 2[1 — @(c(log mb)].

The calculations of Ibragimov (1962) show that ¢*> < oo under our conditions.
Our conditions (1.4) and (1.5) are stronger than the ones required in proving
the corresponding CLT’s. Ibragimov (1962) has proved a CLT (se¢ his Theorem
1.5) assuming (1.5) and the weaker condition EX,* < co. For proving a Berry-
Esseen type result Reznik (1968) needs the stronger assumption E]X,|"*’ < oo
for some & > 0 in place of EX\' < oo. Itis not out of place to mention here
that Reznik’s (1968) paper contains a gap. He applies Esseen’s lemma to two dis-
tribution functions, F, and F,, without verifying that at least one of them satis-
fies some smoothness coandition (see Feller (1968), page 512, Lemma 2). The
gap has been closed by Stout (1974).

The moment condition (1.4) is assumed by R-8 (1965) and Ghosh (1974). If
#(n) = 0 for n = m + 1, where m is some fixed nonnegative integer, we obtain
the case considered by Ghosh (1974). Thus the present theorem includes the
m-dependent as well as the i.i.d. cases earlier considered.

2. Some basic lemmas. We develop here some lemmas to be used subse-
quently in proving the theorem. From now on, it is assumed without any loss
of generality that 4 = 0 and ¢ = 1. Define

2.1) X = X=X, if |X|<snt
=0 otherwise , lg€ig<nnzl.

Then, if S,/ = ¥7_, X\’ (7 = 1), one gets the following lemma.
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LBMMA 1. Under (1.4),
(2.2) |P(S% > c(nlog n)) — P(S, > c(nlog n))| = O(-4"-1%) .

PRroor.

LHS of (2.2) < P(U, | X/| > nt) = aP(1X)] > n)
< nn-Aio+ree Elxll"““ — O(n“""‘) R

using the definition of X,”’s, the stationarity of the X,’s, Markov's inequality
and (1.4). This proves the lemma.

In view of the above lemma, to prove (1.2), it suffices to show tbat
(2.3) P(S,’ > ¢(nlog n)t) ~ (2nc? log n)~in=47" .
We prove one more lemma in this section which gives the order of E[S,/|® for
all positive integers m = 2. The present lemma generalizes Lemma 1.9 of Ibra-
gimov (1962), but only for the truncated random variables X,”’s.

LemMA 2. For | € u < n, and for any positive integer m = 2,
(2.9) E|S/|" < K(uR(m)(log n)s + ui=)
where R(m) = R (m) = nA'==*=2-® or O gccording as m > or < ¢ + 2 + §; X,
and K, are constants which may depend on m but not on n and u.

ProOF. We prove the lemma by induction. First observe that
(2.5) E|S" = uE(X\") + 2 Tl DL E(XXLL)
using the stationarity of the X,”’s. Using now a result of Ibragimov (1962),
(see. c.g., Lemma 1, page 170 of Billingsley (1968)), one gets
(2.6) [E(G XL, ) S |E(XXL,) — E(XE(XL ) + |E(X)EXL)|

= PHNDEX) + |EXT
Now, from the definition of the X,”’s in (2.1), the stationarity of the X.s,
Markov’s inequality, and (1.4) one gets,
(2.7) IEX) S E( X uxyoan] S amd SR RE[IX 50y o)
= o(n~ii-i-d)

where / is the usual indicator function. Also, EX\” < EX.* = A (say) < oo. It
follows now from (2.5)—(2.7) that
(2.8) E|S/! £ Au 4 T2} T [2483()) + o(n7” ")) = Kiu,
where one uses ¥ < n and (1.5). This proves the lemma for m = 2.

To prove the lemma by induction, assume next that
(2.9)  Cu.m) = E|S./|" < K,(uR(m)(log n)"s + u!™) = D(u, m) (say),
and prove a similar inequality for C(z, m + 1). Towards this end, define S, =
Bty Xoppo8nd ST, = 3i_, X.,,. Using the definition of C(u,.m) and the sta-
tionarity of the X,'s, one gets

(2.10)  E(S)" + SLD)™ = E(ISS| + SL)™ = Zrx (CHE(ISS S
=2C(u, m 4 1) + T7uy (SPYE(S, =S5 -
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Using the stationarity of the X,’s, and Lemma 1, page 170 of Billingsley (1968)
with r = (m + 1)/{(m + 1 — ), and s = (m + 1)/, one gets
[EQSS[=+=4S0.lY) — EIS|=+~4E[SL M|
(2.1 l) =< 2¢"+’_l”""”(t)(E|S_’|"“)"""””‘“’(E|S.'|"’")”"""
= 28V (C(w, m +.1) , lsjsm.
It follows now from (2.10) and (2.11) that
E[S) + SL|™* S (2 + 20V 2027 )Clu, m + 1)
+ 7. CFHEISS T E)S )
(2.12) < (2 4 2=HV = ()Clu, m 4 1)
+ D CPUEISS |y m (Bl [y
§ (2 + 2-+l¢ll(-+ll('))c(u, m + 1)
+ 2-+lc(-i-l)l-(u’ m) .
Again from (2'9), Cm ™y m) < K,(u‘-“’/"R"‘“""(m)(log ")K, + ,‘ll-+n)‘ Now,
for m+1<c4+2+8, RmMy=R(m+1)=0. For m+ 1> +2+3,
(HR(m))= 1/ < ypt/mptimeiAmim—aot-b o ypiimyl-d-1-0 — yR(m41). Tt follows
now from (2.12) that
2.13)  EIS) + SLd™* S [2 + 24U n()]Clu, m + 1) + D, m + 1) .
Using the Minkowski inequality, one gets
C2u, m + 1) = E|S) + S, + SV, — S ™
(2‘14) g (El/(-+l)|s-l + S:.‘|-+l
+ (TEH + DRDEV= X
Note now that form 4+ 1 < ¢* 4+ 2 4 4,
E|X; | 5 E|X/[900 < E|X )M S K,
and form + 1 > c*+ 2 + &,
El’\r‘ll-u-x g nl(-+l—o'—l—l)£|xlr|ol+l+l é Kl R(m + l) s
using (1.4), (2.1) and the definition of R(m). The above leads to
(2.15) EIX/|** S K(1 + R(m + 1)) .
Combining (2.13) and (2.15), one gets from (2.14),
(2.16)  C(2u, m + 1) < [{(2 + 2=+¢V=*D()C(u, m + 1) + D(u, m + 1)}/
+ Kll(l -+ R(m =+ 1))1/(-+1)]-+1 .
Consider now the two separate cases (i) m + 1 < c* + 2 4 dand (i) m+ 1 >
A4+ 2 4 3.
Casg (i). Here R(m + 1) = 0. Given any ¢, (> 0), choose ¢ to be sufficiently
large (not dependent on a) that 27+'¢¥(=+1(1) < & (by 1.5)). Then, one gets
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from (2.9) and (2.16),
C(2u,m + 1) < [((Z + )Cu, m + 1) 4 K ubt=+0Jemen 4 g |m+1
S (1 + )2 + e)CH, m + 1) + Kyubmsprmsyjen
for u sufficiently large, say u = u, = u,(m, ¢). Also, given any ¢ > 0, choose
& (> 0) such that (1 + ¢)"*(2 + &) = 2 + e. This leads to
(2.17) CQu,m + 1) < (2 + &)Cu, m + 1) + Kult=+ |
for u = u,. This is also valid for u < u, by using the inequality E[S/|* <
u~E|X,/|* < u,~E|X,|***** and by suitable readjustment of X, if necessary. Re-
peating (2.17) r times and using C(1, m + 1) < E|X,|"+** < K, one gets
C2ym+ 1)< (24 ¢)C(1l,m4+ 1)
(2.18) + K (27/2)4 (] 4 (2 4 g)2-Hmh L.
+ ((2 + 5)2—!"‘1—11}'—1)
S K[(2+ ey + @MW) £ KW=+ = D2, m+ 1),
choosing € (> 0) so small that 2 + ¢ < 2t < 24=+V for m = 2.
Case (ii). Here R(m + 1) = 0. Take r = [(log n)*™*"""], the integer part of
(log n)t=+», Then (2.16) and (1.5) lead to
C(2u,m + 1)
= [{(2 + Ky(log n)=")C(u, m + 1) + D(u, m 4 1))/i=+b
+ Kl(log ")K,Rl/('+l)(m + 1)]-+l
(2.19) < [(1 + Ky(log n)™)((2 + Ki(log n)=)C(u, m + 1)
+ D(u,m —+ l)}l/(—-bh]l\Q-l
= (1 + K,(log n)=)=+{(2 + K,(log n)=YYC(u, m + 1) + D(u, m + 1))
= 2(1 + K\ (log m)~")C(u, m+1) 4+ K (uR(m+ 1)(log n)%a 4 utt=+1y
When 27 < n, i.e., r < (log 2)-'(log n), repeating the inequality (2.19) r times
and recalling C(1, m + 1) = E|X/|**' < K,R(m + 1), one gets
C2'ym + 1) £ 2°(1 + K, (log m)~")y'C(1, m + 1)
+ K. 2'R(m + 1)(log m)*s 323 (2 + Ky(log n)~)2"
(2.20) + K(2ZP Tz {2 + K(log n)=t)2-msnys
< K,2°R(m + 1) + K, 27R(m + 1)(log n)¥s 4 K, (27 pp=+v
=D2,m+1).
Combining (2.18) and (2.20) one gets for any u = 2" (< n),
@21 €2, m) 5 K2 R(m)(log n)*s + (2')*] .
Now suppose 27 < u < 27*'. Use the binary decomposition & = 5., v,2’ with
vo=1,y,=00rifor0<;<r— 1. Then,
(222)  E|ZDyX/m = E(Zi + Bhth + - + Dhtniidieenxs”,
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where i, = v, 27 (1 < j < r+ 1), Do X/ is interpreted as zero if m, < m,.
Using now the Minkowski inequality, the stationarity of the X,’s and (2.21),
one gets
BTt X" < (EYS| DO X" + - + E/m| Sttt X))
S K52 (vraae (2 IR(m)(l0g m)s 4 24mr1-pyumy ]
< K[ D5t vpars (24 -/ RY=(m)(l0g m)*s + 240r+1-5)}
(2:23) = K[(Zjh 204 #=) RV (m)(log n)*s + Fjzi 2dr+-n]
é Kl[2(v+llI-Rl/-(m)(l°g n)l(, + 2’Ir+l)]-
K\[27+'R(m)(log n)Xs 4 24mir+n]
K,[2°R(m)(log n)*s + ()]
K\[uR(m)(log n)*s + ui™].

A

=
=

3. Proof of the theorem. We need only prove (1.2) as (1.3) is then immediate.
Recall we have already assumed u =0 and ¢ = [. Let p =p_ = [nr"], ¢ =
g. =[], k = k, = [nf/(p + q)]: « and 8 (0 < B < a < 1) will be chosen later;
[x] denotes the largest integer < x. Then, n =k(p+ )+ 0 r<p+gq.
The sample sum §,’ is then partitioned into

(3.1) S, =U+ R, +T,,

where

(3.2) Uo= 1666 = 6ai = TRNGUM X/ 1<igk;
(3.3) R, = 276 9 = Pay = DU 0en X/ Il £igk;
(3.4) T,=T,, = Sistair Xy if rz1; T,=0 if r=0

We now prove three lemmas which imply (2.3), and thus prove the theorem.
Define {, = (log n)~'~*, v > 0 for n = 2.

LemMma 3. For any ¢ > 0, under (1.4)—(1.6),
(3.5) P(U, > (c & 2{,)(n log n)t} ~ (2nc® log n)~4n-—4<!
LemMa 4. For any ¢ > 0, under (1.4)—(1.6),
(3.6) P{R, > Q. (nlog n)} = o(n"“’(log n)~4) = P{R, < —{, (nlognm)}.
LemMMa 5. For any ¢ > 0, under (1.4)—(1.6),
(3.7)  P{T, > L.(nlogn)t} = o(n~¥(log m)~}) = P(T, < —{.(nlogn)i}.
Further, for {, < 4¢, n large, one has
P{U, > (¢ + 2C,)(nlog )Y} — P{R, < —{.(n log )}
— P(T, < —{(nlog n)}}
(3.8) < P(S) > e(nlog n)t)
= P{U, > (¢ — 2{,)(nlog m)}} + P(R, > ((nlog n)i}
+ P(T, > . (nlog n)}} .



228 MALAY GHOSH AND GUTTI JOGESH BABU
Dividing both sides of (3.8) by (2r*log n)~4a—#*, and then letting n — co, one
gets (2.3).
ProoF oF Lemma 3. For later reference, note that
(3.9) log [n—esXaini?] — J[c* — (c* + 2(,)*]logn = O,(logn)™, v>0,

where O, denotes exact order. By M, = O,(a,), we mean that there exist con-
stants K, (> 0) and K, (> 0), and a positive integer n, such that K, < [M,|/a, =
K, for n = n,. We have used (3.9) in deriving (3.30).

Defining £/ = p~36(1 < i < k) and ¢, = (¢ + 2,)(n/(kp))}(log nflog k)},

(3.10) P(U, > (¢ + 28, )(nlog m}¥) = P(T*F & > c.(k log k)) .
Define now
(3.11) o=26" if |&/] < (kflog k),
=0 otherwise ; 12igk.

Using Lemma 2, one has
IP(Z1 &0 > calkflog kYY) — P(Z1 & > ca(k/log k)|
= kP(I€/] > (k[log k)l) < k(k/log k)~ =E|E/"|™
(3.12) < k(kflog k)=3mp=i=K,(pn‘==-4-1-4/(log n)¥s + p=7)
< K,[n(kp[n)—="n~'-3-3(log n)s 4 k*-i=(log k)]
< K [n—m_u (l + qu—_;,)-n(log Y 4 at-ea-ye(log ,,)x,]

< K,n¥(log n)~4-7,
for some » > 0, and for large n, if (] — a)(m — 2) > &, i.e.,

(3.13) a< 1 —cfim-—2).
Thus, to prove the lemma, it suffices to show that
(3.14) P(Tk E > cu(k log k)) ~ (2rc? log n)~in~te

To prove (3.14), one proceeds in analogy with Rubin and Sethuraman
(1965). Let F(x) = P(T¥ &, = X)) gu(0) = §=., exp (fx) dF,(x), and dG, ,(x) =
exp (0x) dF(x)[g.(0), 6 (> 0) being some real positive number. Then it
is possible to express the LHS of (3.14) as

gulea(log k[kY) §27 uiagnri €XP (—ca(log k/k)ix) dGy o ctoghmi(X) -
Define now

(3.1%) Ju = E[exp (cu(log k[k)) £,5)] ;
(3.16) m, = f.TE[§0 exp (cu(log k/k)Ei0)] ;
(3.17) mp + 0. = [ E[€} exp (c.(log k/k)iE,)] -

Then after some simple manipulations, it is possible to write
(3.18) P(Z1 E > cufk log k)W) = A4, §3, exp (—C,2) dll,, (),
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where A, = A,(c,) = E[exp{c,(log kfk)} 31t £,o)] exp (—ca(k log k)im,), B, =
By(c.)= ko, (c (k 1°g kW —km,),C, = ‘-‘..0-.(105 k), Hk.:,(z)=Gk,:_un.unl(k’"_+
kig,z). Next we obtain some useful estimates of A4,, B, and C,. Towards this
end, first note that using Lemma 2
(3.19) El§ul® < E|§/P < K, p-¥(p! + pnts=7--(log log n)*3)

< K1 + (n/p)in—3-) < K, ki-7,
1 <i<k, forsome y > 0. Also,

(3.20) Ef, < E& S K, -

Further, using (3.11) and (3.19),

321 |EE) < (k/log k)TEIE/)P < Kik=)7,
for some y > 0. Next we show that

(3.22) |E€h — 1| < K k-7 for some y > 0.

This is accomplished in several steps. First note that using (3.19)
(3-23) IE l” - Ee}o| = E[El"'ﬂé,’l»k/xnghl!]
< (kflog k)VE)6, | < K k-7 for some 7y >0.
Also, using the stationarity of the X,'s, Lemma |, page 170 of Billingsley (1968),
(1.4), and 33721 ¢¥()j) < K, (which follows from (1.5)), one gets
P E(XF X)) — E§\
= pTlPE(X — X\") + 2 T35 (p — DE(X X,y — XU X))
= E[X\yxy>an] + 4 Z32HEX x5 a1 X s il jisati)]
(3'24) +2 Z;:{ |E(X, I(l.\'l|>u!)Xl+,'I(l.r”.,-|>n!l)|
= "_.idu)EIXll"““ + 8 Z;:: ¢,(j)E’(Xl”[h\’,l)n“)E’(XI,I(I.I'IISn”)
+ 4 Z;:n‘ ¢’(j)E(X|’I(|x,|>u§l) + GP[E“XIII(IA'I(>-|”]]:
< Kln-peun + K,n"“’”’ + Kln_""“’ + KIP"-MHH) = Kl”_'
for some y > 0.

In view of (3.23) and (3.24), EX, = 0 and ¢ = 1, (3.22) will now follow
from the following lemma.

LEMMA 6. Under (1.4)—(1.6), |p~' V(X! X)) — 0’| < K\n~7 for some y > 0.
PRrROOF.
o —p=V(Tf Xl = 2( D32l jp~YICov (X X )l + ZFap ICoV (X0 Xiu )
<2 Z’L‘l‘jp"¢‘°'““”‘°’”“(j)(£|X.|“’+’“”'"“”’)"’+“""""2”“'
= i=
X (E|X,["““)'“"“+" + 2 Z;_-_’ ¢u’+|u|/u’+n+n(j)
X (E[X,]'“""””’"’“*")“’““'"””“’(EIX,l"”“)"""*"“
K][p—l Z;:}j_uﬁu)/uhnh + z;n_pj-l—‘dnuduu]
Kp7s K,

A A
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for some y > 0, since (1.5) and the monotonicity of the ¢()’s give ¢()) < X, j~.
With the usual expansion of exp (x) around x = 0, it follows from (3.20)—

(3.22) that

(3.25) 1fu — 1 — de2(log k/k)| < K k=17 for some y > 0.
Further, from (3.16)——(3.17) and (3.20)—(3.22),
(3.26) m, = c,(log k/kPE(E%) + O(k=4-7)
= c.(log kfk)} + O(k~1-7) forsome y > 0;
(3.27) m?+o2=1+ Ok-7), for some y > 0.
Hence, 0. = | + O(k~r) for some y > 0, and one has
(3.28) B, = k=31 + O(k-7))O(k}-7) = O(k-7) .
Also nf(kp) = 1 + (kg + r){(kp) = 1 + O(n~7), for some y > 0. Heance,
(3.29) C, = c o (log k)t = ¢(log n)¥(1 + O(log m)~7).

We prove next

A, = n=¥(1 4 O(log n)-7) for some y > 0.
Since —e, (klogkYim, = —ec'log k + O(k~7log k) = —c"logn + O((log n)-7)
for some y > 0, it suffices to show that
(3.30) E[exp(c.(log k/k) T4 £4)] = m*[1 + O(log n)™1],
for some y > 0. Note that in view of (3.25), klog f, = §c.’logk + O(k-7) =
4c'log n + O((log n)-7). Hence,

(3.31) [ = (1 + O(log n)-7), for some y > 0.
In view of (3.31), in proving (3.30), it suffices to show that
(3.32)  |E(exp(c,(log k/k) TF £)) — £} = O(m*-7),  for some > 0.

To prove (3.32), we make repeated use of the inequality (20.28) in Billingsley
(1968), page 171. The incquality is due to Ibragimov (1962).
Using stationarity and |£,)| < (k/log k)i, one gets
|E(exp(ca(log k/k) 101 €i0)) — £
= |E(exp(c.(log k(k) X3¢ €ia)) — E(exp(ea(log k/k) Tt~ Eu)lf ol
+ Sl E(exp(ca(log kK T1~'¢0))
(3.33) — E(exp(c(log kfk)d Tr €l + -+~
+ [t E(exp (eu(log kfkY Tl €)) — £
= 2 ¢(9) exp(2¢,)
(TR S Eexp(en(log k/k) 51, €] + [} -
Again, repeated application of (20.28) of Billingsley gives
Efexp(e.(log k/k) 21, £.0))
(3.39) = [fo + 28(9) exp(c.))E[exp(e.(log kfk) T 6] S - -+
S [/L+ 28(9) exple)) s /=2, k—1.
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It follows now from (3.33) that

|E(exp(e (log k[k) 331 €10)) — .|
(3.35) < 2k¢(q) exp(2¢,) fa + 28(q) exp(c.))
< Kig7%k(1 + je,Y(log kjk) + Ky(k='7 + g7,

using (3.25) and (1.5). Note that for large n the RHS of (3.35) is majorized by
K n="+' -« explk log (1 + $c,(log k/k) + K,k~'-7)] for some y > O provided
28> 1 — a. The above is again majorized by K,n=**'-=exp(c,’logk +
Kk-1) = O(n*-=-"+i?), Choose now a = 1 — (¢* 4 8)j/(m — 2), B =1 — (c* +
28)/(m — 2), where m > 3¢’ + 58 + 2. Then, (3.13) is satisfied, 0 < B < a < |
and 28 > 1 —a. Also, 1 —a — 28 = —2 4 (3¢ + 58)/(m — 2) < —1. This
proves (3.32). Finally we show

(3.36) sup, |1, (2) — @(2)| = O((log n)~Y) .

Assume for the moment that this is true. To see how the proof is concluded
first note that in view of (3.18) and 4, = n~¥'(1 + O(log n)77), for some y > O,
it sufficies to show that

(3.37) §5, exp(—C,2) dIl, , (2) ~ (2rc’log n)=3 .
From (3.28), (2.29) and (3.36) one has
1§35, exp(—Ci2) dI, , (2) — {5, exp(—C.2) d®(2)| = O((log n)7) .
Hence, one need only prove that
(3.38) §5, eXp(—Ci2) dD(2) ~ (2rc* log m)~+ .
It is easy to see that |{3, exp(—C,2) d®(z) — {5 exp(—C,2) d®(z)] < K,\|B,| =
O(n-7) for some y > 0 (using (3.28)). Also,
(3.39) §o" exp(—C,2) d®(2) = {7 (2r) "t exp(—4(z + C.)* + 3C.N) 4z
= (2r)7 Y1 — (CYHYN(C,) ~ (27)~¥C,~! ~ (2rc? log n)~4 .

It remains to prove (3.36). If H(x)= P({, < x) and dH,(x) =
exp(c,(log kfk)yx) dH(x)[{=,, exp(c.(log k/k)ix) dH(x), it follows that m, and ¢
are the mean and the variance of §,, wrt the conjugate distribution H,. If £8

(i =1, ..., k) are independeni rv’s each having the same conjugate distribution
H, as §,,, Lemma 2, page 171 of Billingsley (1968) gives

(3.40)  |E, (T1f exp(it(§o — m)k~40,7"}) — TIt E, [explin€h — m)k=da, Y]
< 2k$(q) < K, kg™ = O(n'=2-%) = O(n—’) forsome ;> 0;

in the above £, denotes expectation wrt H,. Let now F,(x) and Fy(x) denote
the respective df's of 3t (6o — ma)k~do,~' and ¥ (€4 — m )k~ 30,~' when the
§w's and §%'s have df H (x). Let f,, f,, and f, denote the characteristic functions
corresponding to @, F, and F,. Define 8, = E, |§&]*- Xt follows from (3.21) and
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(3.25) that 8, = O(k#-7) for some y > 0. Define T, = ¢,'8,7'k! so that T,-' =
O(k-7). Proceeding in analogy with Theorem 5.1 of Feller ((1966), pages 515~
516), one gets for [f| 5 T,
(3.41) [/ — fo)] S KByo~% 1" exp(— 1yt

= O(n~")|t|* exp(— y417) .
Using now Esseen’s lemma (see, e.g., Feller/Q966), page 512), one gets for all
real z, ’
(3.42) IFy(2) — @) < K[§15 | fu) — fol0)]le]=* dt + T.7]

= K[$T3, 040 — £l ar

+ $53 A0 — £l dr + T,71
Again |£i(n) — fi(1)] < K(log n)~|¢| for [1] < (logn)-? (since the corresponding
variables admit moments of order higher than two). Using this and (3.40), one
gets for large n,

S’—';'.Ifx(’) _fl(’)”’l_l dt = SIII(rlo'-l_' + suos-)-'msr.lfl(’) _ﬁ(l)l|'|_|d’
< K[(log n)~* + n—7logn],
noting that log 7, = O(log n); (3.41), (3.42) and the above now lead to
sup,|F\(2) — @(2)| = O((log n)~?). But F,isthesameasIl,, . Thisproves(3.36).
The proof of Lemma 3 is now complete.

Proor or LeMMa 4. We need only prove that P(R, > {.(nlogn)t =
o(a~4(log n)~%) as the proof of the other quality in (3.6) is analogous. To this
end, first define,

(3.43) Mo = N> if In] < ntj(log n)i+~
=0, otherwise.
Then, using the stationarity of the »,’s, and Lemma 2,
[P(R, > C(nlog m}}) — P(T g > Cu(n log mb)]
(3.44) = kP(ln| > n¥/(log my++) < kE|p|mn=="Y(log ny=ti+»
é K,k[qnl"‘""’—"(log ")K, + q|-]n—--n(l°g ")-uh-—)

= K,[n“”/’—'/’(log a)fs 4 pr-a-tama-pY(log py=d+ |
But

l—a—Mu_g+8 mc+25
2 m—2 2 m—2

= —(m—2)* —2(m — 1)5 _
2(m — 2) -

Hence, it follows from (3.44) that
(3.45) [B(R4 > Lu(n log m)'?) — P(T4 9,4 > Co(n log a)Y)|
= K, n—i9-r for some 7 > 0.

—1
—ja - 8.
% m—2
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Thus, it suffices to show that
P(Z} 70 > Ca(n log n)Y) = o(n=i9(log n)~4) .
Note first that
(3.46) P(33¥ 700 > Ca(n log n)d) < inf,,, [exp(—8n—i(log n)*+{ (n log n)t)
X E(exp(fn-¥log mi** 3} n))} -
Using arguments similar to (3.33)—(3.35), it follows that
(3-47) |E(exp(@n~Y(log mi*> 33§ n)) —hat| < 2ké(p) exp(20)[A,+208(p)]** ,
where k, = E[exp(8n-i(log n)i**p,)]. By a Taylor expansion we have
(3-48) A, < 1 + On-¥log n)1**|Exny| + 46~ (log n)*** E(y%) exp(0) -
But, using Lemma 2,
1E(py — )| = IE7)|lllrul)ui/uu..lﬂ]l
< {ni(log m)I**1E(n) = K, gn-i(log n)ite .
Also,
1En| = GIEX!| £ 9E[|Xillixy>an] S qa=)7 10 E|X 74754 < K gnmyi@viss,
Thus,
(3.49) [Emal < K,gqni(log m)}+~.
Also, using Lemma 2, Ey), < E»* < K,9. Thus one has
(k — 1)log (A, + 2¢(p) exp(6))
< (k — 1)log (1 + gn~'(log n)**™ + K, p~%)
(3.50) < k[gn-'(log n)** 4+ K,n7*] < K,[n*~?(log n)**™ 4 n'~3]
K,[n“"(log ")a-n» + ,,—Inu’umu—:;]

< Kyn7 for some r >0,

since m > 3¢ + 56 + 2. One has now from (3.47), for large n,
(3.51) |E(exp(8n~¥(log n)1*> 3¢ p)) — k2| S Kynt~*exp(K,n~7) < Kyn7

for some y > 0. Also, (3.50) leads to k log &, < K,n-’ for some y > 0. So,
h* <1 4 K,n7 for some y > 0. Thus, from (3.51) and the above,

(3.52) the RHS of (3.46) < infy,on=%(1 + K,n7) < K,n=*-7
for some y > 0;
(3.46), and hence the lemma follows.
Proor oF LEMMA 5. Using r < p + ¢, Markov's inequality and Lemma 2,
P{|T.] > C,(n log n)t}
(3.53) < {n¥(log m)=4"}"mE|T "
< n="/(log ny"+MK[(p + g)n¥ ===t (log m}*s + (p + 9)~"] .



234 MALAY GHOSH AND GUTTI JOGESH BABU

Since (p 4 g)/n = O(n~"+7) = O(n~"*+/1=-9), it follows from (3.53) that P(IT,| >
{.(nlog n)}) < K,n=¥*'-7 for some y > 0 by a suitable choice of m (> 0). This
completes the proof of the theorem.
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