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ABSTRACT. When the potential is the Fourier transform of a totally finite complex-valued
measure, a formula for the one-parameter unitary group generated by the Schridinger operator
inL*(IR") is obtained entirely in terms of the basic field operators in a suitable Fock space by
means of quantum stochastic calculus.

l. INTRODUCTION

In {2], a simple theory of stochastic integrals and differentials with respect to the basic field
-operator processes was constructed and a quantum It8's formula for products of differentials

was obtained. Just as the classical theory of stochastic difterentials with respect to Brownian
motion leads to an expression for the contraction semigroups generated by a class of Hamiltonians,
we demonstrate here that the theory of quantum stochastic differentials leads. to o formula: for the
unitary group generated by the Hamiltonian when the potential is the Fouriér transformao¥s
totally-finite signed measure. The explicit expression that we obtain is entirely in ferms of Basfc
field operators in a suitable Fock space. There is a similar attempt by Combe et af. in [1] using

the classical Poisson processes but involving signed measures.

3 PRELIMINARIES

For any complex separable Hilbert space A let () denote the associated symmetric Fock space
over H and for any f € H, let

vN=0,£ 2" ref . . n" Ve 0 f ) (2.1

by the corresponding coherent vector. For any f € H and U € #(H), the unitary group of H.
define the unitary operator W(f. U) on I() by

WU, Uyig) = exp[—5 1A - (£ U] (Ug +1)- (.2

Then

I
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Wiy, U W(fa, Us) = expli Im<fy, Uy I W0G + UL, U Oy (23)

Thus, the map (f; U) = W(J, U) defines a projective unitary representation of the Buclidean group
H® ¥(H) which is the semidirect product of H with the unitary group % (H). This is called the
Wey! representation of the Euclidean group over H.

For any f € H, we introduce the annihilation and creation operators a(f), at(f), respectively,
which satisfy

d
a W)= e a (NVE)= 1 W+ Efle=o- (24
For any bounded operator T on H, we introduce the gauge operator A(T) on I'(H) satisfying
d
NTW(e) = - (e TD)le=o. (25)

We now consider the Hilbert space
H=1'[0,=) 8 & (26)

where & is a fixed complex separable Hilbert space. Let xg, ;) denote the indicator function of
the interval [0, 7] and let P}’ be the projection operator of multiplication by X(0,7] in L?[0,%).
Forany f€ 9, UE #(R) define

fi=P o1y Un=PPe U+l -PYel,
X
Wy, u(1) = W, U(r))

where the right-hand side of the third equation is the Weyl operator in I'(§) defined by (2.1)and

(2.2). In the terminology of [2], the family { W, y(1)} is a unitary operator.valued adapted prows
obeying the stochastic differential equation

Wou(0)=1;  dw,y= Wy, W(dAy_y +dA_ g1+ M}_%ﬂf([)ﬂﬁ d) (28)
where$) is viewed as the space of Rvalued square integrable functions on [0, «) and
Ay (=NEF @ (U-1)),  Ad0)=alf),  AJn)=d'()

are the gauge, annihilation and creation processes respectively,
Let x = Uy be a strongly continuous unitary representation of R” in &and let

8(x)=Uyu - u e

where u € R is fixed. Let m € R” be fixed. Define the unitary operators
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Wa(t) = explit(m - x + Im €u. Uytr3g )] Wixgo, 11 ® 8(x), U(1)) (2.10)
where 5,‘(1‘) is defined by the second equation in (2.7). Since Uy is a representation and (2.9) holds,
it follows from (2.3) that { Wx(¢), t 3 0, x € R"} is a commuting family of unitary operators such

that for every fixed ¢, the map x - Wy(r) is a unitary representation of R", Hence, there exists
1 commuting family of self-adjoint operators { X(r), 1 </<n, t >0} satisfying

Wy(f) = exp l ~i /:21 X/X,(t)], (2.11)

where x = Xy, ..., X, ). Viewed as observables, X(£) = (X, (1), ..., X,(1)) is a classical mixed Poisson
process with independent increments shifted by the function tm. It is to be noted that Wy and X
wre constructed by starting from a representation x - Uy of R” and a l-cocycle §(x) which is a
toboundary for the representation.

From (2.8) we conclude

Wy = Wx{dAy, | +dds_y) + Al +(im - x +(u, Xgu - u)g) dr).  (2.12)

3. THE MAIN RESULT

We introduce three unitary operator-valued adapted processes {J;(¢), t>0,i =1, 2, 3} in the
Hilbert space

X=L (R") @ (L2 [0, =) & R). G.1)
Let v € R be fixed. Let {Q,(r)} be the ‘Brownian motion’ defined by
0uf) =1 @ (alx(o,r) ® ¥) +a¥(xj0,1) ® 7)) (3.2)

I X. Then the operators 0y(f) can be extended canonically to a commuting tamily of self-adjoint
OPerators which are denoted by the same symbol. Then we define the processJ, by

J1(1) = exp[-iQy(1)], (3)
Mhich obeys the stochastic differential equation
L(0)=1; &, =/ (~idd] - iddy - 3 10lG do). (34

¥hete (1) ang AJ(r) are 10 be interpreted as | ® a(x(o,,| ® v)and | ® a'(xjo.1) ® v), respectively.

LHy(x) be a real-valued continuous function on R". Using the momentum operators
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p={®1. Pa. .. Pn) in L*(IR™) and the self-adjoint operator processes X(f) = (Xy (£), ..., X,,(1))
defined in T{Z? [0, =) ® R) by (2.10) and (2.11) we construct & process J, by putting

J,(;):exp[—i /'Ho(p el+1® X(s))ds]. (3.5)
0

Then J, is a unitary operator-valued process satisfying the equation
L(0)=1; dh=-iH(pel+leX()d. (36)

Let {P(E), E CIR" is a Borel set} be the canonical spectral measure of multiplication by the
indicator function x;- in L2(IR"). Define the unitary operator-valued process J; by

Ji()= Kdx) @ Wx(1) @7
R7

where Wy(t) is defined by (2.10). 1f we look upor Py given by (3.1) as I(L? [0, =) ® R-valued square

integrable functions on R", J;(2) is nothing but operator multiplication by Wy(t). It follows from
the canonical relations in L2(IR") that

Ho(p® 1 +1 @ X(V3(t)=J3()Ho(p ® 1). (3.8)
Further, (2.12) implies that

Wy =1, / P3x) @ (A, + Uy + ) +
R

+J;Fge 1) dt,

where q=(q,. g, .... g,) are the position operators in L2(R") and

Rx)=im-x+(u, Uyu - uq 39
Define the process J by
tol?
30)=ext| - s 610

where Ji(1),i=1,2, 3 are defined by (3.3), (3.5) and (3.7) respectively. Then we have

THEOREM 3.1./f Eo: #(L*(R") @ P(L2[0, ) ® R))+ B(L2(R")) is the vacuum condition?!
expectation map defined by

(01, Eg(T)p2) =gy ® L T(p, ® Q)
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forall gy, 93 € L*(R")and S is the Fock vacuum in T(L? [0, )@ R), then

EqoJ(t) = exp[~1t(Ho (p) + V(a))] @.11)
where

V(x)=(o—iu, Uy —udq - m-x, (3.12)
and J(t) is defined by (3.10).

Proof. We employ the stochastic calculus developed in [2]. Putting K( ) = exp[tlol?/2}J, 60

and using (3.4) and (3.6) we get

dK = —iK {dd, + dA} + Ho(p ® | + 1 ® X(1)) dr).

By quantum It6’s formula and (3.8) we have

dJ=d(KJJ)=(dK)’3 +K dJ; +dX - d-/g

where
(dKY5 = ~iJ(d4, +dAf +Ho(p @ 1) di),
Kdly=J /IR R (g, 1 + g oy + ) ¢
+JF(qg®1)dt,
dK- dJy =-iJ mnP(dx) @ ddw_, -1y~ /G(g ®1)dr
with

G(x)={v, 5(x))q =(v, Uxu —udgq.

Thus, in the differential of J the only term in which the differentials of gauge, annihilation and
Creation processes do not appear is

~UHo(p®)+iF(q®1)+G(q@ 1)) de,
Where
G(x) +iR(x) =(v, Uy —udg +ilu, Uyu —udq —m-x

=(v—iu, Ugu —ulg --m-x= Wx).



Hence. by the discussion in Section 8 of [2] we have
d(EeJ(1)) = - Ee /(1)) (Ho(p) + Vq)) dt
which proves (3.11). o

REMARK. By choosing m = 0 and the vectors . v and the representation x - Uy suitably we can
realise all potentials ¥ which are Fourier transforms of tutally finite signed measures.
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