STEP-DOWN PROCEDURE IN MULTIVARIATE ANALYSIS'
By J. Roy

University of North Carolina

1. Introduction and y. Test criteria for (i) multivariate analysis of
variance, (it) comparison of variance-covarinnce matrices, and (iii) multiple
independence of groups of varintes when the parent population is multivariate
normztl are usually derived either from the likelihood-ratio principle [6] or from the
~union-intersection” principle [2]. An alternative procedure, called the ‘‘step-
Jown” procedure, has been recently used by Roy and Bargmann 5] in devising
a test for problem (iii). In this paper the step-down procedure is upplied to
problems. (i) and (ii) in deriving new tests of significance and simultaneous
confitence-bounds on a number of “deviation-parameters.”

The essential point of the step-down procedure in multivariate analysis is
that the variates are supposed to be arranged in descending order of importance.
The hypothesis concerning the multivariate distribution is then decomposed into
a number of hypotheses—the first hypothesis concerning the marginal uni-
variate distribution of the first vnrinte, the second hypothesis concerning the
vonditional univariate distribution of the second variate given the first variate,
the third hypothesiz concerning the conditionul univariate distribution of the
third variate given the first two variates, and so on. For each of these component
hyvpotheses concerning univariate distributions, well known test procedures
with good properties are usually available, and these are made use of in testing
the compound hypothesis on the multivariate distribution. The compound
hypothesis is accepted if and only if each of the univarinte hypotheses are ac-
cepted. Tt so turns out that the component univariate tests are independent, if
the compound hypothesis is true. It is therefore possible to determine the level
of significance of the cotnpound test in terms of the levels of significance of the
vomponent univariate tests and to derive simultaneous confidence-bounds on
cerlain meaningful parametric [unctions on the lines of [3] and [4].

The step-down procedure obviously is not invariant under a permutation of
the variates and should be used only when the variates can be arranged on a
priori grounds. Some advantages of the step-down procedure are (i) the procedure
nzes widely known statisties like the variance-ratio, (ii) the test is carried out in
swecessive stages and if significance is established at n certain stage, one can
stop at that stage and no further computations are needed, and (iii) it leads to
simultaneous confidence-bounds on certain meaningful parametric functions.

1.1 Notations. The operator & upplied to a matrix of random variables is used
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to generate the matrix of expected values of the corresponding random variables.
The form of a matrix is denoted by 2 subscript; thus A, x » indicates that the
matrix A has n rows and m columns. The maximum latent root of a square
matrix B is denoted by Amax(B). leen a vector a = (ay, 81, '+, @) and a
subset T of the natural numbers 1, 2, ---, ¢, say T = (ji, ja, * -+, ju) Where
#1 <jr < --+ ju, the notation Tla] wﬂl be used to denote the positive quantity:

Tla} = + {a}, + a}, + -+- + a}, )%

T{a) will be called the T-norm of a. Similarly, given a matrix B,y we shall
write B(n for the u X u submatrix formed by taking the jith, jsth, - -+, juth
rows and columns of B. We shall call Br, the T-submatrix of B.

2, Step-down procedure:in multivariate analysis of variance.

2.1 General linear hypothesis in univariale lysis. Let the el ts of Yax1
be one-dimensional random variables distributed independently and normally
with the same variance o* and expectations given by
(6] &y = A8 + X8

where elements of 8. x 1 2nd B, x 1 7€ unknown parameters; Aa x w and X, x o are
matrices of known constants with rank (4) = r and rank (4:X) = r + g, with

n>(r+¢.
A set of ¢ linearly independent linear functions ¢, x 1 = Bi x »f, Where B is a
given matrix of rank ¢, is said to be estimable if for each el t, of ¢ there exists

an unbingsed estimate linear in y, for all values of  and 8. If ¢ is estimable,
there exists an estimator ¢, x 1 of ¢, the elements of which are linear in y and
minimum variance unbiassed estimators of the correspondmg elements in ¢.
Denote the variance-covariance matrix of by C-o*,where C x « isa positive-defi-
nite matrix. Let 8'/(n — ¢ — r) denote theusual errormea.n square with(n—g—r)
degrees of freedom giving an unbiassed estimator of o". Then it is well known
that the statistics u = (¢ — ¢)’C"(¢ — ¢)/0" and v = &'/s* are distributed
independently aschi-squareswith £ and (n — g — r) degrees of freedom respectively,
80 that
(2) = (& — ¢)’C_l($ - ¢)/‘
$/n—q—71)

is distributed as a variance-ratio with ¢ and (n — ¢ — r) degrees of freedom.

Let o be a preassigned constant, 0 < « < 1, and f the upper 108« per cent
point of the variance-ratio distribution with ¢and (n — ¢ — r) degrees of freedom.
Setting £' = tf/(n — ¢ — r) we then have
3) @ —¢)CH(d—¢) S0P

with probability (1 — «).
Now, the left-hand side of (3) is a positive definite quadratic form in (¢ — )
and consequently, we have

@ (3 —oYC($ — ) 2 (6 — 8)'(d — )/ Amux(0).
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We thus have
(3) (3 — &) (¢ — ¢) S 18" Aaa(C)
with probability not less thun (1 — «).

Now, let T be any subset of the natural numbers 1, 2, - -+ , ¢ and consider the
T-norms T[] of ¢ and T[é] of é. Then (3) irplies that
(6) T(¢) — s Muax(Cin) = Tl$) S Tid) + 8 M%(Cin)
for all subsets T of (1,2, - - -, £), where Cr is the T-submatrix of C. Thestatement
(6) thus provides simultancous confidence-bounds on the parameters T(¢] for ali
T with probability not less than (1 — a). We note that there are in all (2' — 1)
parnmeters of the type T[¢] and these in a sense measure the deviations from
the hypothesis 3C, that ¢ = 0. The analysis of variance test for 3Co at level of
significance a, of course, is given by the rule

. $Cd/t
pt 3o if =5
@ Fn—q-n=1
otherwise reject 3Co.

However, simultaneous confidence-bounds of the type (6) are more interesting
than the test (7) itself, because the direction of departure from the null hypothesis
is indicated.

22 Cuslomary lests in mullivariale analysis of variance. We have 2 matrix
Y. x» of random variables, such that the rows are distributed independently,
each row having a p-variate normal distribution with the same variance-covar-
iance matrix I, x , which is positive-definite. The expected values are given by

8) &Y = A6,

where An x » is & matrix of known constants of rank r, r £ (n — p), and Om x »
is n matrix of unknown parameters. As before, a set of linear parametric functions
% » = By x =0 is said to be estimable if, for all ©, there exist unbiassed estimates
of ® linear in Y. If ® is estimable, customary tests for the hypothesis

3o:® =0
are based on two p X p matrices of random variables
(9) S,=YEY and S = Y'HY,

called respectively the sum of products matrix due to error and the sum of
products matrix due to hypothesis. Here E and H are n X n symmetric idempo-
tent matrices with non-stochastic elements, E of rank (n — r) and H of rank ¢,
E being a function of 4, and H of both A and B. The likelihood-ratio test (6] is

; 1S,
(10) sccept 3o if L = w5 > &
otherwise reject ¥Co,



1180 J. ROY

where ¢ is a preassigned constant depending on the level of significance. The test,
based on the largest latent root [3) is

aceept Ko if Amaa(Sh S77) < d,
otherwise reject 3o ,

(11)

where d is a constant depending on the lavel of significance. Simultaneous con-
fidence-bounds on certain meaningful parametric functions have been derived
by the largest (or the largest-smallest roots) procedure, [3] [4], whereas no such
bounds are available as of now from the likelihood-ratio procedure.

2.3 The step-down procedure. We shall denote the ith columns of the matrices ¥
and © in section 2.2 by y; and 0 respectively and write Y; = [y, 72 - - yi and
O, = [6, 6, --- 6. Further, we shall denote the top left-hand ¢z X 7 submatrix
of £ = ((0¢;)) by Zs.

Then, under the condition that Y is fixed, the n elements of the vector y..
are distributed independently and normally each with the same variance ain
and expectations given by

(12) 8Yivr = Anin + Y8,
where 8, is a vector of the form ¢ X | given by
a1,541
(13) Bi=z| ™, m=0,
LR

amd 7.4 is & vector of the form m X 1 given by

14) N4l = O — Oi;
and
PR DT |
(15) Tip = =’
with the understanding that |Zo| = 1sothate} = oy, = 0,1,2,---, (p — 1).

The elements of the vectors 8;, 7:41 may then be regarded as unknown param-
eters. We shall call 8; the ith order step-down regression coefficient and o} 4, the
ith order step-down residual variance.

Let us now consider linear functions

(18) i = Bn; GE=12"-",p

If Y, is fixed, (12) is of the same form as (1). Let us now, with an easily under-
stood notation similar to that used in Section 2.1, construct the statistics

(17) F( = §6_«— ¢:)’C'T’(é.- - ‘#‘i)'/t

s/ —r —i+1) =127k



MULTIVARIATE ANALYSI8 1181

Obviously, when Y., is fixed, the statistic F is distributed as o variance ratio
with2and (n — r — 7 4 1) degrees of freedom (i = 2, 3, - -+, p). Finally, we note
that in its functional form F; involvesonly Y, (i = 1,2, --- , p and that the
conditional distribution of I, given Y;_; does notinvolve Y, (¢ = 2,3, --- , p)
and hence Fi_y, -+, Fi. Also, I, is murginally distributed as o variance-ratio
with £ and (n — r) degrees of frcedom. Therefore the statisties /, Fo, -+- | F,
are independent. This can he verified in a straight-forward manner by using the
imnsformation to rectangular coordinates as in (5) or any other set of step-down
variates, or even otherwise.

For a preassigned constunt a;, 0 < a; < 1, let f; denote the upper 100a; per
cent point of the varianee-ratio distribution with L and (n — r — 7 + 1) degrees
of freedom, Then the probability 2 that simultaneously

(18) risfi, =12 ,p,
ix given by
»

() P=]10 - a).
‘Therefore, for any subset 7° uf the natural numbers 1, 2, - - -, ¢ writing as in (6),
716 and T[] for the T-norms of ¢, nud é; respectively, and setting
(20} C=t/n—r—7i+1)
and writing Cicn for the 7-submatrix of C; , we have the simultaneous confidence
hounds
21) T(6.) — Lisi Ami2(Cimy) S Tlod) = T(d) + lisi A2 (Ciemy)
for all subsets T of (1,2, --- ,Hand z = 1,2, --- | p with probability greater
than P.

‘T'o derive a test of the bypothesis 3¢ that & = 0, we note that 3¢, is true if

il only if the hypothesis 3C; that ¢; = 0 holds forall ¢ = 1,2, .-+, p. Using
the result (17), we set up the following procedure for testing 3Co :

. oo ST
accept 3Co if uy = = —TFD

otherwise reject 3¢, .

s fi forall? = 1,2, -, p;
(22)

Obviously, the level of signilicance for this test is 1 — P where P is given by
(19). The arbitrariness in delermining the f’s when the level of significance is
preassigned may be removed by stipulating that &y = a2 = -+« = a,. From
the fact that the variance-ratio test (7) is uniformly unbiassed, it can be seen
;-fter a little consideration, that the test procedure (22) is also uniformly un-
hinssed.

To carry out the test one should first compute uy . If wy > fi, 3o is rejected
and no further computations are needed. If 1, < fy , the next step is to compute
¥ 1T w2 > fy, 3Co is rejected and no further computations are needed. If us < f,
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one proceeds to compute u; and so on. This way one need compute u; if and only
ifu; < fyforj =1,2,---,% — 1. Much computational labor is saved thereby.

It is well known that the likelihood-ratio statistic L given by (10) can be
expressed as

& n—r—1+41)

(23) L=y e—r—i+u
and this has been utilized [1] to obtain the moments of L when 3¢, is true. How-
ever, the step-down procedure based on the individual x/’s rather than on a
single function L, is advantageous from the point of view of (i) setting up simul-
tancous confidence bounds and (ii) saving computational labor, speeially in the
situation indicated in the introduction.

3. Step-down procedure for variance-covariance matrices. Let Sp 5, =
((s:;)) be 2 symmetric matrix of random variables, distributed in Wishart’s form
with n degrees of freedom, n > p, o that S/n provides an unbiassed estimate for
the variance-covariance matrix = of u p-variate normal population. In the same
way as in Section 2.3, we shall write S; for the X ¢ top left-hand submatrix
of S and let

81,841

@24) bi= ST, w=0o,
8i,i41,

(25) R

fori=1,2, ---,p— 1. Let 8y and o} be defined by (13) and (13) for i =
1,2, --+, p. Then it is well known that when S; is fixed, the distribution of b;
is independent of the distribution of sis ; the distribution of b; is i-variate
normal with expectation §; and variance-covariance matrix oi 87!, and
8i41/oim has the chi-square distribution with (» — 4) degrees of freedom,
i=1,2 -, (p — 1). Finally s}/s} has the chi-square distribution with =
degrees of freedom.

When more than one variance-covariance matrix is involved, we shall dis-
tinguish them by a superseript under parentheses. Thus with a number of popu-
lation variance-covariance matrices =% and the corresponding Wishart matrices
8, the quantities 8, o?, b, &{?, ete., will be defined in the same way as in
(13), (15), (24), and (25) forj = 1,2, -, ete.

3.1 One variance-covariance malrir. On the basis of o matrix S distributed in
Wishart’s form with n degrees of freedom, with S/n providing an unbiassed
estimate for Z, it is possible to set up simultaneous confidence-bounds on param-
eters which are functions of the elements of £ by the step-down procedure as
follows.

When S; is fixed, the statistics 1 = (b; — 8:)’'Si (by — B:)/aiw and v =



MULTIVARIATB ANALYSIS 1183

sia/oin are distributed independently as chi-squares, u with i degrees of

freedom and v with n — ¢ degrees of freedom. Therefore, given pre-nssigned

positive constants a; , €iv1 and d.41 , where ¢y < diyr , the probability P, that
(bi — BY'Si(bi — B)/8}1 S ai,

26}
¢ cin S Sin/oty S din

holds for fixed S;, is a constant depending only on =, ?, @i, €:41, and diy, . As
a matter of fact,

di vy
(27) Py = _/: Gi(a} D)gu_i(z) dz E=12 --,p—1),
where
(29) 6. = [ 00) a&
and
e—xxh—l
(20) g.(x) = T

Also, given prenssigned positive constants by, e(by, < ¢;), the marginal prob-
ability P that

(30) o S si/ei = d,
is given by

@31 P= [ o) de

By an argument similar to that which follows (17) in section 2.3, we obtain
the probability P that simultaneously

¢ S 8ifat S ds (i=12--,p),

(32)
(i — B Silbi — B/t =al (G=1,2,---,p—1)
as
P
P=1IP.

Now, as in Section 2.3, for a given subset T of the integers 1, 2, - -+ | 4, writing
T.[8] and T.[bJ) for the T:-norms of 8; and b; respectively, and writing Us(r,; for
the 7"-submatrix of S7°,

si/d; s ol S sl/c; fori =1,2,---,p,

(33)
Tdb) — asidmmx(Uirn) S TidB) S Tdb) + a8 Nt (Uiiry)
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forall subsets 7'vof (1,2, -- ,2)and 4 = 1,2, - - -, p — 1. The statement (33) thus
provides simultaneous confidence-bounds on p parameters of the type o7 and
(2" — p) parameters of the form 7',(8,] with probability not less than P.

It is to be noted that to set up simultaneous confidence bounds of the type
(32), one has to evaluate the integral (27) which is not usually available in
tabulated form. Another meaningful procedure, which, incidentally, avoids this
difficulty, is to set up separate sets of simultancous confidence bounds: one on
o}, -, 05, using the chi-square distribution for si/e?, with a preassigned
probability and another set on the step-down regressions 8: , using the variance-
ratio distribution for (b; — 8.)'Si(b: — 8:)/si41, und with a probability not
less than a preassigned level.

We suggest a slightly different procedure for testing the hypothesis 3¢, that =
has a specified value Zo. This hypothesis may be reformulated in terms of the
step-down regression-coefficients and residual variances as follows: the hypothe-
sis 30, is true if and only if each of the hypotheses

3y 10t = ot t=12---,p,
32 :8: = Buo, i=12:,p—1,

is true, where o2 , Bi0 are derived from Z, the same way as o} , 8; are derived from
2. The test procedure suggested is:

accept, 3o if
¢ S 8ok S di (t=12---,p),
(be — B)'Si(b: — ﬁ.’o)/02+1.o < E=12---,p—1);

otherwise reject 3¢ .

(34)

The level of significance « for this procedure is given by
P p=1
(35) a=1- {II P:-}{H P’.-’} )
(o) [T
where
’ a4
Py = j ga—ini(2) dr,
et
P} = Giled).
For a given g, the ¢; , d; , e/'s are not uniquely determined. The arbitrariness may
be removed, for instance, by the further stipulation that
Pl=Py= =P, =P =P, =-.- = Py, = B(say)

and that (¢;, d) are the locally unbiassed partitioning of the 100 (1 — 8) per
cent critical region based on the chi-square distribution with n — 7 + 1 degrees
of freedom. With this choice of the constants ¢, d:, &;, the test procedure i
locally unbiassed.

3.2 Two variance-covariance matrices. With two population variance-covarinnee
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matrices £, Z? and two matrices of random variables S, S distributed
independently in Wishart’s form with n, and n, degrees of freedom respectively,
<o that $®/n; provides an unbiassed estimate for %, we can use the step-down
procedure for testing the hypothesis 3¢, that the two variance-covariance matrices
are identical or, in symbols,

¥ :2W = 2

and also set up simultaneous confidence bounds for parameters measuring
devintions from 3Co .

Let us introduce the two sets of step-down regression-coefficients and residual
varianees: 8, 8, b2, and s§”. The hypothesis 3¢ may be reformulated in
terms of the step-down parameters as follows: 3¢ is true if and only if the hy-
potheses

3 te = o, i=1,2,-"-,p,
(36) e @ .

I 1B =B, i=12---,p—1,
are simultancously true. We may take p; = of”/a$® and Ti[5,) ns measures of
deviation from 3¢, where & = B — 8%, T is a subset of (1,2, ---, 1) and

T.18:] denotes the T-norm of 8; . In this case, it has not been possible to set-up
confidence bounds on all these parameters simultancously. However, one may
proceed ax fullows. Given pre-assigned positive constants ¢, di ; ¢; < di, and
writing

_ m - i+ 1\
37) ri = (1‘:_7111) 35’“/3?):
we find the probability that
(38) ri/d: S 6% < ri/e:, i=12-,p

should hold simultaneously is given by

P
(39) p=1IIr.,
where

2 )
(40) Po= [ arumitie)

in which F7(2) stands for the distribution-function of the variance-ratio statistic
with m degrees of freedom for the numerator and n degrees of freedom for the
denominator. Therefore, (38) provides simultaneous confidence-bounds on p;
(i=1,2, ..., p) with probability P.

Let us now write 8, = b{" — b and note that if S’ and S are fixed, &; is
distributed in an {-variate normal form with expected value §; and variance-
covarianee matrix

(NSO + oS
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distributed independently of s and &3, If 3¢y, is true, we have oY, =
ol = ai4r, say. In that case, if S{" and S{? are fixed, §; is dlstnbu',ed in an
i-varinte normal form with expected value 8; and dispersion matrix C;.o}+ where

@ Co= S8 4 (507
Also, 8, is distributed independently of u; and u; where
(42) = (si)/otn G=12

and u; is distributed as a chi-squ.n.re with (n; — 7) degrees of freedom. Conse-
quently, writing

(43) sim = () + (s
we find that if 3¢; .., is true and S;'” are fixed ( = 1, 2) the statistics
(44) (5; — 8YCTEi — 8 /st
and
AR A
Ny — 2 (841
(45) m — i( 5+)l>

are dixtributed independently as variance-ratios, (44) with ¢ and (n, + no — 21)
degrees of freedom, and (43) with (n, — ¢) and (n2 — 7) degrees of freedom.
Therefore, given pre-assigned positive quantities e; the probability P’ that

(46) i = 8)CT' (G —8) /st S €}, i=1,2-,p—1

should hold simultaneously is equal to

p—1
(47) P = H, P;
where
(48) P} = Fiyinyai(ed)

provided 3¢, is true for ¢ = 2, 3, <+ , p. From (45), we get the following simul-
taneous confidence-bounds (49) on the T:i-norms of 5; where T, is a subset of
(1, 2, -- -, i) (under the highly restrictive condition that 3¢, is true) for ¢ = 2,
3, -, P
(49) Tifb] — esa\i(Cirpy) = Tdsd s T8 + e \max(Cicryy)
with probability not less than P’, where Cy(r,, is the T:-submatrix of C; .
To test the hypothesis 3Co , the step-down procedure suggested is:
accept 3o if
Gi— 8YCTGi—8)/tn s el, i=12---,p— 1,
(50) c‘s"“_""“‘ <
m—1+ 1sP®
and, otherwise, reject 3¢ ,

s di, i=12--,p
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where e}, ¢i, di(c; < di) are pre-assigned positive constants. The level of sig-
nificance a is given by

P =)
(s1) a =1 = {f1P}{IT 74,

(=1 -
where P is given by (40) and P; by (48). For a pre-assigned value of a, the
constants ¢;, d;, ¢! are uniquely determined if we stipulate that

Pi=Py=..-=P,=Pi=Py= .- =P,y =8, sy,

and that (c;, d;) gives an unbinssed partitioning of the 100(1 — B8) per cent
eritical region of the variance-ratio distribution with 7 and n, + 12 — 2¢ degrees
of freedom. With this choice the step-down test is locally unbiassed.
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