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1. Introduction. The problems concerned with the characterizations of the
distribution laws of random variables when they arc connected by a linear
structural relation seem to originate from the stimulating problem first pro-
posed by Ragnar Frisch before the Oxford Conference of the LEconometric
Society in 1936. His problem may be stated as follows. Let zo and z, be two
observable random variables connected by a linear structural set up,

Zo = aot + 70,
= @ + m,

where £, 70 and m are mutually independent random variables, and @, and &,
are some unknown constants. What are the conditions on the distribution laws
of the random variables §, 7o and m under which the regression of z on-z; and
also that of z, on z, is linear, irrespective of the values of the constants a, and a,?

A partial solution to the problem of Ragnar Irisch was given by Allen [1]
by proving that if the first two moments of 7 and all the moments of ¢ and 5,
exist, then a necessary and sufficient condition for the regression of zy on z;
to be linear irrespective of the values of the constants as and a; is that both £ and
m are normally distributed. A more general theorem was proved later independ-
ently by Rao [10], [11] and Fix [4] as a complete solution to the problem of Ragnar
Frisch. Rao-Fix’s theorem may be stated as follows: Let £, o and n be three
mutually independent proper random variables each having a finite expectation.
Then & necessary and sufficient condition for the regression of zo = aot + no
on 2, = aif + m; to be linear for some a; = 0 and for all @, contained in a
closed interval is that both £ and n should belong to a class of stable laws with
finite expectation.

Recently the author (6] has obtained a generalization of Rao-Fix’s theorem
in & new direction, replacing the condition of stochastic independence of o
and m by the weaker assumption that the regression of 5o on 5, is linear. The
author (5] has also obtained a characterization of the normal law from the con-
sequence of the linearity of multiple regression of one random variable on several
others, when the variables are connected by a linear structural relation as in
the case of the bifactor theory of Spearman. Several analogous characterization
problems connected with linear structural relations have also been solved re-
cently by Ferguson [3). In the present paper we shall consider some generaliza-
tions of these problems in various directions. In Section 4, some theorems on
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the dependent error variables (Theorems 4.1 and 4.2) are deduced and a general
theorem on a higher dimensional linear structure is proved in the subsequent
section (Theorem 5.1).

2. Definitions and assumptions. Throughout the present investigation we
shall confine our attention to a set of observable random varigbles zg, 7, , - - -
r, having the following lincar structural set up:

xo = anbs + ankr + -+ aopks + 0,
o =aukh +apbh+ - ok + 0,

@

Zn = Gmbi + Gz + -0 + Gapky + 18,
where &, &, -+, & arc usually called the latent or hypothetical variables and
Mo, m, -, 7 the error variables of the linear structural relation, and g;;’s

are o certain fixed set of constants.
Now using the notations of vectors and matrices, the equation (2.1) may be
rewritten as
(22) (20:2) = E(oa:A’) + (mo%n)
where
= (11,21, -, %), E=(h, &, 5)
o= (6a,6a, " ,60p), 1= C(n,m, ,m)

and A = (8ij)im - omjmrz.-p 80d ag and A’ denote respectively the transposes
of ap and A.

We shall now make the following assumptions on the distributions of the ran-
dom variabies concerned.

AssyumerioN 1. The conditional distribution of zo for fixed z;, zp, -+, z.
is assumed to exist, wherever needed.

AssumprioN 2. The set of random variables & , £, - - -, , is distributed in-
dependently of the set of error variables no, m, -~ -, #a -

Assumprion 3. The latent variables & , 2, - -+, £ are mutually independent
proper random variables each having a finite expectation (which is assumed to
be zero without any loss of generality in the proof) as well as a finite variance

v,,] =1, 2 ++, p. Similarly the error variables no, m, -+, 7. ore mutually
dent (not rily proper) random variables each having a ﬁmte

expecumon (which is also assumed to be zero) as well as a finite variance 8,
k=0,1,- ,n Let the dispersion matrices of the random vectors ¢ and 5
be denoted by Z and A respectively such that

2 2

7 5

ol 5

(2.3) z= and A=
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Now it should be noted that some or all of the elements of the matrix A may
be zero.

But i Section 4, where some results concerned with dependent error variables
are obtained for the special case of the above structure with p = L and n 2 2,
it is assumed that all the random variables are proper and have only finite expec-

tations and further the multiple regression of 7o on m, 72, - -+, 7. is lincar.
The role of these assumptions is to ensure the existence of the gxpectation and
the variance of the conditional distribution of z, for fixed z,, z», - - - , 2. which

we denote by E(zo| %1, Zs, *++ , z») and V(20| 21, 22, - - -, T.) respectively.

3. Some lemmas. We give below some lemmas which arc useful in proving
the th in the suk i

LemMa 3.1. Let 2o, 21, * -+ , Z, be a set of n + 1 proper random variables each
having a finite expectation (which is assumed to be zero without any loss of general-
ity) as well as a finite variance. Then the necessary and sufficient condilions for

a1 E(xo| %1, 22, -+, Zn) = Bit1 + Btz + -+ A4 Bata,
. V(rolz,,:h,--',r,.)=o§ ae.,
are that the equations
av’(‘o,ln“',%)] _ S 300, -t
32) At gm0 i;ﬁi a;
’ 3olto, ty -+ oy ) _ 2 S Fe(0,s, "+, ta)
R | e e h, ) +,—§.”""——az,- o

are lobe satisfied forallrealty by, « -+ , tn wherep(to 01, + <+, tn) and (0, by, -+ , ta)
represent respectively the characteristic functions of the distributions of (xo,
Ty, Ta) and (@, T2, -+ , ) and Jurther By, B, -+ , Ba and 03 > 0 are
arbitrary constants.

When the random variables zo, 1, - - , 2 satisfy the relations in (3.1), we
say that the multiple regression of Zo on 21, %2, * +- , Z» is linear and that the
conditional distribution of zo for fixed 1, za, :+-, . is homoscedastic.

Proor: To prove that the conditions are necessary, we can easily verify that

344(!«,!+k“',i-)]'ﬂ = E{iE(Zn[.’C],I;, v, Tn) €XP (‘i g 1:'1;‘)}

- ;Elﬂ;E{it, e (z ,.Z. t,x,-)}

=3 g 200, s )
—i_2|ﬂ, T
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Similazrly
M] - —E{E(zllz.,:n,-~-,z.)exp(iit;z,)}
8 gmd) i=1

aty
- sf(a+ Fomon) o)

(0, 4, -, )
atj ol

To prove the sufficiency of the conditions, we note simply that (3.2) may be
rewritten as

= —aap(0 b, o, t) + 2 Bifs
k=1

E[{E(zolzx,cn, e, Za) — gﬂ;zl}ﬂp(ighzl)] =0
and
E[{E(zﬂz.,n, e, Ta) — g — ,2: B/ﬂnzirn} exp(i,z:;lﬂiﬂ =0.

‘Then from the uniqueness theorem of Fourier transforms of functions of
bounded variation, (3.1) follows immediately.

For the special case of 7 = 1, this reduces to the lemma proved independently
by Rao [9] and Rothschild and Mourier [12].

LeEmma 3.2. Let 2o, 21, -+ , 2 be a 8¢l of n + 1 proper random variables each

having a finite expectation (which is d to be zere). Then the necessary and
sufficient condition for
E(zg |z, 21, -, 2a) = Bita + fata + -+« -+ fnza a0
18 that the equation
aw(h,h,"',l»)] _ v, 00(0,4,- )
ol I %ﬂ’ 3ty
8 to be satisfied for all real values of &, ta, -+, ta.

This lemma has been already proved independently by the author (5] and
Ferguson [3].

LeMyMa 3.3, Let 2y, 22, -+ , Za D& 7 independent proper random variables and
let further (1) denote the characteristic function of the distribulion of x5, § = 1,2,

, 0. If now the funclions ¢(t) satisfy the equation

IL5 e} = &,

for all real t in a certain neighbourhood of the origin | t| < 8(8 > 0), where a;'s
are some positive numbers and Q(t) a quadratic polynomial in t, then each z; follows
normal distribution.!

1The proof of this lemma is given in A. A. Zinger and Yu. V. Linnik [13].
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This lemma may be regarded as an analytical extension of Cramér’s theorem
on the normal law and has been proved by Linnik [8]. The proof of this lemma
has been given by the author in (7).

4. Some results for the case of dependent error variables. We shall now ob-
tain some results connected with dependent error variables for the special case
of the above linear structure when p = 1 and n 2 2.

THEOREM 4.1. Let the observable random variables £,(j = 0, 1, - - - , n) have the
linear structural set-up z; = a;f + n; where the ay's are fixed nonzero constants
and further £ and mo, m, -+, na are proper random variables each having @ finite

-peclation (which s d to be zero withoul any loss of generality) such thal

() & s distributed independently of (90, m, -, 1)

(i) ECmo|m, m, =, ma) = 2= Bjns, the B)'s being a set of constants,
then the multiple regression of zo on =, Ty, *++ , 2 18 always linear, whenever lhe
relation as = 35 a,B; is salisfied.

Proor. Let p(to, &, -+, ta); wolo, &, * ++ , ta) and P(t) represent the charac-
teristic functions of the distributions of (z0, 1, - =+, Za); (70, m, -+ , 7a) and
£ respectively.

Then we can write

o, ta, -+ tn) = Blexp (270 tig))]

= oat)enllo, b, - 4 ta).

Again since it is given that E(mo|m, m, -++, m) = i~ Bin;, by applying
Lemma 3.2, we get easily

(4.1)

deolla, by, ---,t..)] 5 + 3¢o(0, b, sy t)
wn R T AT

Now differentiating both sides of the equation (4.1) with respect to & and then
putting & = O and finally using the equation (4.2), we have

aw(l«_t_w] - ad’ (z a,.,,) O, b, ) 12)
aly gm0 =t
&, LJ 0,4, ",
+ Zﬁi*(,z “!‘i)——aW( : laz- [")-
i=1 =1 )
Again putting & = 0 on both sides of the equation (4.1) and then differentiat-
ing both sides with respect to {;,j = 1,2, --- n we get

3p(0, by, v, ta) _ s (Z, a,-t,) o0, b, ey ta)
=

at;
+¢(Za,-t;>a"°(0’t" i ta) 1,2,
=1 i

Now it is given that @ = Y j—1 a,8;; hence substituting this value of a; in

(43)

(4.4)
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(4.3) and finally comparing with (4.4), it is easy to obtain

3w(k,lx,"',‘-)] ¢ 3p(0, t1, -+, ba)
DS 1m0 Eﬂ' ay

Then the proof follows at once using Lemma 3.2 to the equation (4.5).

THEOREM 4.2. With the same nalalwn.a and assumptions as used in Theorem 4.1
together with the additional

(iii) the variables m, s, ", 11,. are mulually independent.

(iv) the constanis a; salisfy the relalion ag Z;‘., a8},
the necessary and sufficient condition for the mulliple regression of zo on 1y, Za,

<, ZTa to be linear (n 2 2) is that £ and each of m, m, -++, 1. 18 normally
disiribuled.

Proor.

Necessity. Let us suppose that E(za| 2, Z1, - -, Ta) = 2 =184, . Then
using Lemma 3.2, we have

(4.5)

della, by, - t.)] 90,4, -+, t)
4.6, —_— _— = =
( ) dly e l-zl ﬁ “"
Next using the equations (4.3), (4.4) and (4.6) together and noting that o,
M, *--, 1. are mutually independent random variables, we get after a little

algebraic simplification,
(a0 — 018839 (1 665 T e it
= 201 85 — 825 ast)eilts) - Tluws walts),

where ¢;(I;) represents the characteristic function of the distribution of »;;
i=1,2-,n

It can be easily shown that under the conditions of the theorem, neither
@ — 2.-1a;8; nor any of §; — ;7 = 1,2, -+ n in the equation (4.7) can be
equal to zero. Putting & = 0 for all k > j in (4.7) and noting that ¢j(¢)]—0 = 0
forj =1,2, .-+, n we get

(48) (a0 — L~ a )P Gitdes(ts) = (B — BR@Ii(E), 5 =1,2, -+,

YLet us now suppose that 8; — 8; = 0 for some j, but ¢y — .oy a;8; # 0.
In this case the equation (4.8) gives

(4.9) ¥'(ait)eilts) = 0.

But since the characteristic function ¢(t) is continuous for all real ¢ and equal
to unity at the origin, in a suitably chosen neighbourhood of the origin, we have
always p;(t;) # 0. Thus it follows that for all {; in that neighbourhood of the
origin ®'(a;t;) = 0, leading to the conclusion that the distribution of £ is im-
proper,

Proceeding in the same way it can be shown that if 8; — 8; 0 for any j,
whereas a0 — Y j1a8; = 0, the distribution of the corresponding v; is im-

7%
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proper. Thus both these cases contradict the conditions of the theorem. Now
the only alternative left is when aq — /-1 @;8; and each of 8; — 8 = 1, 2,
..., n vanish simultaneously. But in this case we have as = ), a8}, which
is also contrary to the conditions of the theorem.

Now restricting the values of &, &, - -+, ¢, to & suitably chosen neighbour-
hood of the origin such that each of the factors occurring in the product

S ast) [T it

is different from zero, we divide both sides of the equation (4.7) by this ex-
pression and thus obtain,

(4.10) (@ — 280 (Zhvaits) = 25t (85 — B)Oj(ty)
where
8(t) =n®d(®) and 6,0 =1Ineit), j=1,2 - ,n.

Next putting & = & = --- = f, = 0 in (4.10), we get

@11) (a0 = Xi10,8)8 (@t + asty)
= (B — BUBI(L) + (B2 — BD)O3(k).
Then putting successively ¢, = 0 and &, = 0 in (4.11) and noting that
8% — X a8 # 0,

we get easily
(4.12) F(at + aty) = ¢(ats) + ' (aske).

But #'(t) being continuous in {, it at once follows from the equation (4.12)
that 0'(t) is a linear function of ¢{ and hence 8(¢) is a quadratic polynomial in ¢,
thus establishing the normality of the variable £. Then the normality of the re-
maining variables 9, ;7 = 1, 2, - -+, n follows simply from the equation (4.8).

Sufficiency. Let o denote the variance of the random variable £ and &} that
for;5=0,1,2,---,n.

Under the conditions of the theorem, we get on using the equation (4.3)

3plte, i, --~,t»)]
om0

(.13) %

= —[g (a0 + 5;51,')‘;'] ¢ (; a;t,) EW(Q)
where
B = ™" and sty = €Y

i=12-,n
Similarly we get, on using the equation (4.4)
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w1 2Ob ) —[a, (.2.3. a.t.) ¢+ 8 t,] 2 (% ait) [Tow,

i=1,2
Thus using (4.13) and (4.14) together, we may write
dplto, b, ~--.L.)] o, (0., k)
(4.18) o - i; 8 i ,

where the constants 8; are to be determined from the system of equations
Bifo0,5") + - -+ + Bilaio" + &) + -+ + Bafauaic?)

=aaw’ + 8%, j=1,2n
The proof follows at once using Lemma 3.2 to the equation (4.15).

The following corollary can be easily deduced.

CoROLLARY 4.1. Let the observable random variables z4j = 0, 1, --- , n) have
the linear alructural set up z; = a;t + n;, where the a;'s are @ sel of non-zero con-
slants and the ¥ and 9;'s are mulually independent proper random variables each
having a finite expeclation. Then the y and sufficient condition for the
multiple regression of zo on T, 21, - -+, 2a Lo be linear (when'n 2= 2) is that £
and m, 2, * -+, N are normally distribuled.

This corollary has been proved earlier independently by the author {5 and
Ferguson (3].

5. A theorem in genera] linear structure. We shall now consider a theorem
on characterisation connected with the general linear structural set up already
defined by the equation (2.1) in Section 2. In this direction, Ferguson [3] has
obtained some necessary and sufficient conditions for the multiple regression
of zo on 21, 21, -+ + , Za to be linear irrespective of the values of the constants
a;; . In the case of the higher dimensional structure, no result has yet been ob-
tained, assuming the regression to be linear for just one set of values of the
constants a;; . We shall now show that it is possible to obtain some result for
the case of the general linear structural relation for only one set of the values
of the constants a;; (with some restrictions upon their values) under the addi-
tional ption that the litional distribution of zo given z,, 22, -,
Z» i8 homoscedastic and all the random variables concerned have finite vari-
ances.

We are now in & position to prove the following theorem:

TrEOREM 5.1. In the general linear siructural set up (2.1) and under the As-
sumplions 1, 2 and 3, if the conslants a./’s are subject lo the following restrictions

(t) the vector a; = (i, Gas, -~ , Gnjs) has al least one non-zero element for
eachj=12"--,p
(ii) the matriz (AZA’ 4+ A) is non-singulor, that is the delerminant

JAZA’ + A| = 0,
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(iii) each of the elements of the vectors aceZA’(AZA’ + A)™ and
wll — ZA(AZA’ + A)'A)

s different from zero,
then the necessary and sufficient condition for

B(xolzs, 22, **+ , Za) = Bz + Baxa + -+ + Baza,
Vizdlzi, 2, -, 2a) = o3,

18 that each of &, &, -+, &p and each of the proper random variables amongst
M, M, e, 1 are normally distribuled.

Proor.

Necessity. Let (b, t1, -+ - , ta) denote the characteristic function of the distri-
bution of (2, 21, -+, Za); $;(¢) that for the distribution of £;(j = 1,2, --- , p)
and @i(¢) that for the distribution of m(k = 0, 1,2, --- , n).

Then it is easy to obtain
(5.0) ello, by -y ta) = Efexp (i 000 hz)]

= Hf—x &,( ZLU anste) [ Lo onte)-

Now under the assumptions of the theorem and applying the equation (3.2)
in Lemma 3.1 to (5.1) above, we get after some laborious algebraic computa-
tions, proceeding in the same way as in Section 4,

(5.2) or (@os — one Beaa) 0 (Doict anite) = 2o Bubi(ly),
(53) zf-l {a;; - (Z:—l ﬂtak})z,e;’(ZLl ﬂk,h) = —(03 - 5:) + ZL: ﬂiﬂi'(tx),

holding for all real &, &, -, t. in a suitably chosen neighbourhood of the
origin, where

6i(8) = ln®;(0). J=1,2-p;
(1) = Inpu(t), k=1,2n

Under the assumption that each of the random variables concerned has a
finite second moment, we may again differentiate both sides of the equation
(5.2) with respect to Li(I = 1, 2, -++, n) and thus obtain the set of equations

(54) Xl a(as — i Bae)0] (i aih) = 881W), 1=1,2-,n.

Next multiplying both sides of the equation (5.4) by §: and adding for all
l=1,2 ---,n, weget

(6.5) Loiey 2 Biarilan; — 2ka Beon)OF (i ane) = 301 5187 (81).

Now using the equation (5.3), we get a simplification of the following ex-
pression
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(5.8) o7 (aoy — Db Bae)0] (i anits) + 2ona BYOE(4)
rer {ads — 200,( 0 Ben) + (i1 8104107 (i caite)
+ Z:—: ﬂ:o:(h)
—(o3 ~ &)
— 2200 (0 Betes) G0y — Dok Ba0a) 107 (s aasta)
+ 2200 g0k (1)
Finally using the equation (5.5) to the right-hand side of (5.6), we obtain
(5.7) 28 (a0 — Donu Beaxs) 07 (i aits) + 2 860 (6) = — (o — 83).
Since it is given that the matrix (AZA’ + 4) is non-singular, it can be casily
shown under the condition E(zolz;, 22, -+, Za) = iz + Bem2 + -+ + Baza,
Br is given by the kth element of the vector aZA’(AZA’ + &)™ for k = 1,
2, -, n. Similarly o; — Dim Bi4; is given by the jth element of the vector
all — SA'(AZA" + 8)*4] for j=1,2, -, p.

Thus under the given restrictions on a;;'s, it follows that ao; — 3 Biae; # 0
forallj = 1,2, -+, pand similarly 8, O forallk = 1,2, ---, n. Then the
proof of the necessity part follows at once, using Linnik’s result (Lemma 3.3)
to the equation (5.7).

The proof that the condition is sufficient follows easily from Cramér ([2),
pp. 314-315).
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