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INFERENCE ON MEANS USING THE BOOTSTRAP

By G. JOGESH BABU' AND KESAR SINGEH?
Rutgers University

We study the p of the by p approximation to the
distribution of a &-sample studentized mean.

1. Introduction and main results. Let Fi, Fy, ..., F, be the distributions of %
populations with means m. pa, o+, pu. Let @ = 3 L where Iy, &, +. ., I are non-zero
wm;umw Let (Xi, Xa, - - Xu.,), i=1,2, .-,k beindependent random samplee of sizes
m, M, -, 7 from Fy, Fz, cor, Faletn denoue the vector (r, nz, ---, m) and N =
E, n. A mtural estimator for 9 m 0= THiX and a conaistent estmmtor for its variance
iavl = Tt 118! /ni where X, = ni' L, X, and 87 = (1/n,) Tt (Xi; — X,)%. Here we study
the accuracy of the baotstrap approximation to the distribution of the studentized random
variable 2, = (6, — 8)/v,. This approximation is discussed in the next paragraph. Although
one could base an inference about & on the difference 8, — 6§ itself, it turns out that the
baotstrap approximation is asymptotically more accurate for ¢, than for (6, — 8).

Let G, denote the empirical distribution function based on (Xa, Xa, -+ Xin ), i=1,2,

k. The dependence of G/'s on the sample sizes is suppressed m the notation. Now let
(Y“_ Yoz, »oos Yuh i =1, 2 , k, denote ind P t les from the
populations G|, Gz, »ov, Gy Y.- = n, 'y Y and yF = n. ‘¥ (Yy = Yo Then, by
definition, the diatribution of t2 = ¥ LY — R)/E} 13y} under Gy, Gy, ---, Gi is the
bootstrap distribution of ¢ . Under the conditions given below, the bootstrap distribution
of ¢ is shown to be asymptotically close to the actual distribution of ¢, up to o{N""?). In
applications the bootstrap distribution is approximated by drawing samples of sizes n,, ns,

.+, ny from Gy, Gy, -+, Gy a large number of times, say M times, calculating ¢ each
time and finally forming an empirical histogram. It is shown here that this second stage
approximation is good up to o (N~"%) provided M/(N log N) — .

We now state the main results proved in this note, Through we make the foll

assumptions, to be referred to as A in the sequel.

ng

A. F; has finite 6th moment for all 1 < i < & For at least one i, F, is continuous.
Without loss of generality we shall assume that F\ is continuous. The n,'s tend to infinity
at the same rate. [n other words, the N/n, <A <o foralli=1,2 ..., 4 In practice this
last condition means that the n/s are of comparable size.

In what follows, for any distribution F, let F'{¢) = inf{z:F(x): = ¢}, where 0 < ¢ < 1.

THEOREM. If H, denotes the df. of t, and H.: denotes the df. of L3 then, under A, as
- o

m NYigupeep| Ha(x) — H2 ()| - 0
and
@) NALHZH ) - Hy ()| = 0

a8 for all t € (0, 1). Further let H, y denote the approximation to Hy described in the
second paragraph above with M samples from Gi's. If M/ (N log N) — « as N — , then
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for almost all sample sequences (X}

® N'sup,er| Han(x) — HA (x}] = 0
and
) N H3u(t) — Ha 7' e)]| = 0

as. for allt € (0, 1) a8 N— , The a.9, here refers to the random mechanism generating
the samples from G/'s. (We assume that all the second stage sample sequences are defined
on the same space.)

It may be mentioned here that (1) in the above theorem is an extension of (1.5) in [8]
which is & result involving (£ — u)/u. For constructing a confidence interval for 6, one may
replace an actual quantile Hi'(a) of i by ita bootstrap approximation H:)(a). This
approximation in the one sumple case has been investigated by Efron [6] on simulated

data from an ic pop The p d performed quite well (see Table 5
of [6]).
2. Proof of the th . We first develop some jon. Let ¢y, ®r denote the

density and the d.f. of a normal variable with mean zero and dispersion matrix T; let ¢, ¢
denote the density and the d.f. of a standard normal variable in R; let ¢ denote a constant,
the later may denote different constants at different places. For non-negative integral
vectors 8= (8, -+« , B) and x E R let x* = [[uyxP, Bl = B! B! --- B |Bl =P+ -+
+ B, and D? = Df ... D?, where Df denotes the 8;th order derivative with reapect to the
ith variable. Finally let |x||* = x3 + «.. x? and x - y = ;1 + +-+ %y, where x =
(1, -y x)andy = (n, - y).
We shall show that

® P(es = x) = 0(x) + N"”J‘ dy}(y) dy + o(N"'?) as.

where d is a polynomial whose coefficients depend upon Fs. The same steps will also
yield

(6 Pitas x) =0(x) +N‘"’J. d(y)}(y) dy + o(N%).
Clearly (6) and (6) imply (1). Before proving (5) we shall deduce (2), (3) and (4) from (5)

and (6).

To prove (3), first note that in distribution (given the original sample) H, s is the same
as the empirical d.f. of H;'(U:) where Uy, Us, - -+ Unare i.i.d. U[0, 1] random variables.
If Ey denotes the empirical d.f. of Uy, -+ Un then #{H;'(U)) = x) = MEx(H,(x)).
Hence, using a well known bound on En, we have

P{supser| Hase(x) — Ha(x)| = 4M™?(log M)'7*)
= Plsupiero.n| Ex(t) — ¢] 2 4M ™ {log M)'7) = O(M).
Consequently, in view of Borel-Cantelli lemma,
lim supu—M'?(log M)~ '*supser| Ham(x) — Halx)| < 4 as.

Here dependence of M on N is suppressed. The claim (3) in the theorem follows from this,
since M/(N log N) — o,

The claims (2) and {4) on quantiles follow using Lemma 1 given below which is an easy
consequence of Taylor's expansion.

Lemma 1, Let Ly be a sequence of d.£'s on the real line such that, for a polynomial
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ay with its coefficients dbounded in N,

LN(X)'J [1+ N an(n)]e(y) dy + o(N"'")

uniformly in x. Then for each a € (0, 1),

L @) = 2 = z)VE) f anly}(y) dy + o(N=")

where z = ¢ \a).

The proof of (6) is based on Lemmas 2-5 that follow. In the proofs below we assume
wlg thath =b=... h=1

All proofs are given for a single sequence of realizations of {X;;} for which G; converges
weakly to Fyand [ x"dG;— [ x®dFyforj=1,2, .- k. Thus in view of A the results hold
a8,

Lemma 2. Let Y be a random vector in R* with mean zero and dispersion matrix
V = ((v5,)). Suppose for some b > 1, max(| v, {vual, | vaal, E} YI*) < b. Let a > 2 be such
that Ala) < 1/10, where A(a) = (1/a) + E(| Y |'I(| Y| > a)). Then for all | ¢} < a™WN
and all non-negative integral vectors a, with |a| < 3,

| D*(g"(e/VN) — (1—-(i/6VNIE(L - Y)*) expl—t' VE/2))|
= cb"(Ala) + N"VONT2([|¢]|* + 1) exp(—t' VE/2 + ca™' B3¢
where for t € R, g(¢) = E (explit - Y)).

The proof is similar to the proof of Theorem 9.9 of [3].

Lesma 3. Suppose A holds. Let A; = (N/n))'7, Z; = (N(Yp — X)), MUY, — R)P -
1)}, & denote the characteristic function of Z;/¥n; , B; denote the dispersion matrix of Z,
and B = ¥4, B;. Then for any 3 > 0,

s | |11 ap0 - v (1~ L mpnee - 20) |ae

1454 VN
=o(N"'?).
Proor. Define
[0 = (1 — (i/6Vm)E(t « Z))*) exp(—t B;t/2).
First note that
] max giss| DA~ (1 — (i/6YN) Ty NE( - 2)Y) ~ [11- file))]

= O(N~'{Je)***" + L)exp(—t’Bt/2),
and for any non-empty subset J of (1,2, -+-, k},
® maxpias| D [[jes 87() | = maxigiuaEf 3 a0 nj ' T, ZuI A
<1+ 4" maxiaanj V’E|| Tzl =0,

where Z, are independent copies of Z;. The last inequality above followa from the proof of
Lemma 14,7 of (3] as sup E | Z/|* < 4 < o from some b > 0. Also for Isj=<k

(9) maxpiea| D [Lins filt)| = O((1 + [ ¢[|™) exp(—¢ Br/2).
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By (8), (9) and Lemma 2, we have for any a > 2, | 8| s 3 and | ¢ s A7'a VN,
| DA([L~1 g7 ) = [1)- f1te)) |
(10) < D31 [ DPUTTicsfi(0) Ty &7+ (68D () — f(eM]
= O(NYi(ria) + N"V(1 + N2[***) exp(~¢ Bit/2 + ca' | ef)),

where r(a) = 1/a + sup; E(| Z[’I{|| Z,) > a)). It now follows from (7) and (10) that, for a
| 8] =3, the integral in Lemma 3 over || ¢]| s Aa~VN is O(r(@N™"7) + O(N™").

Since F\ is continuous, the dispersion matrix of X = (X, (X1 — 1)) is positive definite
and the c.f. h of X satisfiea the condition | A (¢) | < 1 for all ¢ » 0. As a result of this and the

fact that weak 8 iraplies g of ¢.f’s. uniformly over compact sets, it
follows that

mpllg )€ P a VN, n /N 58 <1
for all large N. Also,
inf((¢'Bit)/| )5t %0} = 6>0
for all large N under A. Finally for any | 8] = 3
| DA(g ()| s P ENZar 1P g ()M s e NP g () |0,
Thus for | 8] < 3. the intergral in the lemma over A 'a"3/N <[ ¢ < nVN is O(N"). The
claim now follows by letting a — ®.

Next, an inversion theorem is obtained by combining a modification of Lemma 5 in {9)
with Lemma 11.6 of [3). The proof is deleted.

LEMMA 4. Let P be a probability on R* and Q denote a measure with density
[1 + N""p(»))¢x!y) where p() is a polynomial and Z is a positive definite matrix of
order k % k. Let the coefficients of p(y), Amax and AL, be bounded by M > 0 where A
and A denote the maximum and minimum eigen values of Z. Then for any e >0

| P(C) — QC) | = clk) max;gisaer J | DAy - Qey)| dt ..

Negse VR
+ e(ME(ECYT) + O(N™).

Here B and O stand for cf’s of P and Q; (9C)"'™ is the tN'N neighborhood of the
boundary of C.

Finally Lemma 5 justifies converting a multivariate one-term Edgeworth expansion into
an univariate one. This result is a modification of Lemma 2.1 of [2]. A proof for the present
version is contained in [1].

LemMMA 6. Lett=(t, t, -~ &) be a vector, L = {Ly} be ar X r matrix and q bea
polynomial in r variables. Let M = max{| vy, |yl | &1, | Lyl. | c.)), where V = ((vy)) is
a positive definite matrix ((uy)) = V' and c, are the coefficients of q. Let | t,| > to > 0.
Then there exists a polynomial p in one variable, whose coefficients are continuous
functions of &, Ly, vy, uy and ¢, such that

f 1+ N"q(2))¢v(2) dz = f 1+ N"p(9)e(3) dy + o(N~7)
[2:0- 24 N Lr<uvEVE) -
where the o(-) term depends on M and & only.

We now briefly sketch the proof of (5) using the lemmas. Define, §, = n;'¥, (Yi—
%))* — s} and s* = T} s}/ny. From Lemmas 3 and 4 it follows that for a measurable C and
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>0
PUYNIY (%~ X), NV EY (/) € C)
(1)
= f ¢a(0)[1 + N"ay(2)] dx + o(N"%) + O@3 3By 'F)
¢
where ax is a poly ial whose coeffici are polynomials in {);}, and the moments of

G;of order 6 or less. Note that B = (by}sx2 with by, = Ns? the variance of VN % ¥,. Now
(11) combined with Lemma 5 entails

Pis™ 2T - X[ - (A7 B (6i/n)) < )
(12) x
= O(x) + N""J’ b(yk(y) dy + o(N-172),

where & is & poly ial whose coeffici are continuous functions of B, A, and the
moments of G; of order 6 or less,

Define Cn = (VN 34| %) - %| <log N} and Dy = (N*?| T4 (g/n))| < log N). On Cx
N Dy one has
03) =67 IH(Y, ~ X0 - (4057 £ 6/n)] + O(N""log NY)
(taking §, = - .. & = 1). Since the 6th moments of {Y\;} are bounded, it follows from the
proof of Theorem 2 of [7] that
(14) [1 = P(C]+[1 - P(Da)]} = o(N"'7),

Thus (12), (13) and (14) yield (5)
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