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SUMMARY. It is well known that in experimental settings where v treatments are being 

tested in 6 blocks of size k, a balanced incomplete block design and a group divisible design having 

parameters X2 
= 

X_+l is E-optimal among all possible competing designs. In this paper, we 

show that under certain conditions, the E-optimal designs mentioned in the previous sentence 

can be used to construct E-optimal block and row-column designs with unequal replicates to 

handle experimental situations in which heterogeneity is to be eliminated in either one or two 

directions. 

1. Introduction 

In the usual setting of block designs, let v denote the number of treat 

ments, 6, the number of blocks and k, the number of units per block. Any 

allocation of v treatments to the bk experimental units is a block design. 

Under the usual fixed effects additive model with homoscedasticity and in 

dependence, the coefficient matrix of the reduced normal equations for esti 

mating linear functions of treatment effects, using a block design d with para 

meters v, b, k, is given by 

Cd = 
Rd-k-iNdN'd, 

... (1.1) 

where Rd = 
diag (rdl, ..., rdv), rd\ is the replication of the i-th treatment in d 

and iVtf 
= 

((nan)) *s the v^ incidence matrix of the design d. 

The row-column designs considered here have bk experimental units 

arranged in a rectangular array of b columns and k rows such that each unit 

receives only one of the v treatments being studied. For an arbitrary row 

column design d, the cC-matrix', under an appropriate model is given by 

C?*? 
= Ra-k-i NaN'd-b-i MdMd+(bk)-* rdrd 

= Rd-k-* NaK-b-i Md(I-k-i 1 1') Md, 
... (1.2) 

where Ra is as defined earlier, rd = 
(rdl, ..., rdv)', Nd and Md are the vxb 

treatment-column and vxk treatment-row incidence matrices, respectively, 

/ is an identity matrix (of appropriate order) and 1, a column vector of unities. 
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It is known that Ca as in (1.1) and Cjfc) 
as in (1.2) are symmetric, non 

negative definite matrices, with zero row sums. A block (resply. row 

column) design d is called connected if and only if Rank (Ca) = v?1 (Rank 

(C^c)) 
= 

v?1). Henceforth, only connected designs are considered. 

For given positive integers v, b, k DQ(v, b, k) will denote the class of all 

connected block designs with v treatments, b blocks and block size k. Simi 

larly, D(v, b, k) will denote the class of all connected row-column designs with 

v treatments, k rows and b columns. 

For a block design d e D0(v, b, k), let 0 = 
zg < z& < z& < ... < zf^, 

denote the eigenvalues of C?. Similarly, let 0 = 
za0 < zax < za2 < ... < 

Zd,v-X denote the eigenvalues of C^C) for deD(v, b, k). 

With each deD(v, b, k) we associate the block design dN eD0(v, b, k) 

obtained from d by considering {columns} of d as blocks and ignoring row 

effects. We denote the usual C-matrix of dN by C$. Clearly from (1.2) 

Cfv 
= 

Cf-b^Matf-k-11 T)M'd (1-3) 

and since the second matrix on the r.h.s. of (1.3) is non-negative definite, we 

have 

where zjj represents the minimum non-zero eigenvalue of C?. 

The optimality criterion considered here for selecting optimal designs 

in D0(v, b, k) or in D(v, b, k) is the 2?-optimality criterion introduced by Ehren 

feld (1955). This criterion chooses those designs in D0(v, b, k) and D(v, b, k) 

whos3 (7-matrices have minimal non-zero eigenvalues of maximum size, and 

is equivalent to finding designs which minimize the maximum variance of 

the best linear unbiased estimator (BLUE) for treatment constrasts of the 

V V 

form 2 lih where 2 l\ 
= 1 (A treatment constrast is any linear combina 

i-l ?=1 

v v 

tion S lih of the treatment effects t% (i 
= 1, ..., v) where 2 U 

= 
0). 

i=-i t=i 

We shall denote a Balanced Incomplete Block (BIB) design with para 

metars v, b, r, k, ? by BIB (v, b, r, k, ?). Note for a BIB (v, b, r, k, ?), bk = vr 

and r(k?l) 
= 

(v?l)?. Also, a Group Divisible (GD) design with para 

meters v = mn, b, r, k, ?x, ?2, m > 2, n > 2 will be denoted by GD(v b, r, k 

?x, ?2, m, n) 

A number of results are already known concerning the 2?-optimality 

of certain equireplicate designs in classes DQ(v, b, k) and D(v, b, k), e.g., see 

Takeuchi (1961, 1963), Kiefer (1958, 1975), Cheng (1978, 1980), Constantino 

(1982), Jacroux (1980a, 1985, 1986). In exploratory experiments aimed 
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at providing as much information as possible on the effects of the treatments 

being studied and where heterogeneity needs to be eliminated in one or two 

directions, use of an equireplicate block or row-column design may mean 

wasting some of the available experimental units. Here we consider the prob 
lem of determining unequally replicated ?/-optimal designs in classes DQ(v, b, k) 

and D(v, b, k) where bk/v is not an integer. The only results concerning this 

problem are those obtained by Jacroux (1980b, 1983), Constantine (1981), 

Sathe and Bapat (1985) and Bagchi (1988) for block designs and those by 
Jacroux (1982, 1990) and Das and Dey (1989) for row-column designs. In this 

paper we prove the _57-optimality in respective classes D0(v, b, k) and D(v, b, k) 

of several different types of block and row-column designs that have unequally 

replicated treatments. Such unequally replicated designs can maximize 

the information on treatment effects without wasting units. In Section 2, 

we define extended quotient designs and study certain eigenvalue properties 
of the (7-matrices of these designs. In Section 3 ?/-optimal block designs 
derived from BIB designs or GD designs with A2 

= 
Ax+1 are obtained. Some 

series of such ?/-optimal designs are also given. In Section 4 results similar 

to those in Section 3 are derived for various row-column designs. Finally 
in Sectiou 5 we tabulate the parameter sets of ?/-optimal block and row 

column designs obtained in Sections 3 and 4. 

2. Preliminaries 

In this section, certain definitions and results are given, as we shall have 

occasion to refer to these in the sequel. 

Definition 2.1. Let d? be a given block (row-column) design with para 
meters v*, b, k, and let V* = 

{1, 2, ..., v*} be the set of treatments of 

dv Denote by W = 
{wx, w2, ..., wv} a partition of V* into v( 

= 
v*?p, p > 1) 

V 

nonempty classes w\, 1 < i < v ; i.e., V* = 
JJ w% and w{ p) Wj 

= 
<j> for i^j. 

The design d2, called the quotient design of dx has v treatments, wv ..., wv. 

For each block (column) (iv i2, ..., ij?) of dl9 a corresponding block (column) 
of d2 is obtained as follows : Since each treatment of dx belongs to a unique 

class Wj, there are uniquely determined classes w, , w. , ..., w, in W such 

that i? e 
Wj 

, 
i2ewj 

, ..., 
ijteWj 

. The block (column) of d2 then has its con 

tents 
(wh, wh, 

..., 
wjk). 

Informally, in a quotient design the treatments in class Wi of the parti 
tion are collapsed. 
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Definition 2.2. Let dx be a given block (row-column) design with para 

meters v, b*, k. The design d2 with parameters v, b = b*+x, k obtained by 

adding (juxtaposing) x ( > 1) arbitrary blocks (columns) of size k each to dx 
is called an extended design. 

Definition 2.3. Let dx be a given block (row-column) design with para 

meters v*, b*, k. The design d2 with parameters v, b, k (v 
= 

v*?p, p > 0, 

b = b*+x, x > 0) is called an Extended Quotient (EQ) design where d2 is 

obtained through extending dx by x blocks (columns) and then taking the 

quotient or vice-versa i.e., first taking quotient of dx and then extending by x 

blocks (columns). 

Note that for an EQ design, p and x are not simultaneously equal to 

zero. Also an EQ design with p 
= 0 reduces to an extended design and that 

with x = 0 reduces to a quotient design. 

Bagchi (1988) while dealing with quotient block designs has shown that 

zd i Ojr Also Jacroux (1982) while proving optimality of certain exten 

ded row-column designs has shown that zd x < zd x for some particular types 

of extended designs d2 obtained from specific designs dx by addition of only 

disjoint columns. These results were proved using a different technique. 

We now give a more general result regarding zd x (zd x) and z% x (zd ?) for EQ 

block (row-column) designs. 

Theorem 2.1. Let d2 be a quotient design in D0(v, b, k) (D(v, b, k)) of a 

design dx in D0 (v*, b, k) (D(v*, b, k)). then 

zaxi < 
za2i(zdxi 

< 
za2i) 

Proof. Let d be any normalized treatment contrast in d2. Let 
?d 

denote its BLUE. Let <j> be a contrast in dx obtained by replacing in 6 every 

ti of d2 by any of the ?/s which are mapped into t%. Let $d be the BLUE 

of (f> in dx. Clearly E($di\d2) 
= 6 and hence 

V($d2\d2) < V($dJd2) 
= 

V($d \dx). Thus, for every normalized treatment contrast in d2 we have 

one in dx which is estimated with larger variance. This implies that the 

smallest non-zero eigenvalue of 
Cd (or C(dc)) 

is not less than the smallest 

non-zero eigenvalue of Cd (or C(?G)). This completes the proof. 

Theorem 2.2. Let d2 be an extended design in D0(v, b, k) (D(v, b, k)) 

obtained from a design d? in D0(v, b*, k) (D(v, b*, k)). Then 

zdxi < za^%i < %i> 
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Proof. The set of linear functions of observations free from block (or 

row and column) effects in the design dx is a subset of the corresponding set 

for the design d2. Hence Cd > Cd (or CfG) > CfC)) and the result follows. 

As a result of Theorems 2.1 and 2.2 the following hold. 

Theorem 2.3. Let d2 be an EQ design in D0(v, b, k) (D(v, b, k)) obtained 

from a design dx in D0(v*, b*, k) (D(v*, b*, k)). Then 

zaxi ^ 
za2i(zdxi 

< 
zd2i) 

We now state a result due to Jacroux (1983). Let r = 
[bk/v] and 

A = 
[r(k? l)?(v?1)] where [m] denotes the largest integet not exceding m. 

Theorem 2.4. Let D0(v, b, k) be a class of block designs such that 

bk = vr+s, 0 < s < v, r(k?l) 
= 

(v?1) ?+t, 0 < t < v?1, and with v < 

(v?s) (v?t). Then for d e D0(v, b, k) 

z&^mk-V+W. 

3. ?/-OPTIMAL BLOCK DESIGNS 

This section establishes the __?-optimality of certain unequally replicated 
block designs. Let us first consider the EQ design d2 (with v treatments in 6 

blocks each of size k) of a BIB design dx with parameters v* = 
v-\~p, 

?* = b?x, r, k, ?. 

Theorem 3.1. Let dx be a BIB (v*, b*, r, k, ?) and d2 an EQ design with 

parameters v = 
v*?p, b = 

b*+x, k obtained from dx. Then d2 is E-optimal 
in D0(v, b, k) provided the parameters satisfy the following conditions : 

(a) v?pr?xk ?> 1 

(b) v?p\ > 2 

(c) v < (v?pr?~xk) (v?pA). 

Proof. First observe that z% x 
= 

Xv?k 
= 

(r(k? l)+A)/&. Therefore from 

Theorem 2.3 (r(k?l)+A)/& < z% x. Also from Theorem 2.4 for any design 

deD0(v, b, k)zdx < (r(k?l)+X)?k and d2 is ?/-optimal inD0(v, b, k) provided 

*5_i 
= 

W-l)+m ... (3.1a) 

and 

t>< {v-s) (v-t), ... (3.1b) 

where bk = vf-\-s, 0 < s < v, f{k? 1) 
= 

(v?l)A+f, 0 < ? < w?1. 

BI-11 
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Now since (r(k-l)+?)lk < z%? < (r(k-l)+X)?k, (3.1a) holds if r = r and 

? = ?. Now r = r implies s = bk?vr = 
xk+pr and since s < v, we get 

condition (a). Again r ? f and ? = ? implies t = 
r(k?1)??(v? 1) 

= 
?p 

and since ? < v?1, we get condition (b). Finally from (3.1b) we get condi 

tion (c). This completes the proof. 

The results of Bagchi (1988) and Constantine (1981) follow as corollaries 

to the above theorem when x = 0 and p 
= 0 respectively. 

Corollary 3.1. Let dx be a BIB (v*, b, r, k, ?) and d2 quotient design with 

parameters v = 
v*?p, b, k obtained from dx. Then d2 is E-optimal in DQ(v, b, k) 

provided the parameters satisfy 

(a) v?pr > 2 

(b) v < (v?pr) (v?p?.). 

Proof. Putting x = 0 in Theorem 3.1, we get the following conditions 

under which d2 is JS?-optimal in D0(v, b, k). (i) v?pr > 1, (ii) v?pX > 2 

and (iii) v < (v?pr)(v?pX). Now if v?pr 
= 1, then condition (iii) is not true 

Hence for d2 to be i?-optimal, we have a modified condition (i)' v?pr > 2. 

Furthermore, since r > ? condition (i)' => (ii) and the result follows. 

Corollary 3.2. Let dx be a BIB (v, b*, r, k, ?) and d2 an extended design 
with parameters v, b ? 

b*+x, k obtained from dv Then d2 is E-optimal in 

D0(v, b, k) provided x < (v?l)/k. 
Remark 3.1. The EQ design with p > 0 obtained from a BIB design 

is necessarily non-binary. Therefore the JSJ-optimal designs of Theorem 3.1 

and Corollary 3.1 are non-binary. There may be a binary U-optimal design 
in D0(v, b, k) along with the non-binary 2??-optimal design. But this need 

not be so in all situations. Shah and Das (1992) has shown that the class 

of binary designs is not essentially complete w.r.t. the ?7-optimality criterion. 

For example consider the quotient design d* with parameters v = 6, b = 7, 

k = 3 of a BIB (7, 7, 3, 3, 1). 

12 3 4 5 6 6 

cT = 5 6 6 1 

4 5 6 6 12 3 

Using Corollary 3.1, if is .?-optimal in 2>0(6, 7, 3). Shah and Das (1992) 

shows that d* is ^-better than any binary design in D0(6, 7, 3). In that con 

text, though for p > 0 designs in Theorem 3.1 and Corollary 3.1 are non 

binary, the result may be considered important from optimality point of view. 
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Example 3.1. Consider the following design deD0(l2, 14, 4) 

1 2 3 4 5 6 7 8 9 10 11 12 12 1 

2 3 4 5 6 7 8 9 10 11 12 12 1 2 

4 5 6 7 8 9 10 11 12 12 1 2 3 3 

10 11 12 12 1 2 3 4 5 6 7 8 9 4 

This design d is an EQ design with p 
= 1, x = 1 obtained from BIB 

(13, 13, 4, 4, 1) by collapsing treatment number 13 with 12 and adding a block 

(1, 2, 3, 4). It is easy to verify that d satisfies the conditions in Theorem 3.1 

and hence d is ?/-optimal in -D0(12, 14, 4). Note that though we have added 

the block (1, 2, 3, 4) to obtain d from BIB (13, 13, 4, 4, 1), the design obtained 

by adding any arbitrary block would also be j_7-optimal. 

In particular, the EQ designs with p > 0, derivable from the following 
series of BIB designs satisfy the requirements of Theorem 3.1, and hence 

lead to U-optimal block designs. 

(i) v* = 52+s+l = b*, r ? 
5+1 = k, A = 1, s a prime power, and 

P+X < 5?1. 

(?) v* = 45?1 = b, r = 25?1 = k, A = 5?1, s > 1, p 
= 1, x = 0. 

Let us now come to the EQ design d2 with v treatments in 6 blocks of size 

k each obtained from a GD design dx with parameters v* = 
v+p, b* = b?x, 

r, k, Xx, A2 
= 

Ax+1, w&> ft 

Theorem 3.2. Let dx be a GD (v*, b*, r, k, Ax, A2 
= 

Ax+l, m, n) and d2 
an EQ design with parameters v = 

v*?p, b = 
&*+#, k obtained from dx. Then 

d2 is E-optimal in D0(v, b, k) provided the parameters satisfy the following 
conditions 

(a) v?pr?xk > 2 

(b) v < (v?pr?xk) n?pA2. 

Proof. Since z%x 
= 

(r(k-l)+Ax)/k we have from Theorem 2.3 (r(fc?1) 

+A1)/jfc < z? ! Let d be any design in D0(v, b, k). Then from Theorem 2.4 

zd\ < (r(k?l)-{-?)lk provided v < (v?s) (v?t) where bk = vf+5, 0 < 5 < v, 

r(fc-l) 
= 

(v-l)?+*,0<i<t;-^^ 

and z*' x 
= 

(r(??l)+A)/i (and thus d2 is ?/-optimal in D0(v, b, k)) provided 2 

r = r, ?X 
= A ... (3.2a) 

and t; < (v-s) (v-t) ... (3.2b) 
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Now, on lines similar to Theorem 3.1, from (3.2a) we get the following two 

conditions : (i) v?pr?xk > 1 and (ii) v?pXx > 2. Again from (3.2b), since 

s = 
xk+pr and v?t = 

v*?p?r(k?l)-\-Xx(v*?p?l) 
= 

n?p(Xx+l) on 

simplification, we get condition (b). Finally note that if v?pr?xk 
= 1 

condition (b) reduces to n(m?l)+pXx ^ 0 which is never true. Hence for d2 
to be 2?-optimal, we have a modified condition (i)' v?pr?xk > 2 (i.e. condi 

tion (a)). Furthermore, since r > Xx condition (i)'-fr (ii) and the result 

follows. 

We have two corollaries for situations when x = 0 or p 
? 0. The case 

p 
= 0 give rise to ?7-optimal designs of Constantine (1981) and Jacroux (1982). 

Corollary 3.3. Let dx be a GD(v*, b, r, k, Xv A2 
= 

Aj-j-1, m, n) and d2 
a quotient design with parameters v = 

v*?p, b, k obtained from dx. Then d2 

is E-optimal in D0(v, b, k) provided the parameters satisfy 

(a) v?pr > 2 

(b) v < (v?pr) (n?pX2). 
Theorem 3.7 of Bagchi (1988) is a particular case of the above corollary 

when p 
= 1. 

Corollary 3.4. Let dx be a OD(v, b* r, k, Xx, X2 
= 

A1+l, m, n) andd2 an 

extended design with parameters v, b = 
b*+x, k obtained from dx. Then d2 

is E-optimal in D0(v, b, k) provided x < (v?m)?k. 

Example 3.2. Consider the following EQ design deD0 (11, 17, 3) 
obtained from GD design SR 26 with parameters v* ? 

12, b* = 16, k = 3 

(given in Clatworthy (1973)) by collapsing treatment number 12 with 9 and 

adding the block (1, 4, 7). 

199 11 1892156417 10 41 

? = 281045311997102861194 

3756647 10 11 38992357 

For this EQ design with p 
= 1 and x = 1 the conditions in Theorem 3.2 hold 

and thus d is ?J-optimal in DQ (11, 17, 3). 

Remark 3.2. As remarked earlier EQ designs obtained from BIB designs 
are necessarily non-binary unless p 

= 0. This is not the case for EQ designs 
obtained from GD designs. In fact it is possible to have binary EQ designs 
of GD desigrxs with Xx 

= 0 whenever p < m(n? 1). This enables us to obtain 

2?-optimal binary EQ designs, e.g., the design in Example 3.2 is an ?J-optimal 
and binary EQ design. 

4. ?/-OPTIMAL ROW-COLUMN DESIGNS 

This section shows how U-optimal designs can be obtained in classes 

D(v, b, k) where bk\v is not an integer. 
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Let d e D(v, b, k) where v > k and b = 
pv for some positive integer p. 

Then d is called a Youden design (and denoted by YD(v, b, r, k, A)) if dN is a 

BIB (v, b, r, k, A) and Md = 
p 1 1'. Similarly d is called a Group Divisible 

Youden design (and denoted by GDYD (v, b, r, k, Ax, A2, m, n)) if dN is a 

GD(v, b, r, k, Ax, A2, m, n) and Md = 
p 1 1'. Note that corresponding to 

every BIB design with b = 
pv, there exist a Youden design. Similarly, 

corresponding to every GD design with 6 = 
pv, there exist a group divisible 

Youden design. 

Youden designs and group divisible Youden designs with A2 
= 

Ax-\-l 
were proven ?/-optimal in classes D(v, b, k) by Kiefer (1975) and Cheng (1978) 

respectively. We now show how these designs can be used to obtain addi 

tional j?-optimal row-column designs. In what follows, we denote the mini 

mum non-zero eigenvalue of CNd by zfx. 

Theorem 4.1. Let dx be a YD(v*, b*, r, k, A) with 6* = 
pv* and d2 an 

EQ design with parameters v = 
v*?p, b = b*-\-x, k obtained from dx. Then 

d2 is E-optimal in D(v, b, k) provided the parameters satisfy the following 

conditions 

(a) v?pr?xk > 1 

(6) v-pA > 2 

(c) v < (v?pr?xk)(v?pA). 

Proof. We begin by showing that 
zd^x 

= 
z^x. 

From (1.4), zd^x < 
z^x. 

It is now shown that zd x > z% r First, observe that C^RC) 
= 

C% 
and zd x 

= 
z%iX 

since Md =p ? V. Also, by Theorem 3.1, 
z^x= (r(k-l)+A)/k 

? 
zd\ aB(^ d* is ^-optimal in DQ(v, b, k) under conditions (a), (b) and (c). 

2 

Finally, note that from Theorem 2.3 we have zd x > zd x. The result zd x 

> 42i 
follows. 

Now suppose d eD(v, b, k) is any design. Then by (1.4) zdx < zdX. Since 

d\ is ?'-optimal in D0(v, b, k), zd x 
= 

z% x > z% > zd and d2 is ?/-optimal in 

D(v, b, k). 

The results of Dai and Dey (1989) and Jacroux (1982) follow as corollaries 

to Theorem 4.1 when x = 0 or p 
= 0. 

Corollary 4.1. Let dx be a YD (v*, b, r, k, A) and d2 a quotient design with 

parameters v = 
v*?p, b, k obtained from dx. Then d2 is E-optimal in D(v, b, k) 

provided the parameters satisfy 

(a) v?pr > 2 

(6) v < (v?pr) (v?pA). 
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Corollary 4.2. Let dx be a YD(v, b*, r, k, X) and d2 an extended design 
with parameters v, b 

? 
b*+x, k obtained from dx. Then d2 is E-optimal in 

D(v, b, k) provided x ̂  (v?l)/k. 

Example 4.1. The design d as given in Example 3.1 when considered 

as a row-column design is ?/-optimal in D(12, 14, 4). This EQ row-column 

design is obtained from YD(13, 13, 4, 4, 1) by collapsing treatment number 

13 with 12 and adding a column (1, 2, 3, 4). Also the YD(13, 13, 4, 4, 1) when 

extended by x ^ 3 arbitrary columns is ?/-optimal in D(13, 13+x, 4). 

Note that for the series of designs given after Example 3.1, the conditions 

in Theorem 4.1 are satisfied and hence, these designs can be used to obtain 

?/-optimal row-column designs. 

Theorem 4.2. Let dx be a GDYD (v*, b*, r, k, Xx, X2 
= 

Xx+1, m, n) with 

b* = 
pv* and d2 an EQ design with parameters v = 

v*?p, b 
? 

b*+x, k 

obtained from dx. Then d2 is E-optimal in D(v, b, k) provided the parameters 

satisfy the following conditions 

(a) v?pr?xk ^ 2 

(6) v < (v?pr?xk) (n?pX2). 

Proof. The result follows from (1.4), Theorems 2.3, 3.2 and using argu 

ments analogous to those given in the proof of Theorem 4.1. 

Corollary 4.3. Let dx be a GDYD(v*, b, r, k, Xx, X2 
= 

Xx+1, m, n) and d2 

a quotient design with parameters v = 
v*?p, b, k obtained from dx. Then d2 

is E-optimal in D(v, b, k) provided the parameters satisfy 

(a) v?pr > 2 

(6) v < (v?pr) (n?pX2). 

Corollary 4.4. Let dx be a GDYD (v, &*, r, k, Xx, X2 
= 

Ax-f 1, m, n) and 

d2 an extended design with parameters v, b = b*+x, k obtained from dx. Then 

d2 is E-optimal in D(v, b, k) provided x < (v?m)?k. 

Remark 4.1. As against the results of Das and Dey (1989) and Jacroux 

(1982) where YD and GDYD were extended only by disjoint columns, here 

we find that any arbitrary columns may be added to obtain ?/-optimal designs. 

Moreover Jacroux (1982) proves the ?/-optimality of extended GDYD for 

x < min [2, (v?m)?k] and thereby limited extension of GDYD to a maximum 

of two disjoint columns. However, Corollary 4.4 has no such limitation 

(except that x ^ (v?m)?k). This enables us to obtain several ?/-optimal 

extended GDYD with x > 3. 
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Example A.2. Consider the GDYD (24, 24, 5, 5, 0, 1, 6, 4) d whose allo 

cation of treatments to rows and columns is 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 

d = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 
12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 

The design deD(24, 24, 5) is obtained from GD design R 153 having cyclic 
solution. Now consider additional columns (1, 2, 7, 13, 19), (3, 4, 9, 15, 21) 

and (5? 6, 11, 17, 23). Since (v?m)/k 
= 

(24?6)/5 
= 

18/5, we may add either 

one or two or all the three additional columns to d to obtain ?/-optimal designs 
in D(24, 2?+x, 5), x = 1, 2, 3. Furthermore the design obtained by collap 

sing treatment number 24 with 18 in d and then keeping it as such or adding 
one or two additional columns would be ?/-optimal in D(23, 2?-\-x, 5), x = 0, 

1, 2. Finally, we also have by collapsing treatment number 24 with 18 and 

treatment number 23 with 17 in d, a design which is ?/-optimal in Z>(22, 24, 5). 

The following series of GD designs satisfy the reuqirements of corollaries 

4.3 or 4.4, leading to ?/-optimal row-column designs. 

(i) v* = sz = b*, r ? s = k, Xx 
= 0, A2 

= 1, m = s = n, s a prime 

power, and either p 
= 1, x = 0 oy p 

= 0, #< s?1. 

(ii) v* = sz?l ? 
b*, r = s = k, Xx 

= 0, A2 
= 1, m = s+1, n = 6?1, 

s a prime power, and either p 
= 1, x = 0 or p 

= 0, x ^ s?1. 

5. Tabulation 

In this section we give the parameter sets of ^-optimal? block and row 

column designs satisfying the theorems in Sections 3 and 4. The parameters 

v, b, k of these designs along with the values of p > 1 and x > 0 are given in 

two tables. In Table 1 ?/-optimal designs (in the parametric range v < b < 50, 
3 ̂  k < 15), which are derivable from existing BIB designs (or their 

complements) listed in Hall (1986), have been presented. In Table 2 we give 
the parameter sets of ^-optimal designs (in the parameteric range b < 50, 
2 ̂  k ̂  8), which are derivable from existing GD designs with A2 = Xx+1 
listed in Clatworthy (1973). In these tables the parameter set marked with 

asterisk refer to block as well as row-column design. As such parameter 
sets not marked with asterisk refer only to the block designs. 

When p = 0, the parameter sets are not listed since it is clear that corres 

ponding to a BIB (v, b, r, k, A), we shall get sets (v, b+x, k), x < (v?l)/k and 

that corresponding to GD (v, b, r, k, Xx, X2 
= 

Xx+1, m, n), we shall get the 

sets (v, b+x, k), x < (v?m)jk. Moreover if b = 
pv, the sets would refer to 

block ard row-column designs, otherwise it refers to only block designs. 
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TABLE 1. PARAMETRIC VALUES OF J0-OPTIMAL BLOCK AND ROW-COLUMN 
DESIGNS (v < b < 50, 3 < k < 15) BASED ON THEOREMS 3.1 AND 4.1 

v 

6* 
8 

12* 
12* 
14 

P 

7 
12 
26 
27 
35 

20 
20 
21* 
26 
27 

30 
31 
44 
36 
36 

14 
6* 
9 

11* 
12* 

12* 
12* 
14 
15 
15 

36 
7 

15 
13 
13 

14 
26 
20 
20 
21 

27 
27 
14* 
12* 
18* 

20 
23* 
24* 
24* 
24* 

37 
38 
15 
13 
19 

35 
25 
25 
26 
50 

15 
15 
23* 
24* 
10* 

18* 
19* 
19* 
20* 
20* 

20* 
20* 
20* 
22 
23 

23 
24 
24 
24 
24 

10* 
14* 
15* 
15* 
15 

15* 
20* 
20* 
27* 
28* 

28* 
29* 
29* 
29* 
30* 

30* 
30* 
30* 
14* 

22 
40 
50 
50 
11 

21 
21 
22 
21 
22 

23 
42 
43 
30 
30 

31 
30 
31 
32 
33 

11 
16 
16 
17 
24 

32 
42 
43 
31 
31 

32 
31 
32 
33 
31 

32 
33 
34 
15 

36 
31 
32 
32 

32 
34* 
35* 
35* 
36* 

36* 
36* 
15* 
18* 
24 

29* 
30* 
30* 
22* 
32 

32 
22* 
42* 
43* 
43* 

44* 
44* 
44* 
26* 
38* 

39* 
39* 
26* 
30* 
34* 

35* 
35* 
35 

39 
40 
44 
44 
45 

46 
37 
37 
38 
37 

38 
39 
16 
19 
40 

31 
31 
32 
23 
48 

49 
23 
45 
45 
46 

45 
46 
47 
27 
40 

40 
41 
27 
31 
36 

36 
37 
48 

9 
9 
9 
9 
9 

9 
9 
9 
9 
9 

9 
9 

10 
10 
10 

10 
10 
10 
11 
11 

11 
12 
12 
12 
12 

12 
12 
12 
13 
13 

13 
13 
14 
15 
15 

15 
15 
15 

0 
1 

0 
0 
1 

2 
0 
0 
1 
0 

1 
2 
0 
0 
0 

0 
0 
1 
0 
0 

1 
0 
0 
0 
1 

0 
1 
2 
0 
0 

0 
1 
0 
0 
0 

0 
1 

0 
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TABLE 2. PARAMETRIC VALUES OF ?7-OPTIMAL BLOCK AND ROW-COLUMN 

DESIGNS (b < 50, 2 < k < 8) BASED ON THEOREMS 3.2 AND 4.2. 

7* 
9 

11* 
11* 
13 

k 

16 2 
25 2 
36 2 
37 2 
49 2 

v 

23* 
23* 
24* 
24* 
24* 

26 
26 
25 
26 
27 

13 
8* 

11 
11 
14 

50 2 
9 3 

16 3 
17 3 
25 3 

32 
33 
33 
34 
34 

49 
49 
50 
49 
50 

14 
14* 
15* 
15* 
16* 

26 3 
30 3 
32 3 
33 3 
36 3 

28 
28 
29 
29 
29 

25 
26 
25 
26 
27 

L7* 
17* 
17* 
19 
20 

36 3 
37 3 
38 3 
49 3 
49 3 

39 
39 
40 
40 
41 

49 
50 
49 
50 
49 

20 
11 
14* 
14* 
15* 

50 3 
9 4 

15 4 
30 4 
16 4 

41 
45* 
45* 
45* 
46* 

50 
48 
49 
49 
48 

15* 
18 
19 
19 
19 

17 4 
25 4 
25 4 
26 4 
27 4 

46* 
46* 
46* 
46* 
47* 

49 
49 
50 
50 
48 

23 
23 
26 
26 
27 

42 
43 
49 
50 
49 

47* 
47* 
47* 
47* 
48* 

49 
49 
50 
50 
49 

27 
18 
19 
19 
22* 

50 
16 
16 
17 
24 

48* 
52 
53 
53 
54 

50 
49 
49 
50 
49 

23* 
23* 
23* 

24 
25 
25 

54 
55 
55 

50 
49 
50 

B?-12 
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