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SUMMARY. For a stationary m dependent process under certain assumptions which 

ensure that the individual random variables have finite moment generating function but the 

random variables may not be bounded, the non uniform rates of convergence of standardised 

sample sum to normality are studied. The results obtained turn out to be quite sharp even for 

i.i.d random variables. Application of these rates are made in moment type convergences, 

Lq versions of the Berry-Esseen theorem and to probabilities of deviations. Possible extensions 

are indicated for non stationary m dependent processes. The conditions assumed are shown to 

be fulfilled for moving average process. 

1. Introduction 

Let {Xn, n > 1} be a stationary m dependent process with 

EXt = 0, EXl+2 ^EX+X^i 
= 1 ... (1.1) 

<=i 

and EgiXJ < oo where g(x) is non negative, even and non decreasing function 

oo[0, oo). Define Fn(t) = P Inr1* 2 Xt < t). Then Fn-> O where O is 
\ <=1 / 

the standard N(0,1) distribution function. Uniform speed of such conver 

gences are studied by Stein (1972) among others. 

To study the moment type convergences of standardised sample sum and 

to compute probabilities of deviation it is essential that the role of t, the point 
of convergence be reflected in the rate with which \Fn(t)?$>(t)\ goes to zero 

as 7i->oo. Such non uniform rates of convergence under the structural 

assumption on g which ensures that some finite moment of X of order ^ 2 

exists, or that all the moments of X exist but the moment generating func 

tion of X may not exist are studied in a separate paper, Dasgupta (1992b). 

One of the pleasant features of such non uniform rates is that it produces several 

deviation and other allied results as by products. 
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Im this paper we partially cover an extreme spectrum of g which ensures 

that the moment generating function of the random variables exist but the 

random variables may not be bounded. We specifically assume that 

EX* ?(EX*) < Z~ (2m) !/m ! ... (1.2) 

where 1 < / < 2 and m = 2, 3, 4, ... 

In a similar set up the case of independent random variables in a triangular 

array is studied in Dasgupta (1992a). Although we shall not use it, under 

the additional assumption that all the odd order moments of X are zero, (1.2) 

implies 
E exp (h\X\) < exp (&V*2/Z) where <r*2 = EX* ... (1.3) 

See after (2.6) of Dasgupta (1992a). 

Without such additional assumption (1.2) implies that 

E exp (h | X | )< 2 exp (h*a**?l), ... (1.4) 
To see this observe that 

E e*w < E e- +Ee?x < 2 2 /?^T EX* . 
m=Q (2m)! 

< 2 exp (h*cr**?) from (1.2) 

Following the lines of (5.1) of Dasgupta (1992a) it can be shown that 

(1.2), without any additional restriction on odd order moments implies that 

J5exp(cX2)<oo for 0 < c < i/(40> <^*2 = .EX2 

The non uniform rates of convergence are obtained in this frame work for m 

dependent processes. The result obtained are nearly optimal even for i.i.d 

set up and as such it naturally imposes some restriction on the correlations of 

the variables depending on the value of m. 
* 

There are now quite a number of works on nonuniform speed of conver 

gence in CLT under weak d?pendance set up e.g., see Babu, Ghosh and Singh 

(1978), Babu and Singh (1978), Dasgupta (1988, 1983, 1992b, ,1990).. But 

none of the above results are as sharp as (2.2) on the entire range of t. The 

contribution of the present paper is to show that it is possible to obtain near 

optimal rates even for weak dependent set up under appropriate assumptions, 

see Remark 2.1. 

The technique used can be briefly described as follows. Along with 

usual short block long block technique, the random variables within each long 

block are grouped in a special way so as to use the results of independent 

random variables within each block. Then the moment generating function 

for sum of the random variables in each block is estimated in terms of that of 

the individual random variables. 
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Although for simplicity of notations and computations. the stationary 

process is considered, similar technique may be used for non stationary m 

dependent processes with identical results ; since the results for independent 
random variables in a triangular array of Dasgupta (1989) are used as 

basic tools. For moving average process the technical condition (2.1) is shown 

to be satisfied. 

2. Results for m dependent processes 

Our main result in this section is the following. 

Theorem 2.1. Let \Xn9 n > 1} be a stationery m dependent process 

satisfying (1.1) and (1.2). // 
p > (m-l)l(2(m-l)l) ... (2.1) 

Where m-i 

p = 
(m?l)-1 2 pi, pi 

= corr (Xl9 X1+i) 
i=i 

then the following holds 

| Fn(t)-d>(t) | < bn-1'2 exp (-y t2)9-oo<t<oo ... (2.2) 

where 6 > 0 and 0 < y( < 1/2) depends on m91 and p. 

Remark 2.1. (2.2) cannot be substantially improved even for bounded 

random variables since \Fn(t)?<$>(t)\ 
= 1? ?(t)<^(2tt)~1/2 exp(??2/2) for 

t > an112, V sufficiently large for bounded random variables. The values of 

p becomes more restrictive for large m. As m?> oo the r.h.s. of (2.1) tends to 

1/2Z. For m = 2, (2.1) asserts p > 0 ; for m = 3,1 = 2 this asserts p > 1/8. 

Example. Let Yl9 Y2, ... be i.i.d. random variables with mean zero and 

variance cr2. Then for the moving average process of order m 

1 m-i 

Xi = - 2 Ti+j, i > 1, 
we get 

m *=? 

p(X1}X2) 
= 

(m-l)lm,p(Xl9Xt) 
= 

(m-2)\m, ...9p(Xl9Xm) 
= 

l\m. 

Hence ? = (m-l)"1 2 p(Xl9X1+i) 
= - 

i=i * 

and this is always greater than (m?l)/(2(m?1)1) as I > 1. 

In what follows b represents a generic constant whose value may differ 

in different appearances. 

Proof of the theorem. For # > m with k = \n?(p+m)\ where [x] denotes 
the integer part of x and V ? 

n?k(p+m) if n > k(p+m) define 
p 

et 
= 2 

-2L(?-.i)(2?+w)+/> 
? = 

1, 2, ..., & 
??i 

7< 
= 2 XiP+ii_1)m+j 

... (2.3) 
i-i 

?' 

ek+1 = 2 Xfc(?>+m)+; or 0 according as V ^ 1 or not, 
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Now write ex in the following form 

i 
= 

Xxr]-Xm+x-{-X2m+1-\-... 

-\-X2-\-Xm+2-\-X2m+2-\ 

JrXmJrX2m-\-... 

= 
Zi+Z2+-+Zm ... (2.4) 

where each z$ is a sum of [pjm] or [p?m\-\-\ independent components. 

Take t > 0, let tn 
= t ?f(n). For proper choice of f(n) =f(n, t), we 

shall complete the proof by showing 

I*(*?)- (')I <&tt-1/2exp(-y?2) ... (2.5) 

P I 2 r?i > tn1/2f(n) < bn-112 exp (-yt2) \ I f=i / (2.6) 

fc+1 

\P ( X i>tn n1'*) -<?>(-tn) < bn'1* exp(-y?2). ... (2.7) I V i ' 

For g(x) 
= 

exp(c#2) and gx(x) 
= 

g(x/m), observe that since g is nonnegative, 
even and non decreasing function 

SgiiVi) = Eg ( ? (Zx-1-...+Z?)) < Eg ( sup |X,| ) 

/ W \ 
<? 

Sgr(X<)j =mEg(Xx) < oo from (1.5). ... (2.8) 

Again r?i? are i.i.d random variables and therefore by Markov inequality and 

(2.8) 

P 
( 

2 Vi 
|> tnwf(n)} 

= 
o(gx(t(n?k)1^f(n))yl < bn~v* exp(-yi2) ... (2.9) 

for some y > 0 if 

t%(njk)P(n)> logn. ... (2.10) 
Next note that 

E exp ( | j | A/m) = E exp ( 2 zJ A/m) < E exp (A sup \z?\ ) \ ?=1 ' ' * 1 ? i < m f 

<e( 2 exp(A|z,|)) ̂ m^fexpAIzJ) * t=i ' 

p/m 

< m 7T ??exp(A|Z?|) 
i=l (2.11) 
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assuming that zt is sum of p\m independent Xts. We conveniently igonore 
the fact that p/m may not be an integer. In view of (1.4), (2.11) reduces to 

E exp( | ex | h\m) < m 2&m exp(AVai?/(/m)). ... (2.12) 

Replacing h/m by h one gets 

E exp(h | e? | )< m 2&m exp(AV2 mp\l). ... (2.13) 

With (2.13) and proceeding along the proof of Theorem 2.1 of Dasgupta 
(1992a) one gets 

P( S*? > tn n1'2) < [m 2P'm Qxv(h2<r*2mpl(ln))?+i ? (-h*ntn) ... (2.14) 

I k+1 \ 
where si 

= var 2 et) > kp~*n. * f=?i ' 

Take h = t?(kp)V29 then for tn = 
*?/w(?) = i(l+o(l)) 

/ *+i \ 
P 2 i>tnn1/2) ^bmk+12?f ex$(mt2<r*2ll)ex-p(-t2(l+o(l))) > ??i ' 

< b m**12?/?? exp(-yxi2) ... (2.15) 

where yx 
= 

y1(mo*2fl) > 0, provided 

m<r*2?<l. ... (2.16) 

Now from (l.l)<rl*2(+2(m?1)/?) 
= 1. Hence (2.16) is satisfied under 

(2.1). Since 0(-*J 
~ 

(27t)-1/21? exp(-*2/2), *?-> oo, 

I / *+i \ 1 
P( 2 e, > in ww)_0(-fJ) < 6 m**1 2?/? expi-y^2). ... (2.17) 

Now 

r.h.s. of (2.17) < b n"1'2 exp(-y2?2), y2 < yx ... (2.18) 

if t2 > 
(yx-y2)? 

log 2(1+0(1)), i.e., if 

?2 > A?* for some A > 0. ... (2.19) 

Now for the region o(n112) < ?< A^x/^ proceed along the remark 2.11 of 

Dasgupta (1989) with g(x) = 
exp(\x\). Then for the region ?? > 2 log 

(\tn\+logg(rsntnKn))9 Kn-+ 0 i.e., t\ > rsntnKn9 tn 
= 

*(l+o(l)) i.e., t > rsnKn 
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/*+l \ = 
o(nV2), since s* = vari 2 e* )~ n, one obtains from (2.32) of Dasgupta 

(1989), after deleting the second term therein since truncation is not necessary 

when m.g.f. exists, the following : 

P^?\>n^tn)^(-tn) 
o(?eml/2?K-r1+0(Zw) 

< bn- e-y*2, o(n^2) < t < An1* . (2,20) 

A similar argument is used in (2.23) of Dasgupta (1992a). 

Now take f(n) 
= n~1/2 and p 

= na, for some a > 0, this satisfies (2.10) 

fpr tp>o(n1/2j. Hence (2.2) is true for t > o(n1/2), since (2.5)-*(2.7) are then 

satisfied. 

Next we proceed to show (2.2) for t = 
o(n1/2). Since ex is sum of p 

m-dependent vari?tes, proceeding as in (2.13) we may have 

(?(n) = 
Eex^(h\E X?Xk \ '?=i I ' 

<r*2 = 
EX\ < 1 as p > 0. .., (2.21) 

Therefore from the remark in page 134 of Statulevicius (1966) the lemma 
n 

on deviation therein holds for/ 2 XA provided 

|log?KA)l A<#A2,(r2 = 
var( ? Xt) 

= n. ... (2.22) 
1*1=:= \ i 

' 

Now take A = y,1'* = <r. Then from (2.21) 

I log 5*(1) I < log m+ 
- 

Jog 2+wr*2 mfl < H n = #A2 ... (2.23) 

for some H = H(m, <r*2,1) > 0. Therefore from (2) of Statulevicius (19?6) we 

obtain the following : 

1-Fn(t) = (l+o(l)) exp((filn)A(t?n)) (1-*(*)) for 1 < ? < o(n^2) ... (2.24) 

where A(x) is the power series of Cramer. Hence 

I'?(*)-*(*) I = 
|exp(/^)A^))~l|(l-<D(i))(l+o(l)). .? (2.25) 

Now for t=o(nV*), \ exp((*7*)A(f/n))-l Kn*1 ?3 Wln)^* *'*^-1 fi exp(o(*2)). 
Hence 

IFn(t)-Q(t) | < bn-1t2 e-t2/2+0{t2) < bn~112 e~y'2 ; 0 < y < 1/2 ,., (2.26) 

where ? > ?Q, for some ?0 > 0, 
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Now for O <t < tQ9 (2.2) follows from the uniform bound 0(n~ll%) due 

to Stein (1972). Hence (2.2), for 0 < t = 
o(n112). For the negative values 

of t, \t\ 
= 

o(n1/2) one uses (2') of Statulevicius (1966) and proceeds similarly. 

Hence the theorem. 

We can bound the l.h.s. of (2.21) just by assuming existence of m.g.f. of 

Xx in a neighbourhood of zero, see (2.11) ?(2.13). Therefore, since (2.21) 

implies (2.24) we have the following 

Corollary 2.1. Let {Xn ; n ?> 1} be a stationary m dependent process satisfy 

ing (1.1) and E erlxil < oo for some r > 0, then 

1 -Fn(tn) 
~ 

0(-U 
~ 

Fn(-tn) for tn 
= 

o(n ). ... (2.27) 

A few consequence of Theorem 2.1 are moment type convergences and Lq 
versions of the Berry Essen theorem. The proof of the followings are similar 

to those of Theorem 2.5 and Corollary 2.1 of Dasgupta (1992a). 

Theorem 2.2. Let the assumptions of Theorem 2.1 are satisfied. Let 

g : (? oo, oo)??[0, oo) be an even function with g(0) 
= 0, and Eg(T)<oo, 

T = N(091) and 

g'(x) 
= 

0(exp(x2y*))9 x > 03 0 < y* < y. ... (2.28) 

Then the following holds 

?EgU-1'2 2 Xi\-Eg(T) 
= 

0(n~^2). ... (2.29) 

Corollary 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then for 
8 > 1 and q > 1 one has 

\\(\+\t\ )"'/* exp (yt2) (Fn(t)-Q>(t)) \\q = 
0(n^2). ... (2.30) 
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