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Abstract

Consider the matrix ∆n = (( I(Xi + Xj > 0) ))i,j=1,2,...,n where {Xi} are i.i.d.
and their distribution is continuous and symmetric around 0. We show that the
rank rn of this matrix after proper centering and scaling behaves in some sense as
a sum of a 1-dependent stationary sequence. As a consequence

√
n(rn/n − 1/2) is

asymptotically normal with mean zero and variance 1/4. We also show that n−1rn

converges to 1/2 almost surely.
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1. Introduction

Suppose {X1, X2, . . .} is a sequence of i.i.d. random variables. Define the symmetric
matrix ∆n = (( I(Xi + Xj > 0) ))i,j=1,2,...,n where I is the indicator function.

The motivation for studying this matrix arises from the study of random network models,
known as threshold models. Suppose that there is a collection of n nodes. Each node
is assigned a fitness value and links are drawn among nodes when the total fitness
crosses a threshold. This gives rise to a good-get-richer mechanism, in which sites with
larger fitness are more likely to become hubs (i.e., to be connected). The scale free
random network generated in this way is often used as a model in social networking,
friendship networks, peer-to-peer (P2P) networks and networks of computer programs.
Many features, such as power-law degree distributions, clustering, and short path lengths
etc., of this random network has been studied in the physics literature extensively (see,
for example, Caldarelli et. al. (2002), Söderberg (2002), Masuda et. al. (2005)).

Suppose that the fitness value of the sites are represented by the random variables Xi

and we connect two points when their accumulated fitness is above the threshold 0. The
matrix ∆n then represents the adjacency matrix of the above random graph.

Note that ∆n is a random matrix with zero and one entries. There are a few results
known for the rank of random matrices with zero and one entries. See for example
Costello and Yu (2006), Costello, Tao and Yu (2006). Here we give some interesting
result on the rank of ∆n.

Suppose that the distribution of X1 is continuous and symmetric around 0. We then
show that the rank rn of this matrix is asymptotically half of the dimension. Indeed, the
rank of ∆n, after proper centering can be approximated in distribution by the sum of a
1-dependent stationary sequence. As a consequence the rank is asymptotically normal
with asymptotic mean n/2 and variance n/4. This approximation is strong enough to
also conclude that rn/n converges to 1/2 almost surely.

Theorem 1. Let ∆n be as above. Then, there exists a sequence of i.i.d. Ber(1, 1/2)
random variables ξi such that with Ξ = ((ξi∧j)),

rank(∆n) d= rank(Ξ) and 0 ≤ rank(Ξ)− 2
n−1∑

i=1

I(ξi = 1, ξi+1 = 0) ≤ 1.

As a consequence,

(A) 0 ≤ E( rank(∆n)
n − 1/2) ≤ 1

n

(B)
√

n
( rank(∆n)

n − 1/2
) ⇒ N(0, 1/4)

(C) rank(∆n)
n → 1/2 almost surely.

To prove Theorem 1 we will need the following result which may be of independent
interest.
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Lemma 1. Suppose we have a (non-random) sequence ξ1, ξ2, . . . , ξn such that each
ξi = 0 or 1. Let A = ((aij))1≤i,j≤n where aij = ξi∧j . Then

rank(A)− 2
n−1∑

i=1

I(ξi = 1, ξi+1 = 0) = 0 or 1.

Proof : The idea of the proof is as follows. First we apply an appropriate rank preserving
transformation on A by permuting its rows and columns. Then we calculate the rank of
the transformed matrix to get the result.

Suppose that k (0 ≤ k ≤ n) many of ξi’s are non-zero. We can directly verify that the
result holds for k = 0 and k = n. Indeed, when k = 0, rank(A) = 0 and

∑n−1
i=1 I(ξi =

1, ξi+1 = 0) = 0. Similarly, if k = n, rank(A) = 1 and
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) = 0.

Claim: Suppose that 1 ≤ k ≤ n− 1. Let 1 ≤ m1 < m2 < · · · < mk ≤ n be such that

ξi =

{
1 if i ∈ {m1,m2, . . . , mk},
0 otherwise.

Then the matrix A may be reduced to the following matrix B = ((bij)) by appropriate
row column transformations.

bij =





1 if j ≤ k, i ≥ mj − j + 1
1 if i ≥ n− k + 1, j ≤ n− (mn−i+1 − n− i + 1)
0 otherwise,

i.e.,

B =




0 0 . . . 0 0 0 0 . . . 0
...

...
...

...
...

...
...

...

1︸︷︷︸
m1−1+1,1

0
... 0 0 0 0 . . . 0

1 1︸︷︷︸
m2−2+1,2

... 0 . . . 0 0 . . . 0

...
...

...
...

...
...

...
...

...
1 1 . . . 1 1︸︷︷︸

n−1,n−m2+2

0 0 . . . 0

1 1 . . . 1 1 1︸︷︷︸
n,n−m1+1

0 . . . 0




.

Proof of the claim: By definition of the matrix A, its m1th row (resp. column) has
all ones starting from the m1th column (resp. row). Thus we may visualise A as follows:
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A =




0 . . . 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
0 . . . 0 0 0 . . . 0 0
0 . . . 0 1︸︷︷︸

m1,m1

1 . . . 1 1

0 . . . 0 1 am1+1,m1+1 . . . am1+1,n−1 am1+1,n
...

...
...

...
...

...
...

0 . . . 0 1 an,m1+1 . . . an,n−1 an,n




We move the first (m1 − 1) columns of A to the extreme east end and then move the
m1th row to the extreme south to get the following matrix A1 which has the same rank
as that of the original matrix A.

A1 =




0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0 . . . 0
1︸︷︷︸

m1,1

am1+1,m1+1 . . . am1+1,n−1 am1+1,n 0 . . . 0

...
...

...
...

...
...

...
...

1 an,m1+1 . . . an,n−1 an,n 0 . . . 0
1 1 . . . 1 1︸︷︷︸

1,n−m1+1

0 . . . 0




.

Now leave the first column, the last row, the first (m1−1) zero rows and the last (m1−1)
zero columns intact and consider the remaining (n−m1)× (n−m1) submatrix. This is
a function of ξm1+1, ξm1+2, . . . , ξn and write it in the way that A was written and repeat
the procedure. Note that now when we move the rows and columns, we move extreme
south and east of only the submatrix but the remaining part of the matrix does not
alter. It is easy to see that in (k − 1) more steps we obtain B. This proves the claim.

We return to the proof of the Lemma. Note that bij = 1 iff bn−j+1,n−i+1 = 1. In other
words, B is anti-symmetric (symmetric about its anti-diagonal). Indeed, B is the n× n
anti-symmetric 0-1 matrix containing minimum number of ones such that its i-th column
contains n−mi + i ones from bottom for 1 ≤ i ≤ k.

Let ui denote the number of 1’s in the i-th column of B. Then, u1 = n−m1 + 1, u2 =
n−m2+2, . . . , uk = n−mk+k. Since m1 < m2 < · · · < mk we have u1 ≥ u2 ≥ · · · ≥ uk.
Also from the anti-symmetry of B we get for k < r ≤ n, ur = #{i : 1 ≤ i ≤ k, ui ≥ r}.
This immediately implies that ur ≥ ur+1 for all r > k. Since uk = n−mk + k ≥ k and
uk+1 = #{i : 1 ≤ i ≤ k, ui ≥ k + 1} ≤ k, it follows that uk ≥ uk+1. In fact uk = uk+1

is not possible since then both are equal to k but then by definition of uk+1 < k. Thus
{ui}n

i=1 is a nonincreasing sequence.
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Let d be the number of distinct elements of the set {u1, u2, · · · , uk}. It is easy to see that d
is equal to the number of occurrences of (1, 0) in {(ξ1, ξ2), (ξ2, ξ3), . . . , (ξn−1, ξn), (ξn, 0)}.
Our goal is now to show that the rank of B is 2d or 2d− 1.

Let 1 ≤ i1 < i2 < . . . < id = k be such that u1 = u2 = . . . = ui1 > ui1+1 = . . . = ui2 >
ui2+1 = . . . > . . . = uk. We will consider the following two cases separately:

Case I: mk < n. In this case uk = (n − mk) + k ≥ k + 1. If we write out the whole
u-sequence, it looks like this

1 . . . i1 i1 + 1 . . . i2 . . . k k + 1 . . . uk uk + 1 . . . uid−1
. . . ui1 ui1 + 1 . . . n

ui1 . . . ui1 ui2 . . . . . . ui2 . . . uk k . . . . . . k id−1 . . . . . . id−1 . . . i1 0 . . . . . . . . . 0

The first row enumerates the column positions and the second row provides count of the
number of one’s in that column, that is, the corresponding ui.

The rank of the matrix B can be easily computed by looking at the u-sequence. Each
distinct non zero block contributes one to the rank. In this case, rank(B) = 2d and since
ξn = 0, we have also d =

∑n−1
i=1 I(ξi = 1, ξi+1 = 0). And therefore,

rank(B) = 2d = 2
n−1∑

i=1

I(ξi = 1, ξi+1 = 0).

Case II: mk = n. In this case uk = (n−mk) + k = k.

Now the u-sequence looks as follows

1 . . . i1 i1 + 1 . . . i2 . . . k k + 1 . . . uk uk + 1 . . . uid−1
. . . ui1 ui1 + 1 . . . n

ui1 . . . ui1 ui2 . . . . . . ui2 . . . uk id−1 . . . . . . id−1 id−1 . . . . . . id−1 . . . i1 0 . . . . . . . . . 0

In this case, rank(B) = 2d−1 and since ξn = 1 , we get
∑n−1

i=1 I(ξi = 1, ξi+1 = 0) = d−1.
So,

rank(B)− 2
n−1∑

i=1

I(ξi = 1, ξi+1 = 0) = (2d− 1)− 2(d− 1) = 1.

This completes the proof of the Lemma. 2

Remark Suppose that ξi’s are some 0-1 random variables. From the above proof it
follows that Z = rank(B) − 2

∑n−1
i=1 I(ξi = 1, ξi+1 = 0) is also a 0-1 valued random

variable with P (Z = 1) = P (ξn = 1).

Proof of Theorem 1: Write Xi as |Xi|Si where Si = sgn(Xi). The assumption of con-
tinuous symmetric distribution of the {Xi} implies that {|Xi|} and {Si} are independent.
Let |Xσ(1)| < |Xσ(2)| < · · · < |Xσ(n)| be the ordered values of |Xi|, i = 1, . . . , n.

Observe that the eigenvalues of ∆n are the same as the eigenvalues of ((I(Xσ(i) +Xσ(j) >
0))). Note that I(Xσ(i) + Xσ(j) > 0) = I(Sσ(i∧j) = 1). But since σ is a function of
|Xi|, i = 1, 2, . . . n and {Si}’s are independent of {|Xi|}’s, we have

eigenvalues of (( I(Sσ(i∧j) = 1) )) d= eigenvalues of (( I(Si∧j = 1) )).
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Let us now define,

ξi = I(Si = 1), i = 1, 2, . . . , n and Ξ = ((ξi∧j)).

Note that ξi
i.i.d.∼ Ber(1, 1/2). From the discussion above, and from Lemma 1, we have

rank(∆n) d= rank(Ξ) and | rank(Ξ)− 2
n−1∑

i=1

I(ξi = 1, ξi+1 = 0)| ≤ 1.

Now note that Yi = {I(ξi = 1, ξi+1 = 0), i ≥ 1} is a stationary 1-dependent sequence of
random variables with mean 1/4. Part (A) now follows immediately.

From the discussion above, the asymptotic distribution of
√

n
(
rank(∆n)/n − 1/2

)
is

the same as that of n−1/2
(
2

∑n−1
i=1 I(ξi = 1, ξi+1 = 0) − n/2

)
. But by the central limit

theorem for m-dependent stationary sequence, the latter is asymptotically normal with
mean zero and variance σ2. This variance is calculated as

σ2 = (2)2
[
Var(Y1) + 2 Cov(Y1, Y2)

]
= 4[(1/4− 1/16)− 2/16] = 1/4.

This proves Part (B) of the theorem.

To prove Part (C), first observe that

∣∣∣rank(Ξ)
n

− 2
n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0)
∣∣∣ ≤ 1

n
.

By using the fact that the summands are all bounded, it is easy to check that the moment
convergence in the central limit theorem for m-dependent sequences hold. That is

E
[√

n
( 2

n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0)− 1/2
)]4

→ 3/16.

Combining all the above, we conclude that

E
[√

n
(rank(∆n)

n
− 1

2

)]4
≤ E

[√
n
( 2

n

n−1∑

i=1

I(ξi = 1, ξi+1 = 0)− 1
2

)]4
+ O(1) = O(1).

This implies that
∞∑

n=1

E
(
rank(∆n)/n− 1/2

)4
< ∞

and thus now Part (C) follows from the Borel Cantelli Lemma. 2

Acknowledgement We are grateful to Anish Sarkar for helpful discussions and com-
ments.
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