Multinomial Distribution, Quantum Statistics and
Einstein-Podolsky-Rosen Like Phenomena
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Abstract Bose-Einstein statistics may be characterized in terms of multinomial dis-
tribution. From this characterization, an information theoretic analysis is made for
Einstein-Podolsky-Rosen like situation; using Shannon’s measure of entropy.
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1 Introduction

The Bose-Einstein statistics for indistinguishable micro particles may be explained
and interpreted [1] within the framework of waditional probability theory. Bose-
Einstein statistics may be characenzed by considering it as a compound distribution
of a multinomial distribution with a Dirichlet distribution. This characterization via
prior probability [2, 3]; gives us a method of putting one marble at a time in cells
such that the probability of resulting random arrangements of marbles in different
cells follow Bose-Einstein statistics. The aim of this note is to investigate Maxwell-
Bolzmann, Bose-Einstein and Fermi-Dirac statistics using Shannon’s measure of
entropy and to reanalyze the Einstein-Podolsky-Rosen like situation within the infor-
mation theoretic framework in the light of prior probability distribution. For reader’s
convenience let us briefly recapitulate the results of Bose-Einstein statistics.
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Consider W = (W, Wa, ..., Wi o be a random vector uniformly distributed in
the region:
k
a:i{wl.wg ..... We): Wiz 0, ) W=1 (n
i=1

The following is a Dirichlet integral

ff W = .I"{m}---l"{nx} _ )
A Fing 4+na+---+ng)

where ny, ..., e = 0ow={w,...,uwg);dw=dw ---duy.
Forn, =--- =n; =1 the rhs. of (2) is atlﬁr providing the volume of the re-

gion of integration A . Thus, the joint probability density of W, when the density is
constant, is given by

Fowy = I (k—1)!, ifw;=0and Yt wy=1, 3
0, otherwise '

This is uniform distribution on the probability simplex: wy + -+« + wyg = 1, where
wy =0, ¥i.

Let N=i(N|. N2, ..., Ni) be a random vector with non-negative integer valued
coordinates such that given W = w, the vector N has multinomial distribution with
parameters n, wy, wa, ..., wg. That is,

k
| n'
PN =n...., Ne=nyW=w,Y ni=n|=———wwh* ..yl
( Zl ! nylnale-ong! 172 k
= L

(4)
The r.hs. of (4) when integrated over A by uniform a priori distribution (3), yields
Bose-Einstein statistics; i.e.,

k k
P N:n| nj=n =f P N=n|w=w. ni=mn | fiwidw
(v=rfgr =)= 2 (v=rfw = =)

i=1 , i=1

n+k—1
= 5]
)

vide (2), where n = (ny,..., ng); osee Tersoff and Bayer [4] for a similar argu-
ment leading to (5). The Maxwell-Boltzmann statistics refer to distinguishable par-
ticles. Here probabilities for a marble (particle) to be assigned in any cell (state)
are equal; whereas for Bose-Einstein statistics we assume equal expected probability
with uniform a priori distribution (3) on the region (1). The coordinates of the vector
w={wp,...,w;) have an exchangeable distibution in (3). Here w; represents the
probability of a particle to be assigned in the i-th cell; i = 1,..., k. The continu-
ous random varables w; s are of similar stochastic magnitude and the above integral
(3) represents the probability of particle-amangement if the cell probabilities were
allowed to be randomly distributed in an uniform manner, specified in (3). The termi-
nology ‘arbitrary weighting” used in [4] is different in concept from that of ‘random
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uniform prior” used here. Bose-Einstein statistics of indistinguishable particles is ob-
tined via integration of multinomial probabilities comresponding to distinguishable
particles with respect to uniform prior on A. From Bayesian point of view, this result
may be interpreted as follows: distinguishable particles lose the property of distin-
guishability, after their probabilities are averaged by uniform prior on A, This is
similar o the situation where individual observations cannot be recovered from their
average value,

It is worth mentioning [5-8] that the Maxwell-Boltzmann, Bose-Einstein and
Fermi-Dirac statistics are special cases of the degencerate statistics for which the
weights i.e., the number of ways in which each identifiable realization (macrostate)
of the system can occur is, respectively given by the following:

k nj
W:%m =n! g‘—. (6)
11n;l
i=1
deg L (gi +n;— 1)
cn ] = - .
= —_— 7
Wee ]] (g — Diny! 0
deg - &'
Wep o = | —— (8)
Ko H nilgi —n;)!

where g is the degeneracy (multiplicity) of each level .

2 Correlation and Information

Consider the uniform a prior distribution (3) used in the charcterization (5). One
can show that the correlation structure of W) and Wi is given by
. . 1 _
Com (W, Wa) = —— (9
k—1
where k is the number of cells; see Proposition 1 in the Appendix. The random prior
probabilities W; add up to one. Increasing the value of one W; is likely to reduce the
values of the other W;'s, inducing a negative correlation structure amongst these.
This correlation structure is absent in the case of distinguishable particles follow-
ing Maxwell-Boltzmann statistics. This statistical dependence might be related to the
wave aspect of the particle. Wootters and Zurek [9] used Shannon entropy to give a
quantitative formulation of wave-particle duality in the double-slit experiment. The
general definition is the following. If a system can be in one of the several possible
states in §, but if we know only the probabilities p; of its being in each state 7 in §,
then the amount of information about the system is

I = Z pi lnp; (10)

ie§

This is the negative of the Shannon entropy.
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If p; = p for cach micro-state i, then F =Inpas ¥, o pi=1.

To apply Shannon’s information measure, one needs o introduce the concept of
canonical ensemble where the index i does not indicate the state of the particle but
rather refers to configuration of the system or the microstate of the system. This is
nothing but the entire set of allocations of particles o particle-states. The informa-
on I =3, ¢ pilnp then refers to the allocation of distinguishable systems o a
set of distinguishable microstates. Within each such microstate, we then consider the
allocation of distinguishable (MB), indistinguishable (BE) or restricted indistinguish-
able (FD) particles to the set of non-degenerate distinguishable (and non-interacting)
particle states.

To apply “maximum entropy™ principle, the weight or probability of each realiza-
tion (i.c., macrostate) is considered instead of each configuration (microstate), since
the microstates are generally grouped into macrostates. For example, in the case of
MB statistic we consider the probability as [6, 7, 10];

k
n! 1
Pue=—||—

| ' TS
i=1

the probability of each microstate being k=",
For BE and FD statistics each weight is 1. Itis well known [7] that

cgen
cgen ME degen
de = —a = Wge

So, g lies between fgg and Tpp. The equality sign holds for n = 1,k = 2. This

indicates that it is not possible o make any difference between the behaviors of ‘one

distinguishable’ and ‘one indistinguishable’ particke within the present framework of

information theory. It is possible only for the particles n = 2 and k& = 2 states. 1t gives

nse Lo an interesting possibility to reanalyze the EPR like situation for two particles.
Let us then calculate information for k =20 =2;

Irgp=0, Igg=—1In3
But for individual particles,
Iy =Igg = —1In2
Now, if the two states of the two particles be treated as independent, then total infor-
mation is sum of /' and 1™ (for particles I and 11, say)
'+ "= 22 (11)

So.

Iyt = (1 1)
It seems that some information is lost during the preparation of the independent states
by the process of separation of the particles. This can be explained by the fact that
whenever we form a two particke state, the particles become correlated. As a result,



388 Found Phys {2008) 38: 384-304

by measuring information on any of the subsystems we may not be able o predict
all the information for the remaining system unambiguously. Itis also clear from the
following analysis.

Consider a particle in any of the two states; probability of the first and second state
are p and (1 — p) respectively, i.e. the probabilities are p* (1 — p)' =% where x =0, 1
represents the number of particle in first state. Now, assume p to have a uniform
distribution on (0, 1). Then, from the characterization of Bose-Einstein statistics via
multinomial distnbution,

1
'PBE = f 'ﬂ"{l - P}l_'r!![{ﬂ. ljdﬁ‘. xr=0,1
0

] —

For 2 particles going in any of the two states (vide (2)),

Lt X 1»
Pé‘g" =£ fn ﬁp"‘{l —pjl_"'ug{{). Lidp, x=0,1,2

where 1 is uniform a priovi distribution of p over [0, 1] and w2 is uniform a priori
distrbution on {(w, wa) tw; +ws =1} Here wy =pandw,=1—p.

Observe that, one can not reconstruct the joint a priovi distribution (0, 1) from
the marginal a priorvi distribution wy (0, 1) of the two particles, unless we know the
dependence structure; i.e. past history of w and w; before the particles are separated.
In other words, the prior w2 (0, 1) of the 2 particles in their joint state contains more in-
formation than the total of two individual priors wp (0, 1), considered after separation.
Here, the non-separability of the wave function of the joint state is a manifestation of
the peculiar quantum characteristics of the ensemble of indistinguishable particles,
which is absent for that of distinguishable particles following Maxwell-Boltzmann
statistics. Here no information is assumed to be instantaneously propagated from one
particle to another particle, since the correlation arises due to the ensemble property
of the Bose-Einstein or Fermi-Dirac particles. If we want to measure on the particle
1 or particle 11, without disturbing the other ie., we like to prepare the states of 1
and 11 as independent states then the very preparation of these states may destroy the
correlation structure.

This lack of additive ness is due to non-separability of a pair of EPR correlated
objects, classical or micro. Consider an unbiased coin with probability of turning
head as 1/2. Let the coin be tossed and without looking at whether head or tail has
turned up, suppose one sets apart the two sides by splitting it perfectly in the middle.
Now, if two persons A and B take the upper and lower sides respectively and note the
outcome at a very distant place from each other, then by observing the outcome of a
person, other person’s outcome is known. From information theoretic point of view,
we may analyze the situation as follows.

Since A may observe head or tail with equal probability 12, ignoring the existence
of the observer B, the Shannon’s information for the observer A s [y = % In% 4
finl=—m2
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Similarly, the marginal information of observer B is Iy = —In2. But the total
information before isolating the coin into two parts is different. Denote HT as head
wrning up and tail turning down. Then the outcomes are HT and T H, cach with
probability 1/2. The total information before segregation is seen to be greater than
the sum of two marginal information of the two observers A and B.

In-+-In-=—In2=-2n2=14+1g (13)

| —
I | —
2| =
I | —

Tag =

Again, the conditional information of B given A is zero. Since, probability that B
observes tail, given that A observes head 1s one, e, P(IB =T | A= H) =1 and
P(B=H|A=T)=1.80, Iga=Inl =10 Similarly, I4 5 =0 and

Ihag=—In2=14+41ga

=Ig+Iag (14}

Here, to regain the total information from that of one observer (say A) of two EPR
correlated observations of A and B, the past history that the observation of A was
coupled with that of B in a particular way is essential. Such a past history reduces the
variability of B's observation given that of A. This in turn increases the conditional
information, leading to the recovery of total information.

3 Partial Indistinguishability and Smooth Correlation

The correlation due to Bose-Einstein and Fermi-Dirac type indistinguishability is of
discrete nature depending on noand &, In general it need not be so. Note that, the
multinomial distribution (4) of distinguishable particles, when integrated by a uni-
form a priori distribution over A gives Bose-Einstein statistics. The Bose-Einstein
statistics for quantum micro partickes of mass m (= 0) may be seen in relation to
a class of smoothly changing priors on A indexed by a parameter L depending on
decreasing mass m (] 0) of distinguishable objects. One may then consider prior dis-
tributions which may converge to the uniform prior comresponding to Bose-Einstein
SLALISLICS 1N & CORinUonS MAnner

Instead of uniform distibution over A which leads to Bose-Einstein statistic, con-
sider the following a priori distribution for W, where immediate two cells are highly
correlated. Let,

friw) = (k 1';'(1 + 2 '”"3) (15)
L = ! Ik .
onA, where L = Lim) = 118 a large constant, thus cavsing a little perturbation on the
uniform prior. This distrbution, when compounded with the multinomial distribution
(4), gives

nlik—1)!

P = P(N|=ny.,.... Ny =ng) = 1
L. (N =n k=0 {n+k—1}!l +

ny—na

(n+ &)Lk

I (16)
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vide (2). Then in the limiting case, as k — oc or, L — oc, we regain the Bose-
Einstein statistics. L — o¢ implies that the perturbation over uniform a priori dis-
tribution (3) is negligible. In (15), we considered a small perturbation over uniform
prior affecting only the first two cell probabilities. Such inte nmediate situations may
arise when occupation of a state by a particle has an influence on the occupation
of other states in a special manner; related to it is the screening tvpe effect where a
cluster of nearby cells are noticeably correlated.

It may be mentioned that, although the elementary particles in nature are either
bosons or fermions, one can always generate a special mechanism of selection such
that the resultant probability distribution is of the above type. The intermediate sta-
tistics can be applied o explain composite-particle systems; e.g., the Cooper pair in
the theory of superconductivity, the Fermi gas super fluid, the exciton, ete. Some-
times composite particles, composed of several fermions, may behave like bosons,
obeying Bose-Einstein statistics, when they are far distant from each other. However,
when they come closer, the fermions in different composite bosons start 1o ‘feel” each
other, and the statistics of the composite particles deviate from ideal Bose-Einstein
statistics. Intermediate statistics may then be used as an effective tool for studying
these systems; see [11], for relevant discussions and references.

In the second part of the prior (15), there is an odd function of w and some other
odd function g(w) of w may also be considered. One may interpret (15) as follows:
on certain restricted sets of A, restriction being on first two coordinates; the particles
are indistinguishable e.g., when w) = wy ie., first two cells are of equal random
probability, then friw) = (k — 1)!; Le, f is uniform on A and (16) becomes Bose-
Einstein statistic with np = n2. One may interpret L = Lim) (1 oc form | 0)of (15)
as a degree of indistinguishability; since Bose-Einstein statistics of indistinguishable
particles is regained when L — oc.

From (16), observe that

P Prg) ny — Rz
(Pr BEJ.-'rPBE—{"_i_HLk—’

as L — oc. The Shannon’s information [, of the probability distribution (16) is given
in (17). It turns out to be sum of two components; the first component is Shannon’s
information for Bose-Einstein statistics and the second component is a remainder
with diminishing effect, as L — oc. See Proposition 2 in the Appendix for a proof

n+k—1 n+k—1y"" ny—na
iIn p; = —In 14—
Zp‘ pi ( k—1 )+;( k-1 ) I +{n+k}Lk|

ny—na .

% Ingl + ———— 17

I + (n +k}Lk| tn

where A, ={(ny, ..., ng): E ‘-'Zln,- =nn =0¥i=1,..., kb, L= 1. Notethat(17)

is a contine sl differentiable function of L. Expanding the logarithm and using the
variance cove  nee results of occupancy vectors of Bose-Einstein statistics [2], one
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obtains for large L, vide Proposition 2 in the Appendix, the following

n+k—1 1 2nink +2k—1) o )
=Y pinp =i )+ (1+o()}  (18)
-

k—1 LIk k + Din + k)2

where o(1) term goes o zero, as L — oo,
From (3), (15), (16) and (18), it is interesting to observe that

Ifr— fl=O(L™")=|P.— Pgel. although |I —Ige| = O(L™)

The comrelation function for the partial type of indistinguishability (15) is

Sl+o(D)}  (19)

1 1 Ink —1In (" +k - 1) 1 2nink +2k—1)
- =nlnk — s
L ME L2k4{k+1}{n+k}-

k—1

Thus the probability of the armangement of particles, may smoothly change 10 Bose-
Einstein type indistinguishability; e.g., when the distinguishable particles are of m —
0 and the a priori probabilities of the particles going to different cells are random
variables of similar magnitude, and e.g., when the first two cells have egual random
probability.

4 Homogeneously Perturbed Uniform-prior and BE Statistics

In the above, we considered perturbation of uniform prior over first two cells. Next
consider the following prior where all the cell probabilities are homogeneously per-
turbed over uniform-prior distribution. Let,

fa (W) = [ 1+ (wyws - --wg)* /L) (20)

@ >0, L=0. Then from (2), ¢~ = M) + (0} 5o that the total probability
is 1. Note that o — 1 and/ or L — oc imply ¢ — (k). then (20) provides uniform
prior (3) on A, in the limit. The multinomial distribution (4), when integrated with
prior (20) gives the following, vide (2)

PN =ny,..., Ny =ny)

Fin+1) Fin+ 1) T'inyp +a) Fing+a) 1
c‘ 'R —
Fin+k)y TDin+ka)Cing +1) Ning+ 1) L

(21)

Instead of perturbation over all the cell probabilities, one may consider a perturba-
tion of uniform prior over r consecutive cells in a circular manner, 2 < r < k. Such
achoice may be relevant especially when the state space is circular or spherical. Let,

1

1 ) )
flw)= C|:1 + E{{wlu—-‘z cew ) T (w4

+ (wgwy -y n""l}] (22)
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@ > 0,L > 0. From (2), one has ¢' = [[(k)] ™" + e, so that the total
probability is 1. As before, ¢ — (k). as @ — L and /or L — oc. Thus (22) provides
uniform prior (3) on A, in the limit. The multinomial distribution (4), when inte-
grated with the prior probability distribution (22) gives the following probabilities of
different arrangements over k cells

Fin + 1) L Fin + 1)

Nn+k)y kLTDn+rie—1)+k)

» Finmy+a) Tiny +a)
Fing+ 1) Fin, + 1)

Cing +o) Cin,_| +a) I]

mta) | S . (23)
Cing +1) Cing_1+ 1)

Observe that the first terms in the rhs, of (21) and (23) are of the form C% . These
in the limit when o — 1 and / or L — oo, provide the Bose-Einstein statistic. The
remainders in the rh.s. of (21) and (23) has diminishing effect as L — oc. Thus (21)
and (23), in the limit, provide the Bose-Einstein statistic. The calculations of Shan-
non’s information and comelation function for the type of partial distinguishability
(21 and (23) are similar to that of (17)-(19).

Since (17) is a continuously differentiable function of L = Lim), (19} is so in
L. The transition m — 0, (L{m) — o¢) may be interpreted as particles are more
and more indistinguishable. Unlike the comrelation explained by local theores [12],
(17) indicates that the Lh.s. of (19) does not have a kink anywhere. Similar observa-
tions hold for the tvpe of partial indistinguishability (21) and (23). The presence of
kink in correlation structure was observed in explaining quantum correlation via hid-
den variable theory as calculated by Bell. Hess and Philipp [ 13] discussed breakdown
of Bell's theorem for local parameter spaces. The local theory was not in conformity
with quantum predictions as seen from violation of Bell's inequality. The quantum
correlation 1s a smooth function. The Lhs. of (19715 also smooth. But the correlations
calculated from local theores of hidden variable are not so.

Adinowledgements  We thank the monymous reviewers for a very detailed and constructive sug ges-
tions.

Appendix
Proposition 1 Let W = (W W2, ..., Wi) be a random vector with uniform dis-
tribution on the region A = {(W, Wa, ..., We o W = 0, Zf:l W; = 1}. Then,

Cor. (W, W2) = —ﬁ.

Proaf Observe that W;'s have same marginal distribution and Zle W; = 1. Thus,
kevar(Wi) + k(k — 1)cov( Wy, W2) =0. This states, cov( W), Wa) = — )
Since Wy and Wa has same marginal distribution, the result follows. O



Found Phys (2008) 38 384394 3

Proposition 2 The Shannon’s information for the probability distribution (16) is

n+k—1 1 2nink +2k—1) )
Zp‘.|np‘.=_|n( )+ 11 +e(l)}
-

k—1 L2k + D(n+ k)2

Proaf With A, = {(ny,..., ng) :Zle nj=n,n=0%¥=1,..., k} note that,

n+k—1y"" ny—ns nk—1y""
n p; = I+
2 niter ;( k-1 ) I +i"+“f~"| [( k-t )
n|p—nz
® il —
I +{n+k}Lk|]

-l —a -1y
=Z(n+£ 1) Il+&l[ln(’i+i 1)
: k—1 (n+k)Lk k—1

Ry —nz
In{l + ——-——
+ I +{n+k}Ul'|]

-1
n—+k—1 n+k—1 np—na
=—In l+ —
( k—1 )+42( k—1 ) I +{n+k}Lk|

An

% |n 1 + H
(n+k)Lk

as » . pr = 1. Now for large L, use the approximation In(1 + x) = x(1 +o(1)), for
small x, to obtain the following

nk—1 n4k—1y"" ny—n
‘Z.ﬂjlnp,_—ln( ‘] )+;( i ) |1+7{"+Hul

Aw

ny—nz o
* I—IU +a(l))

(n +k)Lk
n+k-—1 n+k—1 -1
= —1
"( k—1 )+Z( k-1 )
A
_ ny—na {H[—Mg}z (1 +o(1);
(n+ 0Lk ki U T

Now use the results on moments of occupancy numbers of BE statistic [ 2], to obtain

o -1
Z(":L i 1) ny=E(N)=n/k

An

ntk =17 2 \2 . 5 n+lnik—1) n?
Z( ) ny = E(N)"= V(N + E(N) =k+1 o _i_ﬁ
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n+kn n?

n+k—1 -1
> miny = cov(Ni, Na) + E(NDE(N2) = — 1= 5+ 15

k—1
An

Using the above, we finally obtain

E o ln(,H.k_l) I 2nink+2k—1)
: pilnp; = -1 L2k k 4 1)(n + k)2

11+ o()}.
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