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Abstract. Hudson-Parthasarathy (H-P) type quantum stochastic dilation

of a class of C0 semigroups of completely positive maps ( quantum dynami-

cal or Markov semigroups) on a von Neumann or C∗ algebra, with unbounded

generators, is constructed under some assumptions on the semigroup and its

generator. The assumption of symmetry with respect to a semifinite trace

allows the use of Hilbert space techniques,while that of covariance with re-
spect to an action of a Lie group on the algebra gives a better control on
the domain of the generator. A dilation of the dynamical semigroup is ob-

tained, under some further assumptions on the domain of the generator, with
the help of a conjugation by a unitary quantum stochastic process satisfying

Hudson-Parthasarathy equation in Fock space.

1. Introduction

In an earlier series of papers ([13], [14]), we had constructed a theory of sto-
chastic dilation “naturally” associated with a given quantum dynamical semigroup
(q.d.s.) on a von Neumann or C∗ algebra with bounded generator. There the com-
putations involved C∗ or von Neumann Hilbert modules, using the results of [3],
map-valued quantum stochastic processes on modules and stochastic integration
with respect to them ([15], [19]). It is then natural to consider the case of a
q.d.s. with unbounded generator and ask the same questions about the associated
stochastic dilations. As one would expect, the problem is too intractable in this
generality and we impose some further structures on it, viz. we assume that the
semigroup is symmetric with respect to a semifinite trace and covariant under the
action of a Lie group on the algebra. This additional hypothesis enables us to
control the domains of the various operator coefficients appearing in the quantum
stochastic differential equations so that the Mohari-Sinha conditions ([17],[16])
can be applied. As precursors of this work, we may mention those in [10] and [1].
While the first one deals with a general EH flow with unbounded structure maps
under some additional hypotheses, the second one treats the problem in a different
spirit.

A remark about notation: we shall denote by Lin(V,W) the space of linear maps
from a vecor space V to another vector space W, and by Dom(L) the domain of
a possibly unbounded operator on a Banach (or more generally, locally convex)
space. Tensor product of Hilbert spaces or of operators will be usually denoted
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by ⊗, and sometimes ⊗alg is used to denote algebraic tensor product (i.e. without
any kind of topological completion). Let H1,H2 be two Hilbert spaces and A be a
( possibly unbounded ) linear operator from H1 to H1 ⊗H2 with domain D. For
each f ∈ H2, we define a linear operator 〈f,A〉 with domain D and taking value
in H1 such that,

〈〈f,A〉u, v〉 = 〈Au, v ⊗ f〉 (1.1)

for u ∈ D, v ∈ H1. We shall denote by 〈A, f〉 the adjoint of 〈f,A〉, whenever
it exists. Similarly, for any T ∈ B(H1 ⊗ H2) and f ∈ H2, one can define Tf ∈
B(H1,H1 ⊗H2) by setting Tfu = T (u⊗ f).

2. Preliminaries

Let A be a separable C∗-algebra and τ be a densely defined, semifinite, lower
semicontinuous and faithful trace on A. Let Aτ ≡ {x : τ(x∗x) < ∞}. Let
h = L2(τ), and A is naturally imbedded in B(h). We denote by Ā the von
Neumann algebra obtained by taking the closure of A with respect to the ultraweak
topology inherited from B(h). Clearly Aτ is ultraweakly dense in Ā. Assume
furthermore that G is a second countable Lie group with (χi, i = 1, ...N) a basis of
its Lie algebra, g 7→ αg ∈ Aut(A) a strongly continuous representation. Suppose
that αg(Aτ ) ⊆ Aτ and τ(αg(x

∗y)) = τ(x∗y) for x ∈ Aτ , y ∈ A, g ∈ G, which, by a
standard polarization argument, is equivalent to the assumption that τ(αg(x

∗x)) =
τ(x∗x) for x ∈ Aτ . This allows one to extend αg to a unitary linear operator (to
be denoted by ug) on h and clearly αg(x) = ugxu

∗
g for x ∈ A. It is indeed easy to

verify this relation on vectors in Aτ and then it extends to the whole of h by the
fact that h is the completion of Aτ . For f ∈ C∞

c (G) (i.e. f is smooth complex-
valued function with compact support on G) and an element x ∈ A, let us denote
by α(f)(x) the norm-convergent integral

∫

G
f(g)αg(x)dg, where dg denotes the

left Haar measure on G.

Lemma 2.1. g 7→ ug is strongly continuous with respect to the Hilbert-space
topology of h.

Proof. Let A1 ≡ {x ∈ A | τ(|x|) < ∞}. It is known that A1 is dense in h in
the topology of h. Furthermore, for x ∈ Aτ and y ∈ A1, |τ((ug(x) − x)∗y)| ≤
‖(ug(x) − x)∗‖τ(|y|), which proves that g 7→ τ((αg(x) − x)∗y) is continuous, by
the strong continuity of α with respect to the norm topology of A. But by the
density of A1 and Aτ in h and the fact that ug is unitary, we conclude that for
fixed ξ ∈ h, g 7→ ugξ is continuous with respect to the weak topology of h, and
hence is strongly continuous. ¤

The above lemma allows us to define α(f)(ξ) =
∫

f(g)ug(ξ)dg ∈ h for f ∈
C∞
c (G), ξ ∈ h. Furthermore, from the expression αg(x) = ugxu

∗
g, it is possible

to extend αg to the whole of B(h) as a normal automorphism group implemented
by the unitary group ug on h and we shall denote this extended automorphism
group too by the same notation. Let A∞ ≡ {x ∈ A : g 7→ αg(x) is infinitely
differentiable with respect to the norm topology }, i.e. A∞ is the intersection of
the domains of ∂i1∂i2 ...∂ik ; k ≥ 1, for all possible i1, i2, ... ∈ {1, 2, ...N}, where ∂i
denotes the closed ∗-derivation on A given by the generator of the one-parameter



DILATION OF SEMIGROUPS 89

automorphism group αexp(tχi), where exp denotes the usual exponential map for
the Lie group G. The following result is essentially a consequence of the results
obtained in [11], [18].

Proposition 2.2. (i) A∞ is dense ∗-subalgebra of A.
(ii) Similarly, we denote by dk the self-adjoint generator of the unitary group
uexp(tχk) on h such that uexp(tχk) = eitdk , and consider the subspace h∞ ≡
⋂

i1,i2,...
Dom(di1di2 ...dik ; k = 1, 2, ...). Then h∞ is dense in h.

(iii) If we equip A∞ with a family of norms ‖.‖∞,n; n = 0, 1, 2, ... given by:

‖x‖∞,n =
∑

i1,i2,...ik; k≤n

‖∂i1 ...∂ik(x)‖;

for n ≥ 1, and ‖x‖∞,0 = ‖x‖, and similarly define a family of Hilbertian norms
‖.‖2,n; n = 0, 1, 2, ... on h∞ by:

‖ξ‖2
2,n ≡

∑

i1,i2,...ik;k≤n

‖di1di2 ...dik(ξ)‖2

on h∞, then A∞ and h∞ are complete with respect to the locally convex topologies
induced by the respective (countable) family of norms as defined above. In other
words, A∞ and h∞ are Frechet spaces in the topologies (to be called “Frechet
topologies” from now on) described above.
(iv) αg(A∞) ⊆ A∞, ug(h∞) ⊆ h∞ for all g ∈ G. Furthermore, g 7→ αg(x), g 7→
ug(ξ) are smooth (C∞) in the respective Frechet topologies for x ∈ A∞, ξ ∈ h∞.
(v) Let A∞,τ = A∞

⋂

h∞. It is a ∗-closed two-sided ideal in A∞ and is dense in
A, A∞, h and h∞ with respect to the relevant topologies.

Proof. The proof of (i) and (ii) will follow immediately from the references cited
before the statement of this proposition. The proof of (iii) is quite standard, which
uses the fact that ∂i, di’s are closed maps in A and h respectively.

Next we indicate briefly the proof of (iv) for A∞ only, since it is similar for h∞.
First of all, by the definition of A∞ and the fact that G×G 3 (g1, g2) 7→ g1g2 ∈ G

is C∞ map, we observe that for x ∈ A∞ the map (g1, g) 7→ αg1(αg(x)) = αg1g(x)
is C∞ on G × G, hence in particular for fixed g, G 3 g1 7→ αg1(αg(x)) is C∞,
i.e. αg(x) ∈ A∞. Similarly, for fixed x ∈ A∞ and any positive integer k, the map
F : Rk × G → A given by F (t1, ...tk, g) = αexp(t1χi1

)...exp(tik
χk)g(x) is C∞. By

differentiating F in its first k components at 0, we get that ∂i1 ...∂ik(αg(x)) is C∞

in g.
To prove (v), we need to note first that the elements of the form α(f)(ξ), with

f ∈ C∞
c (G) and ξ ∈ Aτ are clearly in A∞,τ . Let us first consider the density in h

and h∞. Since the topology of h∞ is stronger than that of h and since h∞ is dense
in h in the topology of h, it suffices to prove that the set of elements of the above
form is dense in h∞ in the Frechet topology. For this, we take ξ ∈ h∞, and choose a
net xν of elements from Aτ which converges in the topology of the Hilbert space h
to ξ, and then it is clear that α(f)(xν) → α(f)(ξ) ∀f ∈ C∞

c (G) with respect to the
Frechet topology of h∞, since di1 ...dikα(f)(xν − ξ) = (−1)kα(χi1 ...χikf)(xν − ξ).
Thus, it is enough to show that {α(f)(ξ), f ∈ C∞

c (G), ξ ∈ h∞} is dense in h∞ in the
Frechet topology. For this, we choose a net fp ∈ C∞

c (G) such that
∫

G
fpdg = 1∀p
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and the support of fp converges to the singleton set containing the identity element
of the group G, and then it is simple to see that α(fp)(ξ) → ξ in the Frechet
topology. Finally, the norm-density of A∞,τ in A and the Frechet density in A∞

will follow by similar arguments. ¤

Remark 2.3. It may be noted that for x ∈ A∞,τ , δi1 ...δik(x) = di1 ...dik(x) ∈ A
⋂

h.

This follows from the fact that if yp is a net in A⋂h which converges both in the
norm topology of A as well as in the Hilbert space topology of h, then the norm-
limit belongs to h and the two limits must coincide as vectors of h.

Now we shall introduce some more useful notation and terminology and prove
some preparatory results. If H is any Hilbert space with a strongly continuous
unitary representation of G given by Ug, we denote by H∞ the intersection of
the domains of the self-adjoint generators of different one-parameter subgroups,
just as we did in case of h. We denote the corresponding family of “Sobolev-like”
norms again by the same notation as in case of h and consider H∞ as a Frechet
space as earlier. We call such a pair (H, Ug) a Sobolev-Hilbert space and for two
such pairs (H, Ug) and (K, Vg), we denote by B(H∞,K∞) the space of all linear
maps S from H to K such that H∞ is in the domain of S, S(H∞) ⊆ K∞, and
S is continuous with respect to the Frechet topologies of the respective spaces.
We call a linear map L from H to K to be covariant if H∞ ⊆ Dom(L) and
LUg(ξ) = VgL(ξ)∀g ∈ G, ξ ∈ H∞.

Lemma 2.4. If L from H to K is bounded (in the usual Hilbert space sense) and
covariant in the above sense, then L ∈ B(H∞,K∞).

Proof. Let dHi and dKi be respectively the self-adjoint generator of the one param-
eter subgroup corresponding to χi in H and K. From the relation LUg = VgL

it follows that (since L is bounded) L maps the domain of dHi into the domain
of dKi and LdHi = dKi L. By repeated application of this argument it follows that
LdHi1 ...d

H
ik

(ξ) = dKi1 ...d
K
ik
L(ξ)∀ξ ∈ H∞, and thus ‖Lξ‖2,n ≤ ‖L‖‖ξ‖2,n. ¤

We shall call an element of B(H∞,K∞) a “smooth” map, and if such a smooth
map L satisfies an estimate ‖Lξ‖2,n ≤ C‖ξ‖2,n+p for all n and for some integer p
and a constant C, then we say that L is a smooth map of order p with the bound
≤ C. From the proof of the above lemma we observe that any bounded covariant
map is smooth of order 0 with the bound ≤ ‖L‖. By a similar reasoning we can
prove the following:

Lemma 2.5. Suppose that L is a closed (in the Hilbert space sense), covariant
map from H to K and H∞ is in the domain of L. Under these assumptions, L is
smooth of the order p for some p.

Proof. For simplicity of notation, we shall use the same symbol di for both dHi
and dKi , and also we use the same symbols for the corresponding one parameter
groups of unitaries acting on H and K. Let L be a map as above. Since L is closed
in the Hilbert space sense, and the Frechet topology in H∞ is stronger than its
Hilbert space topology, it follows that L is closed as a map from the Frechet space
H∞ to the Hilbert space K, and being defined on the entire H∞, it is continuous
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with respect to the above topologies. By the definition of Frechet space continuity,
there exists some C and p such that ‖L(ξ)‖2,0 ≤ C‖ξ‖2,p. Now, for any fixed k,
let ut ≡ uexp(tχk). Since ut maps h∞ into itself and L is covariant, we have that

L(ut(ξ)−ξ
t

) = ut(Lξ)−Lξ
t

. Now, since ut(ξ)−ξ
it

→ dk(ξ) as t → 0+ in the Frechet

topology, we have that L(ut(ξ)−ξ
it

) = ut(Lξ)−Lξ
it

converges to Ldkξ in the Hilbert
space topology of K, and so by the closedness of dk Lξ must belong to the domain
of dk, with Ldkξ = dkLξ. Repeated use of this argument proves that L(H∞) ⊆ K∞

and L(di1 ...dikξ) = di1 ...dik(Lξ)∀ξ ∈ H∞. Now, a direct computation enables one
to show that L is of order p with the bound ≤ C. ¤

Theorem 2.6. Let (H, Ug), (K, Vg) be two Sobolev-Hilbert spaces as in earlier
discussion, and L be a closed (not as Frechet space map but as Hilbert space map)
linear map from H to K. Furthermore, assume that H∞ is in the domain of |L|2
and is a core for |L|2, and LUg = VgL on H∞. Then we have the following
conclusions:
(i) L is a smooth covariant map with some order p and bound ≤ C for some C;
(ii) L∗ (the densely defined adjoint in the Hilbert space sense ) will have K∞ in
its domain;
(iii) L∗ is also a smooth covariant map from K∞ to H∞; with order p and bound
≤ C as in (i).

Proof. Let the polar decomposition of L be given by L = W |L|. We claim that
both W and |L| are covariant maps. First we note that H∞ is also a core for
L (being a core for |L|2) and since Ug is a unitary operator that maps H∞ into
itself, clearly H∞ is a core for LUg and also for VgL. Thus the relation LUg = VgL

on H∞ implies that the operators LUg and VgL have the same domain and they
are equal. Now, note that L being closed and Vg being bounded, we have that
(VgL)∗ = L∗V ∗

g = L∗Vg−1 . Furthermore, since U−1
g maps the core H∞ for L into

itself, one can easily verify that (LUg)
∗ = U∗

gL
∗ Thus, we get that UgL

∗ = L∗Vg∀g.
It then follows that Ug|L|2 = |L|2Ug and hence by spectral theorem Ug and |L|
will commute. By Lemma 2.5, we get that |L|(H∞) ⊆ H∞, and |L| is a smooth
covariant map of some order.

Now, if P denotes the projection onto the closure of the range of |L|, then P

clearly commutes with Ug for all g, hence in particular UgRan(P )⊥ ⊆ Ran(P )⊥.
Thus WUgP

⊥ = WP⊥Ug = 0 = VgWP⊥. On the other hand, VgWP = WUgP ,
because VgW |L| = VgL = LUg = W |L|Ug = WUg|L|. Hence we have that W is a
bounded covariant map, and thus by 2.4, it follows that W ∗ is covariant too, and in
particular W ∗(K∞) ⊆ H∞ ⊆ Dom(|L|), so that K∞ ⊆ Dom(L∗) = Dom(|L|W ∗).
Furthermore, from the fact that W and W ∗ are smooth maps of order 0 with
bound ≤ 1 (as ‖W‖ = ‖W ∗‖ = 1) and |L| is a smooth covariant map of some
order p with bound ≤ C for some C, clearly both L = W |L| and L∗ = |L|W ∗ are
smooth covariant maps of order p and bound ≤ C, which completes the proof. ¤

Lemma 2.7. Let (Hi, U
i
g), i = 1, 2 and (Ki, V ig ), i = 1, 2 be Sobolev Hilbert spaces

and k be any Hilbert space. Then we can construct Sobolev Hilbert spaces (Hi ⊕
Ki, U ig⊕V ig ) and (Hi⊗k, U ig⊗ I) (with the symbols carrying their usual meanings)
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and if L ∈ B(H1∞
,H2∞

),M ∈ B(K1∞
,K2∞

), then we have the following:
(i) L⊕M ∈ B((H1 ⊕K1)∞, (H2 ⊕K2)∞), and
(ii) (H1⊗k)∞ is the completion of H1∞

⊗algk under the respective Frechet topology
and the map L ⊗alg I on H1∞

⊗alg k extends as a smooth map on the respective

Frechet space (we shall denote this smooth map by L ⊗ I or sometimes L̃). Fur-

thermore, if L is of order p with some constant C, so will be L̃.

Proof. (i) is straightforward. To prove (ii), we fix any orthonormal basis {el} of
k and let ξ =

∑

ξl ⊗ el be a vector in the domain of the self adjoint generator
of the one parameter unitary group ut ⊗ I, where ut is as in the proof of Lemma
2.5 and the summation is over a countable set since ξl = 0 for all but countably
many values of l. So, without loss of generality we may assume that the set of l’s

with ξl nonzero is indexed by 1, 2, .... Since
∑

(ut(ξl)−ξl

t
) ⊗ el is Cauchy (in the

Hilbert space topology ) suppose that
∑

(ut(ξl)−ξl

t
) ⊗ el →

∑

ηl ⊗ el. Clearly, for

each l, ηl = limt→0(
ut(ξl)−ξl

t
), which implies that ξl ∈ Dom(dk) and dkξl = ηl.

Thus, if d̃k denotes the self adjoint generator of the one parameter unitary group
ut ⊗ I, then we have proved that the domain of it consists of precisely the vectors
∑

ξl⊗el such that each ξl ∈ Dom(dk) and
∑ ‖dk(ξl)‖2 <∞. Repeated use of this

argument enables us to prove that (H1 ⊗ k)∞ consists of the vectors ξ =
∑

ξl⊗ el
with the property that ξl ∈ H1∞

∀l and for any n, ‖ξ‖2
2,n ≡∑

l ‖ξl‖2
2,n <∞. From

this, it is clear that
∑m
l=1 ξl ⊗ el converges (as m → ∞) to ξ in each of the ‖.‖2,n

norms, i.e. in the Frechet topology. The rest of the proof follows by observing
that for any ξ =

∑

finite ξl ⊗ el ∈ H1,∞ ⊗alg k, ‖L̃(ξ)‖2
2,n =

∑

‖Lξl‖2
2,n. ¤

3. Review of q.s.d.e. with unbounded coefficients

We assume that the reader is familar with the Hudson-Parthasarathy (H-P) for-
malism of quantum stochastic calculus (see, for example, [19]) including quantum
stochastic differential equation (q.s.d.e.) with unbounded coefficients (see [12], [9]).
Let h = L2(τ) be as before, and let k0 be a separable Hilbert space. Recall that
a Hudson-Parthasarathy (H-P) dilation of a q.d.s. Tt on A ⊆ B(h) is given by a
family of unitary operator (Ut)t≥0 on h⊗Γ(L2(R+, k0)) satisfying a q.s.d.e. of the
form dUt = UtL

α
βdΛ

β
α(t), with some appropriate (possibly unbounded) operators

Lαβ defined on a large enough common domain, and such that U0 = I, and

< ve(0), Ut(x⊗ I)U∗
t ue(0) >=< v, Tt(x)u > ∀t ≥ 0, x ∈ A.

For the sake of clarity of exposition, we shall use a coordinate-free formalism
of quantum stochastic calculus developed in [13] (for bounded coefficients) and
[12] (for unbounded coefficients). We shall recall here a few useful facts about
the existence and unitarity of solution of q.s.d.e. with unbounded operator coeffi-
cients. For the proofs of these results and for a detailed discussion on q.s.d.e. with
unbounded coefficients, we refer to chapter 6 of [12] and also to [17],[16].

Let D0,V0 be dense subspaces of h and k0 respectively. We denote by Zc the

set {Z ∈ B(h ⊗ k̂0) : Z + Z∗ + ZQ̂Z∗ ≤ 0}, where k̂0 = C ⊕ k0 ≡ h ⊕ (h ⊗ k0)

and Q̂ = 0|h ⊕ Ih⊗k0 , as in [12] and [13]. For a quadruple (R,S, T,A) where
A ∈ Lin(D0, h), R, S ∈ Lin(D0, h ⊗ k0), T ∈ Lin(D0 ⊗ V0, h ⊗ k0) satisfying
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D0 ⊆ ⋂

ξ∈V0
Dom(〈R, ξ〉), we introduce a linear map Z, to be called ’coefficient

matrix’, from D0 ⊗ (C ⊕ V0) to h⊗ k̂0 by

Z =

(

A R∗

S T

)

.

Note here that by assumption (u ⊗ ξ) ∈ Dom(R∗) for all u ∈ D0, ξ ∈ V0. We
recall from [13] and [12] that for an adapted operator valued process Vt on h⊗ Γ
≡ h⊗ Γ(L2(R+, k0)), one can define the quantum stochastic integral

Xt :=

∫ t

0

Vs(aR(ds) + a
†
S(ds) + ΛT (ds) +Ads)

with respect to a quadruple (R,S, T,A), which satisfies

< ve(g), Xtue(f) >=
∫ t

0

< ve(g), Vs{< R, f(s) > + < g(s), S > + < g(s), Tf(s) > +A}ue(f) > ds.

We denote by Z the set of the above quadruples (R,S, T,A) with the associated
coefficient matrix Z such that we can find a sequence Z (n) ∈ Zc, n = 1, 2, ...,
satisfying the following for all ξ, η ∈ V0 and u ∈ D0 :

lim
n→∞

〈ξ̂, Z(n)
η̂ 〉u = 〈ξ̂, Zη̂〉u, (3.1)

sup
n≥1

‖Z(n)
η̂ u‖ <∞. (3.2)

For X ∈ B(h ⊗ Γ), γ, ζ ∈ C ⊕ V0, we define the bilinear forms Lγζ (X) on the

vector space D0 ⊗ Γ (algebraic tensor product) defined below :

〈vψ,Lγζ (X)uψ′〉
= 〈vψ,X〈γ, Zζ〉uψ′〉 + 〈〈γ, Zζ〉vψ,Xuψ′〉 + 〈Q̂Zγvψ,XQ̂Zζuψ′〉,

(3.3)

where u, v ∈ D0 and ψ,ψ′ ∈ Γ. Note that we have used the same notation for X
and its ampliation (X ⊗ I

k̂0
). Clearly, we have the bound

|〈vψ,Lγζ (X)uψ′〉| ≤ C(u, v, γ, ζ)‖X‖‖ψ‖ψ′‖,

where C(u, v, γ, ζ) := ‖v‖‖γ‖‖Z(uζ)‖ + ‖u‖‖γ‖‖Z(vζ)‖ + ‖Z(vγ)‖‖Z(uζ)‖.
We denote L0̂

0̂
(X) simply by L(X), where 0̂ = (1 ⊕ 0) ∈ C ⊕ V0. Note that

〈vψ,L(X)uψ′〉 = 〈vψ,XAuψ′〉 + 〈Avψ,Xuψ′〉 + 〈Rvψ,XRuψ′〉,
so that formally one has L(X) = XA + A∗X + R∗XR. For x ∈ B(h), let L0(x)
denote the bilinear form on D0 given by

〈v,L0(x)u〉 := 〈v, xAu〉 + 〈Av, xu〉 + 〈Rv, xRu〉;
and it is easy to see that

〈vψ,L(X)uψ′〉 = 〈v,L0(〈ψ,X ′
ψ)〉u〉
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for X ∈ B(h ⊗ Γ), ψ, ψ′ ∈ Γ. We also identify V0 naturally with 0 ⊕ V0, so for

ξ, η′ ∈ V0, Lξη′(X) will mean L(0⊕ξ)
(0⊕η′)(X). For λ > 0, let us denote by βλ the set

{x ∈ B(h) : 〈v,L0(x)u〉 = λ〈v, xu〉 for all u, v ∈ D0}.

Theorem 3.1. Let (R,S, T,A) ∈ Z with the coefficient matrix Z, and let Z (n), n =
1, 2, ... be a sequence of elements of Zc satisfying 3.1 and 3.2. Assume that
(i)

Lγζ (I) = 0 for all γ, ζ ∈ C ⊕ V0, (3.4)

βλ = {0} for some λ; (3.5)

(ii) there exist dense subspaces D̃0 ⊆ h, Ṽ0 ⊆ k0 such that D̃0 ⊗ Ṽ0 is contained in
the domain of Z∗, and the following conditions hold:

lim
n→∞

〈ξ̂, Z(n)∗

η̂〉u = 〈ξ̂, Z∗
η̂ 〉u, for all ξ, η ∈ Ṽ0, u ∈ D̃0; (3.6)

sup
n≥1

‖Z(n)∗

η̂u‖ <∞ for all η ∈ Ṽ0, u ∈ D̃0; (3.7)

L̃γζ (I) = 0 for all γ, ζ ∈ C ⊕ Ṽ0; (3.8)

β̃λ = {0} for some λ > 0; (3.9)

where the definitions of L̃ξη and β̃λ are similar to the definitions of Lξη and βλ,

with the replacement of Z, D0 and V0 by Z∗, D̃0 and Ṽ0 respectively. Then the
following q.s.d.e. admits a unitary operator-valued solution.

dVt = Vt(aR(dt) + a
†
S(dt) + ΛT (dt) +Adt), V0 = I. (3.10)

4. Assumptions on the semigroup and its generator

Let Tt be a q.d.s. on A which is τ -symmetric, that is, τ(Tt(x)y) = τ(xTt(y))
for all positive x, y ∈ A, and for all t ≥ 0. We refer the reader to [5] for a detailed
account of such semigroups from the point of view of Dirichlet forms. We shall
need some of the results obtained in that reference. As it is mentioned in that
reference, Tt can be canonically extended to a normal τ -symmetric q.d.s. on Ā as
well as to C0-semigroup of positive contractions on the Hilbert space h. We shall
denote all these semigroups by the same symbol Tt as long as no confusion can
arise. Furthermore, we assume that Tt on Ā is conservative, i.e. Tt(1) = 1∀t ≥ 0.

Let us denote by L the C∗ generator of Tt on A, and by L2 the generator of
Tt on h. Clearly, L2 is a negative self-adjoint map on h. We also recall ([5]) that

there is a canonical Dirichlet form η on h given by, Dom(η) = Dom((−L2)
1

2 ),

η(a) = ‖(−L2)
1

2 (a)‖2
2,0, a ∈ Dom(η). We recall from [5] that B := A

⋂

Dom(η) is
a ∗-algebra, called the Dirichlet algebra, which is norm-dense in A.

We now make the following assumptions.

Assumptions:

(A1) Tt is covariant, i.e. Tt commutes with αg for all t ≥ 0, g ∈ G.
(A2)L has A∞ in its domain.
(A3) L2 has h∞ in its domain.
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Remark 4.1. If the G-action on A is ergodic, that is, the fixed point subalgebra is
trivial, it can be proven (see [12]) that the assumption (A3) follows automatically
from the other two assumptions.

Lemma 4.2. (i) A∞,τ is a core for both L and L2 ,
(ii) L(A∞,τ ) ⊆ A∞,τ ,
(iii) L2(A∞,τ ) ⊆ A∞,τ .

Proof. By the Proposition 2.2, A∞,τ is dense in A and h in their respective topolo-
gies. The hypothesis of covariance of Tt implies that A∞,τ is invariant under Tt.
Furthermore, by (A2)-(A3) A∞,τ is in the domains of L and L2. Thus by Theo-
rem 1.9 of [8], one has (i). It follows as in the proof of the Proposition 2.2 that
L(A∞) ⊆ A∞. Similarly, h∞ is invariant under Tt and is a core for L2, and
L2(h∞) ⊆ h∞. Since L and L2 coincide on A∞,τ = A⋂h∞, the conclusions
follow. ¤

Modifying slightly the arguments of [5] [20], we describe the structure of L.

Theorem 4.3. (i) There is a canonical Hilbert space K equipped with an A-A
bimodule structure, in which the right action is denoted by (a, ξ) 7→ ξa, ξ ∈ K, a ∈
A and the left action by (a, ξ) 7→ π(a)ξ, ξ ∈ K, a ∈ A.
(ii) There is a densely defined closable linear map δ0 from A into K such that
A∞,τ ⊆ B = Dom(δ0) (where B is the Dirichlet algebra mentioned earlier), and δ0
is a bimodule derivation, i.e. δ0(ab) = δ0(a)b+ π(a)δ0(b)∀a, b ∈ B.
(iii) For a, b ∈ A∞,τ , ‖δ0(a)b‖K ≤ Ca‖b‖2,0, where ‖.‖K denotes the Hilbert space
norm of K, and Ca is a constant depending only on a. Thus, for any fixed a ∈
A∞,τ , the map A∞,τ 3 b 7→

√
2δ0(a)b ∈ K extends to a unique bounded linear map

between the Hilbert spaces h and K, and this bounded map will be denoted by δ(a).
(iv) For a, b, c ∈ A∞,τ , we have

∂L(a, b, c) ≡ δ(a)∗π(b)δ(c) = L(a∗bc) − L(a∗b)c− a∗L(bc) + a∗L(b)c.

(v) K is the closed linear span of {δ(a)b : a, b ∈ A∞,τ}.
(vi) π extends to a normal ∗-homomorphism on Ā.

Proof. We refer for the proof of (i) and (ii) to [20] and [5]. Now, we note that
A∞,τ is contained in the “Dirichlet algebra” (c.f. [5]) and in fact is a form-core for
the Dirichlet form η mentioned earlier. Using the calculations made in the proof
of Lemma 3.3 of [8, page 8], we see that for a, b ∈ A∞,τ ,

‖δ0(a)b‖2
K =

1

2
τ(−b∗L(a)∗ab− b∗a∗L(a)b+ b∗L(a∗a)b).

Here, we have also used the fact that a, a∗, a∗a ∈ Dom(L). From the above
expression (iii) immediately follows. We verify (iv) by direct and straightforward
calculations, which we omit. To prove (v), we first recall from [5] that K can
be taken to be the closed linear span of the vectors of the form δ0(a)b, a, b ∈ B.
Now, by Lemma 3.3 of [5], ‖δ0(a)b‖2

K ≤ ‖b‖2
∞,0η(a, a). Since A∞,τ is on one hand

norm-dense in A and also form core for η on the other hand, (v) follows.
To prove (vi), it is enough to show that whenever we have a Cauchy net aµ ∈

A∞,τ in the weak topology, then 〈ξ, π(aµ)ξ〉 is also Cauchy for any fixed ξ belonging
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to the dense subspace of K spanned by the vectors of the form δ(b)c, with b, c ∈
A∞,τ . But it is clear that for this, it suffices to show that a 7→ 〈δ(b)b′, π(a)δ(b)b′〉
is weakly continuous. Now, by the symmetry of L and the trace property of τ , we
have that for a ∈ A∞,τ ,

〈δ(b)b′, π(a)δ(b)b′〉
= 〈b, abL(b′b′

∗
)〉 − 〈b, aL(bb′b′

∗
)〉 − 〈L(bb′b′

∗
), ab〉 + 〈L(bb′(bb′)∗), a〉.

The first three terms in the right hand side are clearly weakly continuous in a, so
we have to concentrate only on the last term, which is of the form τ(L(xx∗)a) for
x ∈ A∞,τ . Now, we have,

τ(L(xx∗)a) = τ(L(x)x∗a) + τ(xL(x∗)a) + τ(δ(x∗)∗δ(x∗)a),

and since L(A∞,τ ) ⊆ A∞,τ , the first two terms in the right hand side of the above
expression are weakly continuous in a, so we are left with the term τ(δ(x∗)∗δ(x∗)a).
Let us choose an approximate identity en of the C∗ algebra A such that each en
belongs to Aτ (this is clearly possible, since Aτ is a norm-dense ∗-ideal, and
for z ∈ Aτ , one has that |z| ∈ Aτ ). By normality of τ , τ(δ(x∗)∗δ(x∗)) =
supnτ(enδ(x

∗)∗δ(x∗)en) = 2supn‖δ0(x∗)en‖2
K ≤ 2supn‖en‖2

∞,0η(x
∗, x∗) < ∞,

since ‖en‖∞,0 ≤ 1 and x∗ ∈ A∞,τ ⊆ Dom(η). Thus, δ(x∗)∗δ(x∗) = y2 for some
y ∈ Aτ , hence τ(δ(x∗)∗δ(x∗)a) = τ(yay), which proves the required weak continu-
ity. ¤

Now we obtain the Christensen-Evans type form of the generator L.

Theorem 4.4. Let R : h→ K be defined as follows:

Dom(R) = A∞,τ , Rx ≡
√

2δ0(x).

Then R has a densely defined adjoint R∗, whose domain contains the linear span
of the vectors δ(x)y, x, y ∈ A∞,τ and

R∗(δ(x)y) = xL(y) − L(x)y − L(xy).

We denote the closure of R by the same notation R. For x, y ∈ A∞,τ ,

(R∗π(x)R− 1

2
R∗Rx− 1

2
xR∗R)(y) = L(x)y.

Furthermore,

δ(x)y = (Rx− π(x)R)(y), x, y ∈ A∞,τ ,

L2 = −1

2
R∗R.

Proof. For x, y, z ∈ A∞,τ , we observe by using the symmetry of L that

〈δ(x)y,Rz〉
= 2〈δ0(x)y, δ0(z)
= τ(y∗L(x∗z) − y∗L(x∗)z − y∗x∗L(z))

= τ(L(y∗)x∗z − (L(x)y)∗z − L(xy)∗z)

= 〈{xL(y) − L(x)y − L(xy)}, z〉.
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This suffices for the proof of the statements regarding R∗. It can be verified by a
straightforward computation that (R∗π(x)R− 1

2R
∗Rx− 1

2xR
∗R)(y) = L(x)y holds

for x, y ∈ A∞,τ . The remaining statements are also verified in a straightforward
manner. ¤

5. H-P Dilation

We shall now prove the existence of a unitary HP dilation for Tt.

Theorem 5.1. There exist a Hilbert space k1 and a partial isometry Σ : K → h⊗k0

(where k0 = L2(G)⊗ k1) such that π(x) = Σ∗(x⊗ Ik0)Σ and R̃ ≡ ΣR is covariant

in the sense that (ug ⊗ vg)R̃ = R̃ug on A∞,τ where vg = Lg ⊗ Ik1 , Lg denoting
the left regular representation of G in L2(G).

Proof. The proof is essentially by the ideas as those in [6], so we omit the details.
First we construct a strongly continuous unitary representation Vg of G in K
(strong continuity will follow by covariance of L on a dense set of vectors, and
hence by unitarity for every vector) such that π is covariant under this G-action in
K. This Vg satisfies Vgδ(x) = δ(αg(x)) by the construction, which clearly implies
that VgR = Rug on A∞,τ . Thus, π is a normal covariant ∗-representation of Ā
in K, hence extends to a normal ∗-representation, say π̄ of the crossed product
von Neumann algebra A >CG, which is the weak closure of the algebra generated
by (x ⊗ IL2(G)), x ∈ Ā and ug ⊗ Lg, g ∈ G in B(h ⊗ L2(G)). Thus there is

Σ : K → h ⊗ L2(G) ⊗ k1 (for some k1) such that Σ∗(X ⊗ Ik1)Σ = π̄(X), for
X ∈ Ā >CG. So in particular Σ∗(x⊗ Ik0)Σ = π(x), and Σ∗(ug ⊗ vg)Σ = Vg. The
rest of the proof follows easily from the arguments similar to those in [6]. ¤

It is clear that for x ∈ A∞,τ , L(x) = R̃∗(x ⊗ 1k0)R̃ − 1
2 R̃

∗R̃x − 1
2xR̃

∗R̃. This
enables us to write down the candidate for the unitary dilation for the q.d.s. Tt.

Before stating and proving the main theorem concerning H-P dilation, we make
a crucial observation. Let us consider the form-generator given by B(h) 3 x 7→
〈R̃u, (x⊗1)R̃v〉− 1

2 〈xu, R̃∗R̃v〉− 1
2 〈R̃∗R̃u, xv〉, u, v ∈ Dom(R̃∗R̃). By the construc-

tion of Davies ([7]), there exists a unique minimal q.d.s. on B(h), say T̃t, such that

the predual semigroup of T̃t, say ˜Tt,∗, has the generator (say L̃∗) whose domain

contains all elements of the form y = (1 + R̃∗R̃)−1ρ(1 + R̃∗R̃)−1 for ρ ∈ B1(h),

and L̃∗(y) = π∗(R̃1ρR̃
∗
1) − 1

2 R̃
∗
1R̃1ρ − 1

2ρR̃
∗
1R̃1, where R̃1 = R̃(1 + R̃∗R̃)−1 and

π∗ denotes the predual of the normal ∗-representation x 7→ (x ⊗ 1) of B(h) into
B(h⊗ k0) (i.e. for T ∈ B1(h⊗ k0), π∗(T ) =

∑

i Tii, Tii ∈ B1(h) being the diagonal
elements of T expressed in a block-operator form with respect to an orthonormal
basis of k0, and the sum is in the trace-norm).

Lemma 5.2. T̃t is conservative.

Proof. Let L̃ denote the generator of T̃t. We claim that A∞,τ ⊆ Dom(L̃) and

L̃ = L on A∞,τ . Fix any x ∈ A∞,τ . Let D∗ be the linear span of operators of the

form (1 + R̃∗R̃)−1σ(1 + R̃∗R̃)−1 for σ ∈ B1(h). Clearly, for ρ ∈ D∗, tr(L̃(x)ρ) =

tr(xL̃∗(ρ)) = tr(L(x)ρ) (using the explicit forms of L and L̃), and since D∗ is a

core for L̃∗ (see [7]), we have tr(xL̃∗(ρ)) = tr(L(x)ρ) for all ρ ∈ Dom(L̃∗). Now,
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for ρ ∈ Dom(L̃∗), tr(
T̃t(x)−x

t
ρ) = tr(x(

˜Tt,∗(ρ)−ρ
t

) = tr(xL̃∗(t
−1

t
∫

0

˜Ts,∗(ρ)ds)) =

tr(L(x)t−1
t
∫

0

˜Ts,∗(ρ)ds)); and we extend this equality by continuity to all ρ ∈ B1(h).

Letting t → 0+, we get that x ∈ Dom(L̃) and tr(L̃(x)ρ) = tr(L(x)ρ)∀ρ ∈ B1(h),

which implies that L̃(x) = L(x). From this, it follows by easy arguments using the

fact that the resolvents of L leaves A∞,τ invariant that T̃t(x) = Tt(x) ∀x ∈ A∞,τ ,

and hence by the ultraweak density of Ã∞,τ in Ā, Tt and T̃t agree on Ā (where we
use the same notation for the C∗ semigroup Tt and its canonical normal extension
on Ā). In particular T̃t(1) = 1. ¤

We note that since the set of smooth complex-valued functions on G with com-
pact supports is dense in L2(G) in the L2-norm, it is clear that k0∞ is dense in
the Hilbert space k0, so let us choose and fix an orthonormal basis {ei} of k0 from
k0,∞. (note that k0 can be chosen to be separable since Ā is σ-finite von Neumann
algebra and G is second countable )

Theorem 5.3. The q.s.d.e.

dUt = Ut(a
†

R̃
(dt) − aR̃(dt) − 1

2
R̃∗R̃dt);U0 = I (5.1)

on the space h⊗ Γ(L2(R+) ⊗ k0) admits a unitary operator-valued solution which
implements a HP dilation for Tt.

Proof. Since R̃∗R̃ = −2L2, and since h∞ ⊆ Dom(L2) ⊆ Dom(R̃), the closed

Hilbert space operator R̃ is also continuous as a map from h∞ to h ⊗ k0 with
respect to the Frechet topology and the Hilbert space topology of the domain and
the range respectively. Thus the relation R̃ug = (ug ⊗ vg)R̃ on A∞,τ extends by

continuity to h∞. That is, R̃ is covariant, and by the assumptions made on L2 at
the beginning of this section it is easy to see that the conditions of the Theorem
2.6 are satisfied, so that there are C, p such that ‖R̃w‖2,0 ≤ C‖w‖2,p. Moreover,

by Theorem 2.6, we obtain in particular that Dom(R̃∗)(Hilbert space domain)

contains (h⊗ k0)∞. For any vector ξ ∈ k0∞, it is clear that h∞ ⊆ Dom(〈ξ, R̃〉∗).
We shall now apply the Theorem 3.1 to prove the existence and unitarity of

solution of the q.s.d.e. (5.1). To this end, take D = D̃ = h∞, V0 = Ṽ0 = k0∞ and

Z =

(

− 1
2 R̃

∗R̃ −R̃∗

R̃ 0

)

. Let Gn = n(n− L2)
−1, and

Z(n) :=

(

− 1
2GnR̃

∗R̃Gn −GnR̃∗

R̃Gn 0

)

.

We shall show that the hypotheses of Theorem 3.1 are satisfied. Clearly, Z (n)∗

and Z(n) belong to Zc. Furthermore, note that Gn is clearly a bounded (with
‖Gn‖ ≤ 1) covariant map, hence smooth of order 0 with bound ≤ 1. In particular,
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it maps D into itself. We have that

‖R̃Gnw‖2 = 〈R̃Gnw, R̃Gnw〉
= 〈w,G∗

n(−2L2)Gnw〉
= 〈w, (−2L2)

1

2G∗
nGn(−2L2)

1

2w〉 (as L2, Gn commute)

= ‖Gn(−2L2)
1

2w‖2

≤ ‖(−2L2)
1

2w‖2.

From this it follows that

sup
n≥1

‖Z(n)

ξ̂
w‖2 = sup

n≥1
{‖R̃Gnw‖2 + ‖GnR̃∗(wξ)‖2}

≤ ‖(−2L2)
1

2w‖2 + ‖R̃∗(wξ)‖2

< ∞.

Thus the condition (3.2) is verified. To verify that limn→∞〈η̂, Z(n)

ξ̂
〉w = 〈η̂, Z

ξ̂
〉w

for all w ∈ D, ξ, η ∈ V0, we first prove the following general fact:
If L is a closed linear map from h to h with h∞ in its domain, so that ‖Lw‖2,0 ≤
M‖w‖2,r for some M and r, then for w ∈ h∞, each of the sequences GnLw,
LGnw and GnLGnw converges to Lw as n → ∞. To prove this fact, it suffices
to observe that Gnw clearly in h∞ and ‖Gnw − w‖2

2,r =
∑

i1,i2,...ik;k≤r ‖(Gn −
I)(di1di2 ...dikw)‖2

2,0 (as Gn is covariant), which goes to 0 as Gn → I strongly.
Thus we have

‖GnLGnw − Lw‖2,0 ≤ ‖GnL(Gnw − w)‖2,0 + ‖(Gn − I)Lw‖2,0

≤ M‖Gnw − w‖2,r + ‖(Gn − I)Lw‖2,0,

which proves that GnLGnw → Lw. Similarly, one can show GnLw → Lw and
LGnw → Lw.

Using this fact, it is easy to see that

〈η̂, Z(n)

ξ̂
〉w = −1

2
GnR̃

∗R̃Gnw −GnR̃
∗(wξ) + 〈η, R̃Gnw〉

→ −1

2
R̃∗R̃w − R̃∗(wξ) + 〈η, R̃w〉

= 〈η̂, Z
ξ̂
〉w.

Similar facts can be proved replacing Z by Z∗ and Z(n) by Z(n)∗. The conditions
(3.4) and (3.8) are also easy to verify. Moreover, We have L0 = L̃0 and βλ = β̃λ
in this case. Since h∞ is a core for R̃∗R̃ and T̃t is conservative, it follows (see
[17], [4] ) that βλ = {0}. This proves that Ut exists and is unitary for all t.
That Ut implements an H-P dilation for Tt, that is, 〈we(0)Ut(a ⊗ I)U∗

t w
′e(0)〉 =

〈w, Tt(a)w′〉 for all w,w′ ∈ h and a ∈ A is clear from the q.s.d.e. (5.1) satisfied by
Ut. ¤

We conclude this article by mentioning a few natural examples of q.d.s. which
satisfy the assumptions A1-A3.

Example 1. Let A = C0(R
n), G = R

n, with the obvious action of R
n on A
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by translation. The trace τ is given by integration with respect to the Lebesgue
measure. We take Tt to be the heat semigroup on R

n, which is given by

(Ttf)(x) =
1

(
√

2πt)n

∫

Rn

f(y)exp(−
∑

i(xi − yi)
2

2t
)dy, t > 0;

and T0f = f . It can be verified by simple calculation that Tt is indeed covariant
and symmetric. Furthermore, the norm-generator L of Tt is nothing but the

differential operator
∑n
i=1

∂2

∂x2

i

, from which it is easily seen that A2 and A3 are

satisfied.

Example 2. This is an example from noncommutative geometry (see Chapter
9 of [12]). Consider the noncommutaive 2d-dimensional plane considered in the
Chapter 9 of [12], with the notation explained there. We claim that the q.d.s. (Tt)

generated by the ‘Laplacian’ −∑2d
j=1 δ

2
j is covariant with respect to the action

φα of R
2d, and it is also symmetric with respect to the canonical trace τ on the

noncommutative 2d-plane. To verify the covariance, we observe the following:

φα(b(f)) = b(fα),

where f̂α(x) = eiαxf̂(x). Thus,

Tt(b(fα)) =

∫

R2d

e−
t
2
x2

eiαxf̂(x)Wxdx = φα(Tt(b(f))).

Moreover, we have,

τ(Tt(b(f)∗)b(u)) =

∫

R2d

e−
t
2
x2

f̂(x)û(x)dx = τ(b(f)∗Tt(u)),

which proves symmetry. A simple computation shows that the assumptions A2

and A3 hold.
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Boston, MA (2001) 89-99.

7. Davies, E. B.: Quantum dynamical semigroups and neutron diffusion equation; Rep. Math.

Phys. 11(1977) 169-189.

8. Davies, E. B.: One-parameter Semigroups. Academic Press, London, 1980.

9. Fagnola, F.: On quantum stochastic differential equations with unbounded coefficients;
Probab. Theory Related Fields 86(1990) 501-516.



DILATION OF SEMIGROUPS 101

10. Fagnola, F. and Sinha, K. B.: Quantum flows with unbounded structure maps and finite

degrees of freedom; J. London Math. Soc. (2)48 (no. 3) (1993) 537–551.

11. Garding, L.: Note on continuous representations of Lie groups; Proc. Nat. Acad. Sci. U.S.A.

33(1947) 331-332.

12. Sinha, K. B. and Goswami, D.: Quantum Stochastic Processes and Noncommutative Ge-

ometry. Cambridge Tracts in Mathematics 169, Cambridge University Press, Cambridge,

U.K., 2007 (to appear).

13. Goswami, D. and Sinha, K. B.: Hilbert modules and stochastic dilation of a quantum

dynamical semigroup on a von Neumann algebra; Comm. Math. Phys. 205 no. 2(1999)

377-403.

14. Goswami, D., Pal, A. and Sinha, K. B.: Stochastic dilation of a quantum dynamical semi-

group on a separable unital C∗ algebra; Infin. Dimens. Anal. Quantum Probab. Relat. Top.

3, no. 1 (2000) 177-184.

15. Hudson, R. L. and Parthasarathy, K. R.: Quantum Itô’s Formula and Stochastic Evolutions;
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