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Abstract
We compute commutativity degrees of wreath prodocts A @ 8 of finite Abelian groups A and &, When &
is fixed of order n the asvimptotic commutativity degree of such wreath products is 1 /0. This answers
a generalized version of a question posed by P Lescot. As byprodocts of our formuola we compute the
nunther of conjugacy classes in such wreath prodocts, and obtain an interesting elementary number-
theoretic result.
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1. Introduction

For a finite group G let G denote the set of pairs of commuting elements of ;:
G={(g.h)eG x G |gh= hg).

The quantity |G|/|G 2 measures the probability of two random elements of G
commuting and is called the commuiarivity degree of . In [1] Lescot computes the
commutativity degree of dihedral groups and shows that it tends to 1/4 as the order
of the group tends to infinity. He then asks whether there are other natural families of
eroups with the same property. In this paper we show that if B is an Abelian group of
order n and A is a finite Abelian group, then the commutativity degree of the wreath
product A : B tends to 1 /n? as the order of A tends to infinity.

THEOREM 1.1. Let G=A1 8B, where A is a finite Abelian group and
B ={by, ba, .., Byl is an Abelian group of order n. Then

n
Gl= 3 1A+, (1)

51=1

where s, 1) denotes the index of the subgroun of R venerated by by and by.
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The exact value of the quantity c{s, ¢}, of course, depends on the structure of B
as an Abelian group. We show how to obtain it in Section 3. Here we just note that
when B=#,={1,2,..., n} is a cyclic group of order n, wis, 1) = (n, s, {) (where
{n, s, 1) denotes the greatest common divisor of n, 5, and 1). More generally, for a
fixed value of n the farther £ is away from a cyclic group, the larger the commutativity
degree of the wreath product A ¢ £ 1s. Forexample, the commutativity degree of A 1 £y
is 1/16+3]A]72 4+ 12JA|~3, while that of A1 (F2 x Fa)is 1/16 +9]4|72 +6]4] .
However, the asymptotic behaviour of the commutativity degree of the wreath product
A B as|A| — oo does not depend on the structure of B as an Abelian group.

CoroLLARY 1.2, Ler A be a finite Abelian group and B be an Abelian group of
order n. Then the commutativity degree of the wreath product A 1 B tends 1o 1/n? as
|A] = o,

A straightforward computation with indices of centralizers shows that the number of
conjugacy classes in a finite group  is equal to |G|/ G|, hence (1) yields the formula
for the number of conjugacy classes in wreath products of finite Abelian groups.

CoOROLLARY | 3. Let A and B be as in Theorem 1.1, Then the number of
conjugacy classes in the wreath product A1 B is (1/n) 30 |A|*91.

By taking B = Z, in Corollary 1.3, we obtain the following interesting elementary
number-theoretic result. We have not been able to find an elementary proof of this fact.

COROLLARY 1.4, For any natural number a, the sum ¥ % | a1 gy divisible

by If nis prime, this gives Fermat's litile theorem.

2. Notation and terminology for wreath products

We shall use some of the notation from [2]. Let A and B be groups and let A*®
be the direct sum of copies of A indexed by elements of 8. We shall write this as
A* =%, g Ap, where each group A is a copy of A. Elements of A* can be thought
of as functions from 5 to A with finite support. Anelement [ € A* such that

a ifb=keh,
¢4 otherwise,

fib)=
will be denoted by a,(by). In this notation, every element of A* can be uniquely
written in the form
Tay (By) - -- Ja;‘:b.u']~

where by, ..., b, are distinet elements of B, and ay, ..., ay are any elements of A.
Such a presentation will be called a canonical word. Define an action of B on A™ by

feiby = fibe™'), ceB, beB. (2)
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The (standard restricted) wreath product of A and B, denoted by A B, is the
semidirect product of A™ and B with the action of B on A® given by (2). If we denote
the elements of the canonical copy of & in A B by r., ¢ € £, then (2) becomes

T.0q(h) = o4lbe) .,
and thus every element of A 1 B can be uniquely written in the canonical form
Ty {by)--- Ta, (b )T,

where o, (1) - - - @y, (By) 15 a canonical word in A*. We shall work with wreath
products where the group B is finite, in which case the restricted wreath product and
the complete wreath product are the same.

3. Proof of Theorem 1.1

Since both groups A and 8 are Abelian we shall use additive notation for their
eroup operations. To make the proof transparent we first work out in detail the case
when B = £, is the cyclic group of order n. We may represent elements of B by
arbitrary integers assuming that one takes the residue modulo n to obtain an actual
element of £,,.

We shall count the number of commuting pairs of elements of G =A 1 £, as
follows. Fixs and r in {1, .., n—1,n}and let

g =0y (Mey (1) -- - o, (n—1)1_g,
and
h=o, (Mo, (1)-- o, (n — Dz,

We then count the number of commuting pairs (g, i) with prescribed values of s and
i but allowing the a; and x; to be arbitrary elements of A. To do so we think of an
element g as being ‘fixed” and count the number of elements i that commute with
every such given g. As we shall see shortly, there might be some conditions on the a;
for g to commute with at least one such fi.

We shall make a convention that a,, and a, represent the same element of the group
A if w and v are equal modulo »; similarly for x, and x,. With this notation, the
elements g and h as above commute if and only if

X — Xy = ay — iy,

X| —Xz4) =4y — iy,

Ap—1 — Appin—1) S Hp—| — rpin—1)»
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which can be thought of as a “linear system’ in unknowns xg, Xy, ... ,. ty_p. Letd 4+ 1
be the order of s in Z,, then d 4+ 1 =n/{n, 5) and there are (n, 5) cosets of the cyclic
subgroup {5} generated by 5 in 2.

The above linear system will split into (n, ) independent subsystems in unknowns
£ Y0 LT ST E SR Y14} Where i varies over the representatives of the cosets of {5}
in £y, say 0 < i< (n 5)— 1. The matix of each such subsystem has rank d; hence
for the subsystem to be consistent the ‘constant’ column consisting of differences of
a; must add up to zero. This gives the following condition for consistency of the
i th subsystem:

di + djps + - digpds =djpy +igstr + 000+ Gigdstr (3
O0<i<i{n, 5)— 1.

If 1  {s} then the conditions (3) are automatically satisfied for all ¢, and hence for any

choice of the elements ag, ap, .. .. iy the number of elements i commuting with
given g is |A|"*! since each subsystem has one free variable.
Suppose now that 1 £ j 4 {s) for some j={1...., {r,s) — 1}. Let u denote the

order of ¢ (= order of j) in the quotient group &, /{s}. Then u ={n, 5)/{n, 5, 1)
and the index of the subgroup (1} in 2,/ {5} 1s (n, 5)/u = (n, 5, 1); in the notation
of Theorem 1.1 this is nothing but ce (s, 1).

The conditions (3) split into wis, 1) blocks corresponding to the cosets of {f) in
L ). The kth block (0 < & < wis, 1) — 1) looks as follows:

dai tipys +- -0 dlitds = Gty T Gdrs T 00 Gl ss
At + O pite+ -0 -+ O pptds = Q42 T 42045 +- -+ QX4 dss

it (u—r et in—tie+s + -0 -+ b in—r+ds = Qe + ignr+s + -0+ Shtur+ds-

But wi is a multiple of s, and hence the right-hand side of the last equation is equal to
the left-hand side of the first equation. It follows that exactly one of these 1 equations
is a consequence of the others and each block produces u — | independent ‘linear’
conditions on the a;.

To summarize, among the |A|" sequences (ag. ay. ... . tay—1) of elements of A,
there are exactly |A|"~¢W0W—1 = | qpp—lrsitelsn) gagnences for which the original
linear system in xg, xy, ..., ty—1 Is consistent. For each such fixed sequence,
the number of sequences (xy, vy, ..., t,_1) satisfying the corresponding system is

|A]"*) since each of the (n,s) (= index of the subgroup of B generated by s)
subsystems contributes one free variable. Thus, for fixed s and r the total number
of commuting pairs (g, ir) of elements of G where the canonical form of g ends in7_;
and the canonical form of i ends in r_, is |A|" T2 The formula (1) now follows.

In the general case, when B ={by, b, . ., by} is an arbitrary Abelian group, fix
by, by = B and consider two elements of G = A1 B,

E= ":rfu{bl]ﬂ'ﬂz{bﬂ Tt a'au”’.u]r—.l':p
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and
=gy (b)ag,(ba) - oy, (by)T_p,.

MNote that the above proof essentially did not use the fact that £ was a cyclic group (it
was only used so as to have a convenient way to label the indices of o; and ;). Rather,
the computation involves the following quantities:

i1y the index of the cyclic subgroup of B generated by b, , say Si(s);
(2) the index of the cyclic subgroup of the quotient group B/ (b} generated by the
image of b, which is precisely «(s, 1) in our notation.

The *linear system’ which gives conditions for elements g and /i to commute then splits
into f(s) subsystems each of which corresponds to a coset of the cvelic subgroup (b}
of B, and hence the same reasoning carries over verbatim to the general case. Further,
the conditions on the a; will split into w{s, 1) blocks each of which corresponds to a
coset of the cvelic subgroup generated by the image of b, in B /b, ).

It follows that among the |A|" sequences (ay, as, ..., a,) of elements of A, there
are exactly |A|? A1+l sequences for which the linear system is consistent. For
each such fixed sequence, the number of sequences (xy, x2, ..., x,) satisfying the
corresponding system is |A|?%) . Thus, for fixed s and ¢ the total number of commuting
pairs (g, f) of elements of & where the canonical form of g ends in 7_; and
the canonical form of h ends in t_p is |A|*T5" This completes the proof of
Theorem | .1.

Finally, we give a formula for «{s, 1) which depends on the structure of B as an
Abelian group. Let B=E, % --- % &y, and let s = (51, ..., s), =11, ..., 1)
be two elements of B, Letw(s, 1) =[B : {5, 1}].

Consider the surjective homomorphism m: 2% — B with

kerm =m & x -0 - x gl

Leta, b € 7* be suchthat w(a) = s and 7 (b) = 1. Then EUH = B /s, 1) where H =
ker w + {a, b}. We determine the order of Z*/ H as follows. Write a = (ay. ..., a;)
and b = (by, ..., by) (thinking of the s and ¢; as integers one may take a; = & and
bij=t;foralli, je{l, ..., k1), then

H={{nm +uay+uvhy, ..., ngpmty 4 wag + vhg ) | mp, u, v e .

If B: 52 — Z* is a homomorphism given by the k x (k + 2) matrix

ny 0 L] 0 431 b[
0 nz --- 0 a I
a 0O --- np a I

then #f =Im K. Let P e GL(E) and @  GL +(Z£) be such that
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dy 0 o 00
0 s o 00
PRQO = .
0O 0 --- d 00
where d) | ds |- - - | dp are the elementary divisors of £. We have

Z¥/Im R = P(Z4)/PR(Z**?) = T/ PRQ(ZH?),
s0 that
a(s, 1) = |Z*/Im R| = |did> - - - di).

For the reader’s convenience we recall a well-known method for finding elementary
divisors. Fori=1,..., k, let h; denote the greatest common divisor of all § x{
minors of R; then fi; =dds -- - d;. This is because the numbers fi; do not change
when multiplied on the left and on the right by elementary matrices and these generate
all invertible integer matrices. In particular, note that if & = | then w(s, 1) = (n, &, 1).
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