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A NOTE ON THE ALGEBRAIC REFLEXIVITY OF THE ISOMETRY

GROUP OF K(C(K))

T. S. S. R. K. RAO

Abstract. This short note deals with question of algebraic reflexivity of the group of isome-

tries of the space of compact operators K(C(K)) for a compact set K. We show that when K

is a countable metric space the group of isometries is algebraically reflexive.

.

1. Introduction

Let X be a complex Banach space and let G(X) be its group of isometries. A linear map

Φ : X → X is said to be a local surjective isometry (l.s.i for short) if for every x ∈ X there

exists a Φx ∈ G(X) with Φ(x) = Φx(x). G(X) is said to be algebraically reflexive if every l.s.i

map Φ is onto, i.e., Φ ∈ G(X). It was proved in [5] that for any compact metric space K for

the space C(K) and for the space K(ℓ2) the group of isometries is algebraically reflexive. These

results were extended to the case of vector-valued continuous functions in [4]. The group of

isometries of several classical Banach spaces were shown to be algebraically reflexive in [2]. We

complement this circle of ideas by studying this question for the group of isometries of K(C(K)).

We show that when K is a countable metric space G(C(K)) is algebraically reflexive. Our key

idea is to replace the use of the classical Russo-Dye theorem in the proof of the scalar-valued

case (Theorem 2.2 of [5]) with a vector-valued version from [6] (We are grateful to Professor

Mena-Jurado for pointing out this reference).

The algebraic reflexivity of G(L(C(K))) or more generally that of G(L(X,C(K))) is an open

problem. In [7] we have initiated the study of properties of local surjective isometries on

L(X,C(K)). Using the proof technique for showing the algebraic reflexivity of G(K(C(K))),

we show that a l. s. i map on L(c0, C(K)) is a C(K)-module map when K is an infinite

countable set.

For a Banach space X we denote by X1 its closed unit ball and by ∂eX1 the set of extreme

points. Let S(X) denote the unit sphere.

2. Main Result

We use the well-known identification of the space K(X,C(K)) with the Banach space

C(K,X∗) of X∗-valued, norm continuous functions on K equipped with the supremum norm,

via the mapping T → T ∗|K where K is canonically embedded in C(K)∗. Thus the group
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of isometries of this space can be described by the well-known vector-valued Banach-Stone

theorems, [1]. We recall below one such result (Theorem 8.11) that we will be using in sequel.

Theorem 1. Let X be a Banach space such that its centralizer Z(X) is trivial. For any Φ ∈

G(C(K,X)) there exists a homeomorphism φ of K and a map τ : K → G(X) that is continuous

when G(X) is equipped with the strong operator topology, such that for any f ∈ C(K,X), k ∈ K,

Φ(f)(k) = τ(k)(f(φ(k))).

From now on we assume that K is an infinite metric space. Since G(C(K)) is algebraically

reflexive, it is reasonable (though we do not know if it is necessary) to assume, in order to

consider the algebraic reflexivity of G(K(C(K)) that G(C(K)∗) is algebraically reflexive. If K

is uncountable then asK has a perfect subset, C(K)∗ contains the infinite dimensional Lebesgue

L1-space. It follows from Theorem 3 of [2] that G(C(K)∗) is not algebraically reflexive. On

the other hand when K is countably infinite, it follows from Theorem 2 of [2] that G(C(K)∗)

is algebraically reflexive.

In what follows we use the identification of C(K,X)∗ as the space of X∗-valued Borel mea-

sures of finite variation and the identification ∂eC(K,X)∗1 = {δ(k) ⊗ x∗ : k ∈ K,x∗ ∈ ∂eX
∗
1}.

We note that (δ(k) ⊗ x∗)(f) = x∗(f(k)) for f ∈ C(K,X).

Theorem 2. Let K be a countable compact space. G(K(C(K))) is algebraically reflexive.

Proof. We use the identification of K(C(K)) with C(K,C(K)∗). Since for any Borel set B ⊂

K, P : C(K)∗ → C(K)∗ defined by P (µ) = µ|B is a projection with the property, ‖µ‖ =

‖P (µ)‖+ ‖µ−P (µ)‖, we get from (vi) of Proposition 5.1 in [1] that Z(C(K)∗) is trivial. Thus

G(C(K,C(K)∗)) is described by the above Theorem 1.

It is well-known from the structure of extreme points of the unit ball of the space of continuous

functions and its dual that for δ(k) ∈ ∂eC(K)∗1, f ∈ ∂eC(K)∗∗1 , |f(δ(k))| = 1. Thus C(K)∗

satisfies the condition a) of Theorem 8 of [4]. Now let Φ be a l. s. i of C(K,C(K)∗). We next

show that Φ∗(∂eC(K,C(K)∗1) ⊂ ∂eC(K,C(K)∗)1. It then follows from Theorem 8 of [4] that

Φ is onto and thus K(C(K)) is algebraically reflexive.

Let k ∈ K be an isolated point and let γ ∈ ∂eC(K)∗∗1 . We shall show that for any f ∈

∂eC (K,C (K)∗)1, | Φ∗((δ (k) ⊗ γ)) (f) |= 1. Suppose Φ (f) = ι (f ◦ ψ) in the canonical form

given by Theorem 1. Since k is an isolated point and ψ is a homeomorphism, ψ (k) is an

isolated point. It is well-known and easy to see that f takes extremal values at isolated points

and thus f (ψ (k)) ∈ ∂eC (K)∗1. So ι(k) (f (ψ (k))) ∈ ∂eC (K)∗1 as ι(k) is an onto isometry. Now

by the nature of extreme points of the unit ball of C (K) and its dual that we described above,

we have | γ (Φ (f) (k)) |= 1. As the set of isolated points is dense in K, it is easy to see that

for any k ∈ K , γ ∈ ∂eC(K)∗∗1 and f ∈ ∂eC (K,C (K)∗)1, | Φ∗((δ (k) ⊗ γ)) (f) |= 1.

Now if Φ∗ (δ (k) ⊗ γ) = F1+F2

2 for F1, F2 ∈ C (K,C (K)∗)1, then for f ∈ ∂eC (K,C (K)∗)1,

Φ∗ (δ (k) ⊗ γ) (f) = F1(f)+F2(f)
2 so that Φ∗ (δ (k) ⊗ γ) (f) = F1 (f) = F2 (f) . Since K is a

countable metric space by Theorem 4.6 of [6] we have that C (K,C (K)∗)1 is the norm closed

convex hull of its extreme points. Thus Φ∗ (δ (k) ⊗ γ) = F1 = F2. Hence Φ∗ preserves the

extreme points of the dual unit ball. Thus Φ is a surjection by Theorem 8 of [4].
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We do not know if G(L(C(K))) is algebraically reflexive whenK is countable. Main difficulty

is the non availability of a description of G(L(C(K))). We recall that for a Banach space X,

L(X,C(K)) can be identified with W ∗C(K,X∗), the space of X∗-valued functions that are

continuous w.r.t the weak∗-topology.

It was proved in [3] that when K is a metric space and weak∗-norm topologies agree on

S(X∗) the isometries described in Theorem 1 completely describe G(L(X,C(K))). It is still an

open question if G(L(X,C(K))) is algebraically reflexive for some infinite dimensional Banach

space X and an infinite metric space K?

Thus a natural procedure is to study the properties of l.s.i maps on L(X,C(K)). Some results

of this nature for reflexive spaces X for which G(X) is algebraically reflexive were obtained in

[7]. We next prove a similar result for some non-reflexive Banach spaces.

Definition 3. A linear map Φ : W ∗C(K,X∗) → W ∗C(K,X∗) is said to be a C(K)-module

map if there exists a homeomorphism φ of K such that Φ(fF )(k) = f(φ(k))Φ(F ) for all k ∈ K,

f ∈ C(K) and F ∈W ∗C(K,X).

Let c0 denote the space of complex sequences converging to zero. It is well-known that

on S(ℓ1) weak∗ and norm sequential convergence coincide. Proof of the following theorem

proceeds along the same lines as the proof of Theorem 6 in [7]. We therefore indicate only the

modifications needed to make the proof work in the current setup.

Theorem 4. Let K be an infinite countable compact set. Any l. s. i map Φ : W ∗C(K, ℓ1) →

W ∗C(K, ℓ1) such that Φ∗ preserves extreme points of the dual unit ball is a C(K)-module map.

Proof. As K is a metric space, in view of the description of G(W ∗C(K, ℓ1)) from [3] it is easy to

see that any onto isometry maps C(K, ℓ1) onto itself. The arguments given during the proof of

Theorem 2 can be used to conclude that G(C(K, ℓ1)) is algebraically reflexive. Thus Φ|C(K, ℓ1)

is an onto isometry. Hence by Theorem 1, Φ = ιφ on C(K, ℓ1) for a homeomorphism φ of K.

Now as in the proof of Theorem 6 in [7], we verify that Φ is a C(K)-module map for this

homeomorphism φ. It is sufficient to check the functional equation at an isolated point k′ ∈ K

and at a τ ∈ ∂eℓ
∞
1 .

Accordingly consider δ(k′) ⊗ τ . Since k′ is an isolated point, it is not difficult to show that

δ(k′) ⊗ τ ∈ ∂eW
∗C(K, ℓ1)∗1. Thus by our assumption on Φ, Φ∗(δ(k′) ⊗ τ) ∈W ∗C(K, ℓ1)∗1.

Since W ∗C(K, ℓ1)∗1 is the weak∗-closed convex hull of {δ(k)⊗ γ : k ∈ K,γ ∈ ∂eℓ
∞
1 } applying

Milman’s theorem as in the proof of Theorem 6 in [7], we conclude that Φ is a C(K)-module

map. �

Remark 5. We do not know if for the l. s. i map considered above the adjoint always

preserves extreme points of the dual unit ball? In particular we do not know if the Russo-Dye

type arguments from the proof of Theorem 2 can be adapted here?
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