Structure of a code related to Sp(4, q), q even

N S NARASIMHA SASTRY1 and R P SHUKLA2

¹Stat.-Math. Unit, Indian Statistical Institute, 8th Mile Mysore Road, R.V. College Post, Bangalore 560 059, India

²Department of Mathematics, University of Allahabad, Allahabad 211 002, India Email: nsastry@isibang.ac.in; rps@mri.ernet.in

MS received 13 February 2006

Abstract. We determine the socle and the radical series of the binary code associated with a finite regular generalized quadrangle of even order, considered as a module for the commutator of each of the orthogonal subgroups in the corresponding symplectic group.

Keywords. Generalized quadrangle; symplectic group; socle layers; Steinberg module.

1. Introduction and statement of the result

Let $V(q) = \mathbb{F}_q^4$, $q = 2^n$, be the vector space of dimension four over \mathbb{F}_q endowed with a nondegenerate symplectic bilinear form \hbar and W(q) denote the incidence system with the set P of all one-dimensional subspaces of V(q) as its *point-set*, the set L of all two-dimensional subspaces of V(q) which are isotropic with respect to \hbar as its *line-set* and symmetrized inclusion as the *incidence*. Then, W(q) is a regular generalized quadrangle of order q (p. 37 of [12]). Further, elements of the symplectic group G defined by \hbar act as incidence-preserving permutations on the sets P and L.

Let k be an algebraically closed extension field of \mathbb{F}_q . We denote by $\mathcal C$ the image of the kG-module homomorphism from the permutation G-module k^L on L over k to the permutation G-module k^P on P over k, taking $l \in L$ to $\sum_{p \in I} p \in k^P$. The endomorphism of k^P taking each element of P to the 'all-one' vector $\mathbf{1} = \sum_{p \in P} p$ in k^P is a G-module homomorphism onto the trivial G-submodule $k\mathbf{1}$ of k^P . If Y_P is the kernel of the 'augmentation map' from k^P to k taking $p \in P$ to $1 \in k$, then

$$k^P = k\mathbf{1} \oplus Y_P$$
.

Since every element of P is incident with q+1 elements of L, it follows that $1 \in C$ and

$$C = k\mathbf{1} \oplus \overline{C}$$
.

where $\overline{\mathcal{C}} = Y_P \cap \mathcal{C}$. The Loewy structure of the kG-module $\overline{\mathcal{C}}$ is determined in Theorem 2, p. 486 of [14]. Here, we determine the Loewy structure of $\overline{\mathcal{C}}$ as a $k\Omega(f)$ -module, where $\Omega(f)$ is the commutator subgroup of the orthogonal group $O(f) \subset G$ defined by a nondegenerate quadratic form f on V(q) polarizing to \hbar . That is, $\hbar(x,y) = f(x+y) - f(x) - f(y)$ holds for all $x, y \in V(q)$. There are two such quadratic forms on V(q), up to G-equivalence (see Theorem 6, p. 214 of [3]). They are distinguished by the presence

(hyperbolic case) or otherwise (elliptic case) of isotropic projective lines in the set $V_q(f)$ of zeroes of f in the projective 3-space P(3,q) over \mathbb{F}_q ; that is, they correspond to the cases when the Witt index of f is 2 or 1 (§4.1, p. 18 of [3]). The subgroups O(f) and $\Omega(f)$ of G are isomorphic to $(SL(2,q)\times SL(2,q))\cdot 2$ and $SL(2,q)\times SL(2,q)$, respectively, when the Witt index of f is 2; and to $SL(2,q^2)\cdot 2$ and $SL(2,q^2)$, respectively, when the Witt index of f is 1. We also mention that Sp(4,q) contains exactly 2 conjugacy classes of subgroups of each of the types $SL(2,q^2)$ and $SL(2,q)\times SL(2,q)$ (see Corollary, p. 247 of [6]).

To state our theorem, we describe the simple kG-modules. Let $N=\{0,1,\ldots,2n-1\}$, with addition taken modulo 2n. Let $V=V(q)\otimes k\simeq k^4$ and extend the symplectic form \hbar to V. Then G is the subgroup of the algebraic group $\operatorname{Sp}(V)\simeq\operatorname{Sp}(4,k)$ fixed by the n-th power of the Frobenius map σ (which is the 'square-the-matrix-entries' map on GL(4,k)). It is well-known that $\operatorname{Sp}(V)$ has an endomorphism τ with $\tau^2=\sigma$ (Theorem 28, p. 146 of [19]). For any non-negative integer i, we denote by V_i the $\operatorname{Sp}(V)$ -module whose vector space structure is the same as that of V and an element g of $\operatorname{Sp}(V)$ acts on V_i as $\tau^i(g)$ acts on V. For $I\subseteq N$, let V_I denote the kG-module $\otimes_{i\in I}V_i$ (with $V_\emptyset=k$). Then, by Steinberg's tensor product theorem (§11 of [18]), $\{V_I\colon I\subseteq N\}$ is a complete set of inequivalent simple kG-modules.

Let $N_1 = \{0, 1, ..., n-1\}$, with addition taken modulo n. For $I \subseteq N$, define $I_e = \{i \in N_1: 2i \in I\}$ and $I_o = \{i \in N_1: 2i - 1 \in I\}$. For n > 1, we denote by \mathcal{N} the set of all subsets I of N which has no consecutive elements, that is, all I such that I_e and I_0 are disjoint and if $i \in I_e$, then $i+1 \notin I_o$. For each subset I of N_1 , the subset $N_1 \setminus (I \cup \{i+1 | i \in I\})$ of N_1 will be called the admissible complement of I and will be denoted by I^{ac} . We observe that for $I \subseteq N_1$, the subset $K = \{2i : i \in I\} \cup \{2i - 1 : i \in I^{ac}\}$ is the unique maximal subset of N such that $K_e = I$ and $K_o = I^{ac}$. Also, $I^{ac} = \emptyset$ if $|I| \ge n - 1$ or if $N_1 \setminus I = \{i, j\}, i < j \text{ and } j \neq i + 1.$ For each $m \in \{0, 1, ..., n - 2, n\}$, let A_m denote the set of all subsets I of N_1 such that $|I^{ac}| = m$. We observe that $A_n = \{\emptyset\}$ and $A_{n-1} = \emptyset$. For a module M admitting a chain of submodules $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_r$, we indicate the chain of factor modules $E_i = M_i/M_{i+1}$ as $E_{r-1} \setminus ... \setminus E_0$ or $E_0/.../E_{r-1}$. For a kG-module M, we write M as $rad^0(M)$, denote by $rad^1(M)$ the radical of M (that is, the smallest submodule of M with semisimple quotient) and, for a positive integer i, define the i-th radical rad (M) of M recursively as rad $(rad^{i-1}(M))$. Dually, we write $soc^{0}(M) = \{0\}$, denote by $soc^{1}(M)$ the socle of M (that is, the largest semisimple submodule of M) and, for a positive integer i, define the i-th socle $soc^{i}(M)$ of M recursively by $soc^{i}(M)/soc^{i-1}(M) = soc(M/soc^{i-1}(M))$. The radical length (respectively socle length) of M is the positive integer r such that $rad^{r}(M) = 0$ but $rad^{r-1}(M) \neq 0$ (respectively $\operatorname{soc}^{r}(M) = M \operatorname{but} \operatorname{soc}^{r-1}(M) \neq M$). We refer to $M/\operatorname{rad}^{1}(M)$ as the head of M and write it as hd(M).

Theorem 1.

- (a) Let n = 1. As kΩ(f)-modules,
 - (i) when f is of Witt index 1, V₀ and V₁ are semisimple; C
 is multiplicity-free and is isomorphic to the direct sum of V₀ and a kΩ(f)-module X with hd(X) ≃ V₁ and rad(X) ≃ k; and
 - (ii) when f is of Witt index 2, \(\bar{C}\) is semisimple and each composition factor of \(\bar{C}\) appears with multiplicity one.

- (b) Let n ≥ 2. As a kΩ(f)-module,
 - V_I is semisimple for each I ∈ N and C̄ is multiplicity-free;
 - (ii) socle length of \bar{C} is n+1 and its jth-socle layer $soc^j(\bar{C})/soc^{j-1}(\bar{C}), 1 \le j \le n+1$, is isomorphic to

$$\bigoplus_{I \in \mathcal{N} \text{ and } |I_o|=j-1} V_I;$$

(iii)

$$\overline{\mathcal{C}} \simeq \bigoplus_{m \in \{0,1,\dots,n-2,n\}} X_m \quad and \quad X_m = \bigoplus_{I \in \mathcal{A}_m} X_{m,I},$$

where $X_{m,I}$ is the unique indecomposable $k\Omega(f)$ -submodule of \overline{C} with head V_K with K denoting the unique element of N such that $K_e = I$ and $K_o = I^{ac}$. The radical length of $X_{m,I}$ is m+1 and its j-th radical layer $\operatorname{rad}^j(X_{m,I})/\operatorname{rad}^{j+1}(X_{m,I})$, $0 \le j \le m$, is isomorphic to

$$\bigoplus_{J \in \mathcal{N}, \ J_e = I, \ J_o \subseteq I^{\mathrm{ac}} \ and \ |J_o| = m - j} V_J$$

and

(iv)
$$soc^{j}(X_{m,I}) = rad^{m+1-j}(X_{m,I}), \quad 1 \le j \le m.$$

To prove this, we use the following:

Theorem 2 (Theorem 2 of [14]). The radical series of \bar{C} as a kG-module has length 2n + 1. The radical layers are

$$\operatorname{rad}^j(\bar{\mathcal{C}})/\operatorname{rad}^{j+1}(\bar{\mathcal{C}}) = \bigoplus_{I \in \mathcal{N} \text{ and } |I_e| - |I_o| + n = j} V_I, \quad 0 \le j \le 2n.$$

Moreover.

$$\operatorname{soc}^{j}(\bar{\mathcal{C}}) = \operatorname{rad}^{2n+1-j}(\bar{\mathcal{C}}).$$

The crucial observation is that if E is a section of \bar{C} which is a nonsplit extension of V_K by V_L , then E is a nonsplit $k\Omega(f)$ -module if and only if $L = K \cup \{2t - 1\}$ for some $t \in N_1$ (see the first para of the proof of b(ii) in §3). Thus either each or none of the simple $k\Omega(f)$ -factors of V_L descends.

In §2, we study the structure of V_I as a $k\Omega(f)$ -module and prove Theorem 1 in §3. We also write the socle structure of \bar{C} as a $k\Omega(f)$ -module for n=1,2,3,4. We view this work as part of the program of determining the module structure of permutation modules for finite groups of Lie type (see [15,16]) and references therein for a few other cases considered in the literature.

2. V_I as $k\Omega(f)$ -modules

2.1

Throughout, we choose the nondegenerate symplectic bilinear form \hbar on $\mathbb{F}_q^4 \times \mathbb{F}_q^4$ to be

$$\hbar((x_1, x_2, x_3, x_4), (y_1, y_2, y_3, y_4)) = x_1y_4 + x_4y_1 + x_2y_3 + y_2x_3.$$

The quadratic forms f_e and f_h on \mathbb{F}_q^4 polarizing to \hbar and of respective Witt indices 1 and 2 are chosen to be

$$f_e(x_1, x_2, x_3, x_4) = x_1x_4 + \alpha^{q+1}x_2^2 + x_2x_3 + \alpha^{q+1}x_3^2$$
; and $f_h(x_1, x_2, x_3, x_4) = x_1x_4 + x_2x_3$,

where α is an element of $\mathbb{F}_{q^2} \setminus \mathbb{F}_q$ such that $\alpha + \alpha^q = 1$.

This choice of f_e and f_h entails no loss of generality in view of the uniqueness of a nondegenerate symplectic form \hbar on V(q), up to GL(V(q))-equivalence (see Corollary 8.2, p. 587 of [11]); and the uniqueness of a quadratic form on V(q) of a given Witt index and polarizing to \hbar , up to G-equivalence (see Theorem 6, p. 214 of [3] and p. 39 of [4]).

2.2 The case fe

The polynomial $\alpha^{q+1}x_2^2 + x_2x_3 + \alpha^{q+1}x_3^2$ is irreducible over \mathbb{F}_q but factors as $(\alpha x_2 + \alpha^q x_3)(\alpha^q x_2 + \alpha x_3)$ over \mathbb{F}_{q^2} . So, the zero set \mathcal{E} of f_e in P(3,q) is an elliptic quadric and the zero set $\widehat{\mathcal{E}}$ of f_e in $P(3,q^2)$ is a hyperbolic quadric. Since f_e polarizes to \hbar , \mathcal{E} is an ovoid in the generalized quadrangle W(q) defined by \hbar (p. 51 of [2]).

- (A) Recall that $\Omega(f_e) \subseteq SL(2, q^2)$. We now interpret the $k\Omega(f_e)$ -modules V_i as $kSL(2, q^2)$ -modules. For this, we construct:
- (i) an isomorphism from $SL(2, q^2)$ to $\Omega(f_e)$, following Theorems 15.3.11 and 15.3.18 of [7]; and
- (ii) a graph automorphism τ of G, following pp. 58–60 of [5] (also see Chapter 12 of [20]).
- (i)
 (a) The inversive planes $(P(1,q^2),\mathcal{L})$ and (\mathcal{E},Φ) . Recall that a subline of the projective line $P(1,q^2)$ over \mathbb{F}_{q^2} is the set of all one-dimensional subspaces of $\mathbb{F}_{q^2}^2$ generated by the \mathbb{F}_q -span of a fixed basis of $\mathbb{F}_{q^2}^2$. Equivalently, it is a nonsingular Hermitian variety $V_A = V(xA(x^{(q)})^{\mathrm{tr}})$ in $P(1,q^2)$ defined by an equation of the form $a_1x_1^{q+1} + bx_1x_2^q + b^qx_1^qx_2 + a_2x_2^{q+1}$, where $x = (x_1,x_2) \in \mathbb{F}_{q^2}^2$, $x^{(q)} = (x_1^q,x_2^q)$ and $A = \begin{pmatrix} a_1 & b \\ b^q & a_2 \end{pmatrix}$ with $a_i \in \mathbb{F}_q$, $b \in \mathbb{F}_{q^2}$, $a_1a_2 \neq bb^q$ (Lemma 6.2, p. 138 of [8]). Let \mathcal{L} denote the set of all sublines of $P(1,q^2)$. Then, the incidence structure $(P(1,q^2),\mathcal{L})$, with symmetrized inclusion as incidence is an inversive plane of order q; that is, a $3 (q^2 + 1, q + 1, 1)$ design (p. 257 of [2]). This is isomorphic to the incidence system (\mathcal{E},Φ) , where \mathcal{E} is as above, Φ is the set of all planes in P(3,q) which are not tangent to \mathcal{E} and the incidence again is symmetrized containment (p. 257 of [2]).

(b) An isomorphism between $(P(1, q^2), \mathcal{L})$ and (\mathcal{E}, Φ) . To construct this, we follow Theorem 15.3.11, p. 21 of [7]. Let i be the injective map from $P(1, q^2)$ to $P(3, q^2)$ defined by

$$i(P(x_1,x_2)) = P(x_1^{q+1},x_1x_2^q,x_1^qx_2,x_2^{q+1})$$

and ψ be the involutory projectivity of $P(3, q^2)$ defined by

$$\psi(P(x_1, x_2, x_3, x_4)) = P(x_1, \alpha x_2 + \alpha^q x_3, \alpha^q x_2 + \alpha x_3, x_4).$$

We identify P(3,q) with its image in $P(3,q^2)$ under the map $\mathbb{F}_q a \mapsto \mathbb{F}_{q^2} a$; where $a=(a_1,a_2,a_3,a_4)\in \mathbb{F}_q^4$. We treat \hbar chosen in (2.1) also as a nondegenerate symplectic form on $\mathbb{F}_{q^2}^4$. For x in $P(3,q^2)$, we denote by $\hbar(x,-)$ the plane in $P(3,q^2)$ consisting of all points y of $P(3,q^2)$ such that $\hbar(x,y)=0$. Since ψ stabilizes $\hbar,\psi(\hbar(x,-))=\hbar(\psi(x),-)$ for each x in $P(3,q^2)$. Let j be the map from $\mathcal L$ to Φ taking V_A to $\hbar(\psi(P(a'),-))\cap P(3,q)$, where $a'=(a_1,b,b^q,a_2)\in \mathbb{F}_{q^2}^4$. These planes are not tangent to $\mathcal E$ because f_e takes the nonzero value $a_1a_2-bb^q$ on $\psi(P(a'))$ and so $\psi(P(a'))\notin \mathcal E$; it is known that the tangent planes to $\mathcal E$ in P(3,q) are all of the form $\hbar(x,-)\cap P(3,q)$, $x\in \mathcal E$; and the correspondence $a\mapsto \hbar(\alpha,-)\cap P(3,q)$ between the points of P(3,q) and the planes of P(3,q) is incidence preserving and bijective. The map $\psi\circ i$ from $P(1,q^2)$ to $\mathcal E$ and the map j from $\mathcal L$ to Φ are both bijective and form an incidence preserving pair; that is, if $p\in V_A\in \mathcal L$, then $\psi\circ i$ $(p)\in j(V_A)\in \Phi$.

(c) The isomorphism from $SL(2,q^2)$ to $\Omega(f_e)$. The full automorphism group of the incidence structure $(P(1,q^2),\mathcal{L})$ is $P\Gamma L(2,q^2) \simeq SL(2,q^2)\langle \xi \rangle$, where $\xi S\xi^{-1} = S^{(2)} = (s_{ij}^2)$ for all $S = (s_{ij}) \in SL(2,q^2)$ ((1), §4.1, p. 274 of [2]). We give an explicit isomorphism δ from its (unique) subgroup K isomorphic to $SL(2,q^2) \cdot 2$ into $Sp(4,q^2)$ such that $\psi(\text{im }\delta)\psi^{-1}$ equals the stabilizer $O(f_e)$ of \mathcal{E} in G (see Theorem 15.3.18, p. 27 of [7]).

For $S=(s_{ij})\in SL(2,q^2)$, let P_S denote the projectivity of $P(1,q^2)$ taking P(x) to P(xS). Then, $\langle P_S\colon S\in SL(2,q^2)\rangle \simeq SL(2,q^2)$. If θ is the involutory projectivity of $P(1,q^2)$ taking $P(x_1,x_2)\mapsto P(x_1^q,x_2^q)$, then $\theta P_S\theta^{-1}=P_{S^{(q)}}$, where S is as above and $S^{(q)}=(s_{ij}^{(q)})$. So $\langle P_S\colon S\in SL(2,q^2)\rangle\langle\theta\rangle$ is the subgroup of $P\Gamma L(2,q^2)$ of index n.

Now P_S induces a bijection T_S on \mathcal{L} which takes V_A to $V_{SA((S^{(q)})^{-1})^{tr}}$. With the correspondence $A \leftrightarrow a'$, with a' as above, the map $A \mapsto SA((S^{(q)})^{-1})^{tr}$ can be written as $a' \mapsto a'R_S$, where

$$R_{S} = \begin{pmatrix} s_{11}s_{11}^{q} & s_{11}s_{21}^{q} & s_{21}s_{11}^{q} & s_{21}s_{21}^{q} \\ s_{11}s_{12}^{q} & s_{11}s_{22}^{q} & s_{21}s_{12}^{q} & s_{21}s_{22}^{q} \\ s_{12}s_{11}^{q} & s_{12}s_{21}^{q} & s_{22}s_{11}^{q} & s_{22}s_{21}^{q} \\ s_{12}s_{12}^{q} & s_{12}s_{22}^{q} & s_{22}s_{11}^{q} & s_{22}s_{22}^{q} \\ s_{12}s_{12}^{q} & s_{12}s_{22}^{q} & s_{22}s_{12}^{q} & s_{22}s_{22}^{q} \end{pmatrix} = S^{tr} \otimes (S^{(q)})^{tr}.$$

Let \mathcal{R}_S denote the projectivity of $P(3,q^2)$ taking $P(x_1,x_2,x_3,x_4)$ to $P((x_1,x_2,x_3,x_4)R_S)$. Note that ψ and \mathcal{R}_S both stabilize \hbar ; \mathcal{R}_S fixes the quadratic form $g(x_1,x_2,x_3,x_4)=x_1x_4+x_2x_3$; ψ is a bijection between the varieties $V_{q^2}(g)$ and $V_{q^2}(f_e)$; and $\psi\mathcal{R}_S\psi^{-1}$ is a projectivity of P(3,q) also. So, $\psi\mathcal{R}_S\psi^{-1}$ is in the stabilizer of \mathcal{E} in G. If \mathcal{R}_S is identity, then so is T_S . These facts imply that the map $S\mapsto \psi\mathcal{R}_S\psi^{-1}$ is a monomorphism from $SL(2,q^2)$ to $O(f_e)$. Now, the map $A\mapsto A^{(q)}$ can be written as $a'\mapsto a'\mathcal{R}$, where \mathcal{R} denotes the projectivity of $P(3,q^2)$ taking $P(x_1,x_2,x_3,x_4)$ to $P(x_1,x_3,x_2,x_4)$. Further, \mathcal{R} is in the stabilizer of \mathcal{E} in G, ψ and \mathcal{R} commute and $\mathcal{R}\mathcal{R}_S\mathcal{R}^{-1}=\mathcal{R}_{S^{(q)}}$ for each $S\in SL(2,q^2)$. So, $\langle\psi\mathcal{R}_S\psi^{-1}\colon S\in SL(2,q^2)\rangle$ $\langle\mathcal{R}\rangle$ is a subgroup of $O(f_e)$ and is isomorphic to $SL_2(q^2)\cdot 2$. Now equality holds by order considerations and the isomorphism follows.

(ii)

We now describe a graph automorphism τ of Sp(V), following pp. 58–60 of [5]. (The argument presented in loc. cit. constructs a graph automorphism for G = Sp(V(q)). Howeverthe arguments are valid for Sp(V) also.) Let Q denote the nondegenerate quadratic

form on the exterior square $\Lambda^2 V$ of V defined by

$$Q(\Sigma_{1 \leq i < j \leq 4}\lambda_{ij}e_i \wedge e_j) = \lambda_{12}\lambda_{34} + \lambda_{13}\lambda_{24} + \lambda_{14}\lambda_{23}$$

(and whose zero set in $P(\Lambda^2 V)$ is the well-known $Klein\ quadric$). Let β denote the polarization of Q and $\gamma = e_1 \wedge e_4 + e_2 \wedge e_3$. Then the restriction of Q to the hyperplane $U = \{x \in \Lambda^2 V : \beta(x, \gamma) = 0\}$ of $\Lambda^2 V$ is a nondegenerate quadratic form; and the restriction of β to U is an alternating form with radical $k\gamma$. The alternating form $\bar{\beta}$ induced by β on $\bar{U} = U/k\gamma$ is nondegenerate. So the symplectic space $(\bar{U}, \bar{\beta})$ is isometric to (V, \hbar) . Let $\bar{p}: \bar{U} \to V$ be the isometric isomorphism induced by the linear map $p: U \to V$ defined by

$$p(e_1 \wedge e_2) = e_1, p(e_1 \wedge e_3) = e_2, p(e_2 \wedge e_4) = e_3,$$

 $p(e_3 \wedge e_4) = e_4, p(\gamma) = 0.$

Then the map taking $g \in \operatorname{Sp}(V)$ to $\overline{p}(\overline{\wedge^2(g)})\overline{p}^{-1} \in \operatorname{Sp}(V)$ is a graph automorphism τ of $\operatorname{Sp}(V)$ which, on restriction to G, gives a graph automorphism of G.

(B) Let W denote the standard two-dimensional simple $kSL(2, q^2)$ -module. For a nonnegative integer i, let W_i denote, as in §1, the $kSL(2, q^2)$ -module whose underlying vector space structure is the same as that of W and the action of $g = (a_{I,m}) \in SL(2, q^2)$ on W_i is the usual action of $g^{(2^i)} = (a_{I,m}^{2^i})$ on W. For any subset I of N, let W_I denote the $kSL(2, q^2)$ -module $\bigotimes_{i \in I} W_i$. Then, by Steinberg's tensor product theorem, $\{W_I : I \subseteq N\}$ is a complete set of inequivalent simple $kSL(2, q^2)$ -modules. The following decomposition was suggested to the first-named author by Peter Sin.

Lemma 3. For $i \in N_1$,

$$V_{2i}|_{\Omega(f_r)} \simeq W_i \otimes W_{n+i}$$

and

$$V_{2i-1}|_{\Omega(f_n)} \simeq W_i \oplus W_{n+i}$$
.

Proof. We prove this by using the above interpretation of V_i as $kSL(2,q^2)$ -modules. The group $H = \langle R_S : S \in SL(2,q^2) \rangle$, where R_S is as in (2.2A.i(c)) and $\Omega(f_e)$ are both isomorphic to $SL(2,q^2)$ and are conjugate in Sp(4, k) (in fact in Sp(4, q^2)) (see the last paragraph of 2.2.A.i(c)). So, for $I \subseteq N$, V_I considered as a kH-module and V_I considered as a $k\Omega(f_e)$ -module are isomorphic $SL(2,q^2)$ -modules. Let (e_1,e_2,e_3,e_4) be the standard ordered basis for V and (v_1,v_2) be an ordered basis for V. For $S \in SL(2,q^2)$, $S \otimes S^{(q)}$ represents not only the action of S on V with respect to the ordered basis (e_1,e_2,e_3,e_4) of V but also the action of S on V with respect to the ordered basis $(v_2 \otimes v_2,v_2 \otimes v_1,v_1 \otimes v_2,v_1 \otimes v_1)$ of $V_0 \otimes V_n$. So, $V_0|_{\Omega(f_e)} \simeq V_0 \otimes V_n$. Now, an application of τ^{2i} to V yields the first part of the lemma.

A simple calculation shows that R_S^{τ} leaves the subspaces $M^1 = ke_4 + ke_1$ and $M^2 = ke_2 + ke_3$ invariant. Further, the matrix representation of R_S^{τ} on M^1 with respect to the ordered basis (e_4, e_1) is S and it is $S^{(q)}$ on M^2 with respect to the ordered basis (e_3, e_2) . So, an application of τ^{2i-1} to V yields the second part of the lemma.

For $I \subseteq N_1$, let \mathcal{N}_I denote the set of $2^{|I|}$ subsets J of N of size |I| such that, for each $t \in I$, only one of t and n + t is in J. Let $\overline{I} = I \cup (n + I)$. Then, for $K \in \mathcal{N}$, Lemma 3 yields

$$V_K|_{\Omega(f_e)} \simeq \left(\bigoplus_{L \in \mathcal{N}_{K_0}} W_L\right) \otimes W_{\overline{K_e}}.$$
 (1_e)

Notice that each irreducible component in (1_e) determines both the sets K_e and K_o . So we have the following:

COROLLARY 4

Let $K, K' \in \mathcal{N}$ be distinct. Then V_K and $V_{K'}$ are semisimple $k\Omega(f_e)$ -modules with no irreducible factors in common.

2.3 The case fh

We now study V_I as a $k\Omega(f_h)$ -module. The zero set of f_h in P(3,q) is a quadric of Witt index 2. Since f_h polarizes to \hbar , the projective lines contained in this quadric are isotropic with respect to \hbar . Further, $\Omega(f_h) = H_1H_2$, $[H_1, H_2] = H_1 \cap H_2 = \langle 1 \rangle$, where H_1 (respectively H_2) $\cong SL(2,q)$ is the stabilizer of the subspace $ku_1 + ku_2$ (respectively $kv_1 + kv_2$) of V. Here $u_1 = e_1 + e_3$, $u_2 = e_2 + e_4$, $v_1 = e_1 + e_2$ and $v_2 = e_3 + e_4$. Further, the action of H_1 (respectively H_2) on $ku_1 + ku_2$ (respectively $kv_1 + kv_2$) with respect to its ordered basis (u_1, u_2) (respectively (v_1, v_2)) is the standard SL(2, q)-action on k^2 .

Let M^1 and M^2 be two copies of the standard 2-dimensional simple kSL(2,q)-module. For $j \in N_1$, define the jth-standard Frobenius twist M^i_j of M^i as in 2.2.B. For $J \subseteq N_1$, define M^i_J as $\bigotimes_{j \in J} M^i_j$. Further, for I and $J \subseteq N_1$, denote by $M^1_I \# M^2_J$ the outer tensor product of M^1_I and M^2_J . That is, $M^1_I \# M^2_J$ is the k-vector space $M^1_I \otimes M^2_J$ with the action of $(h_1, h_2) \in SL(2, q) \times SL(2, q)$ on it given by

$$(h_1, h_2)(m_1 \otimes m_2) = h_1(m_1) \otimes h_2(m_2).$$

Then, $\{M_I^1 \# M_J^2: I, J \subseteq N_1\}$ is a complete set of pairwise nonisomorphic simple $k(SL(2,q) \times SL(2,q))$ -modules (Theorem 9.14, p. 136 of [9]).

Lemma 5. For $i \in N_1$,

$$V_{2i}|_{\Omega(f_h)} \simeq M_i^1 \# M_i^2$$

and

$$V_{2i-1}|_{\Omega(f_h)} \simeq (M_i^1 \# k) \oplus (k \# M_i^2).$$

Proof. Let $h_i \in H_i$ be represented by the matrix $A_i \in SL(2, q)$ with respect to the ordered bases mentioned above. The matrix $A_1 \otimes A_2$ represents the action of $h = h_1h_2$ on V with respect to its ordered basis (e_1, e_2, e_3, e_4) as well as its action on $(ku_1 + ku_2) \# (ku_3 + ku_4)$ with respect to its ordered basis $(u_1 \otimes v_1, u_2 \otimes v_1, u_1 \otimes v_2, u_2 \otimes v_2)$. So, $V_0|_{\Omega(f_h)} \simeq M^1 \# M^2$. Now, an application of τ^{2i} to V yields the first part of the lemma.

A simple calculation shows that each of the subgroups H_i^{τ} stabilizes the subspaces $ke_2 + ke_3$ and $ke_1 + ke_4$. Further, the action of H_1^{τ} (respectively of H_2^{τ}) on $ke_2 + ke_3$ (respectively on $ke_1 + ke_4$) with respect to the ordered basis (e_2, e_3) (respectively, (e_1, e_4)) is equivalent

to the standard action of SL(2,q) on k^2 and the action on $ke_1 + ke_4$ (respectively on $ke_2 + ke_3$) is trivial. So, $V_1|_{\Omega(f_k)} \simeq (M_1^1 \# k) \oplus (k \# M_1^2)$. An application of $\tau^{2(i-1)}$ to V_1 now yields the second part of the lemma.

For any subset I of N_1 , let M_I denote the set of $2^{|I|}$ ordered partitions (A, B) of I. By Lemma 5, if $K \in \mathcal{N}$, then

$$V_{K|\Omega(f_{h})} \simeq (M_{K_{e}}^{1} \# M_{K_{e}}^{2}) \otimes (\bigoplus_{(A,B) \in \mathcal{M}_{K_{0}}} M_{A}^{1} \# M_{B}^{2})$$

 $\simeq (\bigoplus_{(A,B) \in \mathcal{M}_{K_{0}}} M_{K_{e} \cup A}^{1} \# M_{K_{e} \cup B}^{2}).$ (1_h)

Note that for $K \in \mathcal{N}$, K_e and K_o are disjoint. Further K is determined by each irreducible component in (1_h) . So, we have the following:

COROLLARY 6

Let $K, K' \in \mathcal{N}$ be distinct. Then V_K and $V_{K'}$ are semisimple $k\Omega(f_h)$ -modules with no irreducible factors in common.

2.4

The core of the proof of the theorem is in Lemmas 7 and 8 that we now state. Let $f \in \{f_e, f_h\}$ and assume that $n \ge 2$ for Lemmas 7 and 8.

Lemma 7. Let $J, K \in \mathcal{N}$. If the symmetric difference of J and K is not equal to $\{2t-1\}$ for some $t \in N_1$, then $\operatorname{Ext}^1_{k\Omega(f)}(V_J, V_K) = 0$.

Now, let $J = K \cup \{2t - 1\}$ and $2t - 1 \notin K$. Then, $2t - 2 \notin K$ and, by Theorem, p. 159 of [17], there exists a unique kG-module E, up to isomorphism, which is a nonsplit extension of V_K by V_J .

Lemma 8. $\operatorname{soc}_{k\Omega(f)}(E|_{\Omega(f)}) \cong V_K|_{\Omega(f)}$. In particular, as a $k\Omega(f)$ -module, E is a non-split extension of $V_K|_{\Omega(f)}$ by $V_J|_{\Omega(f)}$.

Proofs of Lemmas 7 and 8 for the cases $f = f_e$ and $f = f_h$ are given separately.

2.4.1 The case $f = f_e$. For easy reference, we collect some results due to Alperin and due to Sin. Consider the following condition on $I, J \subseteq N$:

$$I \cup J = (I \cap J) \cup \{r\}$$
 and neither r nor $r - 1$ is in $I \cap J$. $(C_{I,J})$

Lemma 9.

- (a) For $I, J \subseteq N$, $\operatorname{Ext}^1_{kSL(2,q^2)}(W_I, W_J)$ as well as $\operatorname{Ext}^1_{kG}(V_I, V_J)$ are both k or both zero according as whether the condition $(C_{I,J})$ holds or not.
- (b) For i ∈ N, W_i ⊗ W_i is a uniserial module with composition factors k\W_{i+1}\k.

Proof. For (a), see Theorem 3, p. 221 of [1] and Theorem, p. 159 of [17]. For (b), see Lemma 4, p. 224 of [1].

A typographical error about the assumptions on I and J in the statement of part (a) in Theorem 3, p. 221 of [1] has been corrected here (see p. 229 of [1]).

Proof of Lemma 7. In view of the isomorphism $\operatorname{Ext}^1_{kG}(V_J, V_K) \simeq \operatorname{Ext}^1_{kG}(V_{J \cup K}, V_{J \cap K})$, the biadditivity of the map $(M, N) \mapsto \operatorname{Ext}^1(M, N)$ and Lemma 9(a) above, we only need to consider the case when $J = K \cup \{r\}$, $r \notin K$. In this case, the lemma follows from (1_e) and Lemma 9(a).

Proof of Lemma 8. From (1_e) ,

$$V_K|_{\Omega(f_e)} \simeq (\bigoplus_{L \in \mathcal{N}_{K_o}} W_L) \otimes W_{\overline{K_e}}$$

and

$$V_J|_{\Omega(f_\epsilon)} \simeq [\bigoplus_{L \in \mathcal{N}_{K_-}} (W_{L \cup \{t\}} \oplus W_{L \cup \{n+t\}})] \otimes W_{\overline{K_*}}.$$

We need to show that

$$\operatorname{Hom}_{k\Omega(f_{\varepsilon})}(W_{L'} \otimes W_{\overline{K_{\varepsilon}}}, E) = 0$$

for each $L' \in \mathcal{N}_{J_o}$. Let D_t denote the unique (up to isomorphism) kG-module which is a nonsplit extension of k by V_{2t-1} (see Lemma 9(a)). Then $E \subseteq D_t \otimes V_K$ (Lemma 8, p. 490 of [14]). Since D_t is isomorphic to a submodule of the kG-module $V_{2t-2} \otimes V_{2t-2}$ (see Lemma 2(a), p. 161 of [17]), $D_t \otimes V_K$ embeds in $(V_{2t-2} \otimes V_{2t-2}) \otimes V_K$. Hence it is enough to prove that

$$\text{Hom}_{k\Omega(f_e)}(W_{L'} \otimes W_{\overline{K}}, V_{2t-2} \otimes V_{2t-2} \otimes V_K) = 0.$$
 (*)

Let $L'' \in \mathcal{N}_{K_o}$ and $L' = L \cup \{r\}$ where $L \in \mathcal{N}_{K_o}$, r = t or n + t. Since simple $k\Omega(f_e)$ modules are self-dual, by Lemma 3,

$$\operatorname{Hom}_{k\Omega(f_{\varepsilon})}(W_{L'} \otimes W_{\overline{K_{\varepsilon}}}, V_{2t-2} \otimes V_{2t-2} \otimes W_{L''} \otimes W_{\overline{K_{\varepsilon}}})$$

 $\simeq \operatorname{Hom}_{k\Omega(f_{\varepsilon})}(W_{L'} \otimes W_{\overline{K_{\varepsilon} \cup (t-1)}}, W_{L''} \otimes W_{\overline{K_{\varepsilon} \cup (t-1)}}) = 0.$

So (*) holds and the lemma follows.

2.4.2 The case $f = f_h$. First we recall a useful result due to Jones (Theorem 3, p. 629 of [10]).

Lemma 10. Let R be a Dedekind domain, G_1 and G_2 be finite groups, $G = G_1 \times G_2$, $\Gamma_i = RG_i$, i = 1, 2, and $\Gamma = RG$. Let M_i and M'_i be (left) Γ_i -modules. Then, as R-modules.

$$\operatorname{Ext}^1_{\Gamma}(M_1 \# M_2, M_1' \# M_2') \simeq \operatorname{Hom}_{\Gamma_1}(M_1, M_1') \otimes_R \operatorname{Ext}^1_{\Gamma_2}(M_2, M_2')$$

$$\oplus \operatorname{Ext}^1_{\Gamma_1}(M_1, M_1') \otimes_R \operatorname{Hom}_{\Gamma_2}(M_2, M_2')$$

and

$$\operatorname{Hom}_{\Gamma}(M_1 \# M_2, M_1' \# M_2') \simeq \operatorname{Hom}_{\Gamma_1}(M_1, M_1') \otimes_R \operatorname{Hom}_{\Gamma_2}(M_2, M_2').$$

Proof of Lemma 7. As in the case $f = f_e$, we need only to consider the case when $J = K \cup \{r\}$, where $r \notin K$. If r = 2t for some $t \in N_1$, then (1_h) and Lemma 10 imply $\operatorname{Ext}^1_{k\Omega(f_h)}(V_J, V_K) = 0$.

Proof of Lemma 8. From (1_h) ,

$$V_K|_{\Omega(f_h)} \simeq \bigoplus_{(A,B)\in \mathcal{M}_{K_0}} (M^1_{K_e\cup A} \# M^2_{K_e\cup B})$$

and

$$V_{J|\Omega(f_h)} \simeq \bigoplus_{(A,B)\in \mathcal{M}_{K_0}} [(M^1_{K_e\cup A\cup [t]} \# M^2_{K_e\cup B}) \oplus (M^1_{K_e\cup A} \# M^2_{K_e\cup B\cup [t]})].$$

We need to show that

$$\text{Hom}_{k\Omega(f_h)}((M^1_{K_e \cup A \cup \{t\}} \# M^2_{K_e \cup B}) \oplus (M^1_{K_e \cup A} \# M^2_{K_e \cup B \cup \{t\}}), E) = 0$$

for each $(A, B) \in M_{K_o}$. In view of the discussion regarding D_t in the $f = f_e$ case, we prove that

$$\text{Hom}_{k\Omega(f_h)}((M^1_{K_e \cup A \cup \{t\}} \# M^2_{K_e \cup B}) \oplus (M^1_{K_e \cup A} \# M^2_{K_e \cup B \cup \{t\}}), V_{2t-2} \otimes V_{2t-2} \otimes V_K)$$

is zero for each $(A, B) \in \mathcal{M}_{K_a}$. Now if $(A, B), (A', B') \in \mathcal{M}_{K_a}$, then

$$\begin{split} &\operatorname{Hom}_{k\Omega(f_h)}((M^1_{K_e\cup A\cup\{t\}}\#M^2_{K_e\cup B})\oplus (M^1_{K_e\cup A}\#M^2_{K_e\cup B\cup\{t\}}),\\ &V_{2t-2}\otimes V_{2t-2}\otimes (M^1_{K_e\cup A'}\#M^2_{K_e\cup B'}))\\ &\simeq \operatorname{Hom}_{k\Omega(f_h)}((M^1_{K_e\cup A\cup\{t\}}\#M^2_{K_e\cup B})\otimes V_{2t-2}\oplus (M^1_{K_e\cup A}\#M^2_{K_e\cup B\cup\{t\}})\otimes V_{2t-2},\\ &V_{2t-2}\otimes (M^1_{K_e\cup A'}\#M^2_{K_e\cup B'}))\\ &\simeq \operatorname{Hom}_{k\Omega(f_h)}((M^1_{K_e\cup A\cup\{t\}}\#M^2_{K_e\cup B})\otimes (M^1_{t-1}\#M^2_{t-1})\oplus (M^1_{K_e\cup A}\#M^2_{K_e\cup B\cup\{t\}})\\ &\otimes (M^1_{t-1}\#M^2_{t-1}), (M^1_{t-1}\#M^2_{t-1})\otimes (M^1_{K_e\cup A'}\#M^2_{K_e\cup B'}))\\ &\simeq \operatorname{Hom}_{k\Omega(f_h)}((M^1_{K_e\cup A\cup\{t-1,t\}}\#M^2_{K_e\cup B\cup\{t-1\}})\oplus (M^1_{K_e\cup A\cup\{t-1\}}\#M^2_{K_e\cup B\cup\{t-1,t\}}),\\ &M^1_{K_A\cup A'\cup\{t-1\}}\#M^2_{K_A\cup B'\cup\{t-1\}})=0 \end{split}$$

by Lemma 10. Here we have used: (i) the duality between the functors 'Hom' and 'Tensor', namely for any group X and kX-modules U_i , we have $\operatorname{Hom}_{kX}(U_1, U_2 \otimes U_3) \cong \operatorname{Hom}_{kX}(U_1 \otimes U_2^*, U_3)$, where U^* is the dual of U; and (ii) the fact that each simple module for $G = \operatorname{Sp}(4, q)$ is self-dual. So Lemma 8 holds for $f = f_h$ also.

3. Proof of Theorem 1

(a) Let n=1. Then $\dim_k(\overline{C})=9$ (see, for example, p. 308 of [13]). By Lemma 4, p. 488 of [14] and Frobenius reciprocity (p. 689 of [11]) it follows that V_1 , k and V_0 (in descending order) are kG-composition factors of \overline{C} . Semisimplicity of each composition factor of \overline{C} and its multiplicity freeness as a $k\Omega(f)$ -module are proved in Corollaries 4 and 6. For

the remaining part of the proof, we treat the cases separately. Consider the case $f = f_e$. Since $V_0|_{\Omega(f)} \simeq W_0 \otimes W_1$ (Lemma 3) is the Steinberg module (and hence projective) for $\Omega(f)$, we need to prove that the kG-module E which is the unique (up to isomorphism) nonsplit extension of k by V_1 remains nonsplit as a $k\Omega(f)$ -module. Further, since E is isomorphic to a submodule of the kG-module $V_0 \otimes V_0$ (see Lemma 2(a), p. 161 of [17]), $V_1|_{\Omega(f)} \simeq W_0 \oplus W_1$ (Lemma 3) and $W_0 \otimes W_1$ is the Steinberg module for $k\Omega(f)$, by Theorem 1, p. 220 of [1], we have

$$\operatorname{Hom}_{k\Omega(f)}(V_1, V_0 \otimes V_0) = 0.$$

Now we consider the case $f = f_h$. Then M^1 , M^2 and $V|_{\Omega(f)} \simeq M^1 \# M^2$ (see Lemma 5) are the Steinberg modules for H_1 , H_2 and $\Omega(f)$, respectively. Hence we need to prove that E as a $k\Omega(f)$ -module splits. But this is clear from Lemmas 5 and 10.

(b) Let $n \geq 2$. By Theorem 2, $\{V_I\}_{I \in \mathcal{N}}$ are the kG-composition factors of $\overline{\mathcal{C}}$ and they appear with multiplicity one. So, (i) follows from Corollaries 4 and 6.

We now prove (ii). Let V_K and V_J , K, $J \in \mathcal{N}$, be in the i-th and j-th kG-socle layers of $\overline{\mathcal{C}}$, $1 \le i < j \le 2n$. Assume that there is a kG-module E which is a nonsplit extension of V_K by V_J . Then, by Lemma 9(a), j = i + 1. Further, E is a nonsplit $k\Omega(f)$ -extension of V_K by V_J if and only if $J = K \cup \{2t - 1\}$ for some $t \in N_1$ (Lemma 7).

Further, if this holds, $soc_{k\Omega(f)}(E) = V_K$ (Lemma 8). That is, either all or none, of the simple $k\Omega(f)$ -summands of V_J descend. This observation together with the kG-socle structure of \overline{C} yields (ii).

Now, let $m \in \{0, 1, \ldots, n-2, n\}$ and $I \in \mathcal{A}_m$. In what follows, all modules considered are over $k\Omega(f)$. Since $\overline{\mathcal{C}}$ is multiplicity free as a $k\Omega(f)$ -module, it has a unique submodule $X_{m,I}$ with head V_K , where K is the unique element of \mathcal{N} with $K_e = I$ and $K_o = I^{\mathrm{ac}}$. First $X_{0,I} = V_{\{2t: t \in I\}}$ (see (1_e) and (1_h)) and is semisimple. Let m > 0 and write $X_{m,I}$ as L for brevity. Since $\mathrm{hd}(L)$ is contained in the m-th socle layer of $\overline{\mathcal{C}}$, L is a submodule of $\mathrm{soc}^m(\overline{\mathcal{C}})$. For each summand of $\mathrm{rad}^1(L)/\mathrm{rad}^2(L)$ of the form V_J , a nonsplit extension of V_J by $\mathrm{hd}(L)$ appears as a section of L. Further, $\mathrm{hd}(L) = V_K$. So, $J = K \setminus \{2t-1\}$ for some $t \in I^{\mathrm{ac}}$ (Lemma 8). This proves that $\mathrm{rad}^1(L)$ is contained in the unique submodule L' of $\mathrm{soc}^{m-1}(\overline{\mathcal{C}})$ whose head is isomorphic to

$$\bigoplus_{J \in \mathcal{N}, \ J_e = I, \ J_o \subseteq I^{ac} \text{ and } |J_o| = m-1} V_J. \tag{3.1}$$

The multiplicity freeness of \overline{C} (as a $k\Omega(f)$ -module) implies that $L \cap L' = \operatorname{rad}^1(L)$. We now show that $L' = \operatorname{rad}^1(L)$. Since $(L + L')/L' \cong L/(L \cap L') = L/\operatorname{rad}^1(L) \cong V_K$, by uniqueness of L, L + L' = L. Thus $L' \subseteq L$ and $L' = L \cap L' = \operatorname{rad}^1(L)$. Thus, $\operatorname{rad}^1(L)/\operatorname{rad}^2(L)$ is the module in (3.1). Now successive application of this argument to $\operatorname{rad}^i(L)/\operatorname{rad}^{i-1}(L)$ yields the statement about the radical structure of $X_{m,I}$ in (iii). Further, (iv) is also clear.

Since $soc(X_{m,I}) = V_{\{2I: I \in I\}}$ is simple, $X_{m,I}$ is indecomposable. For $I \neq J \in A_m$, $X_{m,I} \cap X_{m,J}$ is trivial because their socles are distinct and simple. (In fact, $X_{m,I}$ and $X_{m,J}$ have no composition factors in common.) Let

$$X_m = \bigoplus_{I \in \mathcal{A}_m} X_{m,I}$$
.

For distinct $m, m' \in \{0, 1, ..., n - 2, n\}$, X_m and $X_{m'}$ have no composition factors in common and every composition factor of \overline{C} occurs in some X_m . Thus sum of X_m 's equals \overline{C} , completing the proof of all parts of (iii) and of Theorem 1.

Remark 11.

- (i) If n = 1, as a kΩ^r(f)-module, V₀ and V₁ are semisimple and \(\overline{C}\) is multiplicity free. Further, if f is of Witt index 1, then \(\overline{C}\) is isomorphic to the direct sum of V₀ and a kΩ^r(f)-module U with hd(U) \(\simeq k\) and rad(U) \(\simeq V_1\). If f is of Witt index 2, then \(\overline{C}\) is semisimple.
- (ii) If n ≥ 2, as a kΩ^τ(f)-module, then V_I is semisimple for each I ∈ N and \(\overline{C}\) is multiplicity free and is isomorphic to

$$\bigoplus_{m \in \{0,1,...,n-2,n\}} \left(\bigoplus_{I \in \mathcal{A}_m} U_{m,I} \right),$$

where $U_{m,I}$ is a unique indecomposable module of radical length m+1. Its j-th radical layer rad $^{j}(U_{m,I})/\text{rad}^{j+1}(U_{m,I})$ $(0 \le j \le m)$ is isomorphic to

$$\bigoplus_{J\in\mathcal{N},\ J_{\varepsilon}=I,\ J_{o}\subseteq I^{\mathrm{ac}}\ \mathrm{and}\ |J_{o}|=j}V_{I}\,.$$

Moreover, for each $m \in \{0, 1, \dots, n-2, n\}$,

$$\operatorname{Soc}^{j}(U_{m,I}) = \operatorname{rad}^{m+1-j}(U_{m,I}).$$

Thus (i) and (ii) follow from an argument similar to the proof of Theorem 1, using Theorem 2 and Lemmas 7 and 8.

Examples. We illustrate the descent of the composition factors V_J in Theorem 2 when considered as a $k\Omega(f)$ -module for the cases n=1,2,3,4. For $J=\{i_1,i_2,\ldots\}\subseteq N$, we write V_J as \underline{J} or i_1,i_2,\ldots

If n = 1, then

$$\overline{C} = 0 \oplus (1/k).$$

If n = 2, then

$$\overline{\mathcal{C}} = X_0 \oplus X_2 \equiv [0 \oplus 2 \oplus 0, 2] \oplus [1, 3/(1 \oplus 3)/k].$$

If n = 3, then

$$\overline{C} = X_0 \oplus X_1 \oplus X_3 \equiv [\underline{0, 2, 4} \oplus \underline{0, 2} \oplus \underline{0, 4} \oplus \underline{2, 4}] \oplus [(\underline{0, 3/0}) \\ \oplus (2, 5/\underline{2}) \oplus (1, 4/\underline{4})] \oplus [1, 3, 5/(1, 3 \oplus 1, 5 \oplus 3, 5)/(\underline{1} \oplus \underline{3} \oplus \underline{5})/k].$$

If n = 4, then

$$\overline{\mathcal{C}} = X_0 \oplus X_1 \oplus X_2 \oplus X_4,$$

where

$$\begin{split} X_0 &= \bigoplus_{J \subseteq N_1, |J| = 3 \text{ or } 4} 2\underline{J} \oplus (\underline{0,4} \oplus \underline{2,6}), \\ X_1 &= \bigoplus_{i=0}^3 (\underline{2i,2i+2,2i+5})/(\underline{2i,2i+2}), \\ X_2 &= \frac{(\underline{0,3,5}/(\underline{0,3} \oplus \underline{0,5})/\underline{0}) \oplus (\underline{2,5,7}/(\underline{2,5} \oplus \underline{2,7})/\underline{2})}{\oplus (\underline{1,4,7}/(\underline{1,4} \oplus \underline{4,7})/\underline{4}) \oplus (\underline{6,1,3}/(\underline{6,1} \oplus \underline{6,3})/\underline{6}), \\ X_4 &= A_4/A_3/A_2/A_1/A_0, \end{split}$$

where A_i is the direct sum of \underline{J} as J runs over the subsets of $\{1, 3, 5, 7\}$ of size i.

Acknowledgement

We thank Professor Peter Sin for kindly pointing out an error in Theorem 1 in an earlier version of this paper. The second-named author also thanks Harish-Chandra Research Institute, Allahabad, India for kindly permitting him the use of its library and computing facilities during the period of this work.

References

- Alperin J L, Projective modules for SL(2, 2ⁿ), J. Pure Appl. Algebra 15 (1979) 219–234
- [2] Dembowski P, Finite geometries, Classics in Mathematics (Berlin: Springer-Verlag) (1997) (reprint of 1968 edition)
- [3] Dye R H, Interrelations of symplectic and orthogonal groups in characteristic two, J. Algebra 59 (1979) 202–221
- [4] Dye R H, On the Arf invariant, J. Algebra 53 (1978) 36–39
- [5] Flesner D E, The geometry of subgroups of P Sp₄(2ⁿ), Illinois J. Math. 19 (1975) 48–70
- [6] Flesner DE, Maximal subgroups of PSp₄(2ⁿ), containing central elations or noncentered skew elations, Illinois J. Math. 19 (1975) 247–268
- [7] Hirschfeld J W P, Finite projective spaces of three dimensions (Oxford: Oxford University Press) (1985)
- [8] Hirschfeld J W P, Projective geometries over finite fields (Oxford: Oxford University Press) (1998)
- [9] Huppert B and Blackburn N, Finite groups (Berlin: Springer-Verlag) (1982) vol. 2
- [10] Jones A, Integral representations of direct product of groups, Canad. J. Math. 15 (1963) 625–630
- [11] Lang S, Algebra, Third edition (New York: Addison-Wessley) (1999)
- [12] Payne S E and Thas J A, Finite generalized quadrangles (Boston: Advance Publishing Program, Pitman) (1984)
- [13] Sastry N S N, Codes and generalized polygons, in: Proc. of Seminar on combinatorics and applications in honour of Prof. S S Shrikhande (Calcutta: Indian Statistical Institute) (1982) pp. 303–310
- [14] Sastry N S N and Sin P, The code of regular generalized quadrangle of even order, Proc. Symp. Pure Math. 63 (1998) 485–496
- [15] Sastry N S N and Sin P, The binary code associated with nondegenerate quadrics of a symplectic space of even order, J. Combin. Theory (A) 94 (2001), 1–14

- [16] Sastry N S N and Sin P, On the doubly transitive permutation representations of $Sp(2n, \mathbb{F}_2)$, J. Algebra 257 (2002) 509–527
- [17] Sin P, Extension of simple modules for Sp₄(2ⁿ) and Sz(2ⁿ), Bull. London Math. Soc. 24 (1992) 159–164
- [18] Steinberg R, Representations of Algebraic groups, Nagoya J. Math. 22 (1963) 33-56
- [19] Steinberg R, Lectures on Chevalley Groups, Mimeographed Notes (New Haven, Conn.: Yale Univ. Math. Dept) (1968)
- [20] Taylor D E, The geometry of the classical groups, sigma series in pure mathematics (Berlin: Helderman-Verlag) (1992) vol. 9