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1. Introduction and statement of the result

Let Vigy = [F'j g = 2", be the vector space of dimension four over Fy, endowed with
4 nondegenerate symplectic bilinear form i and Wig) denote the incidence system with
the set P of all one-dimensional subspaces of Vig) as its point-set, the set L of all two-
dimensional subspaces of Vig) which are isotropic with respect 1o fi as its fine-set and
symmetrized inclusion as the incidence. Then, Wi{g) 15 a regular generalized quadrangle
of orderg (p. 37 of [12]). Further, elements of the symplectic group ¢ defined by fi act as
incidence-preserving permutations on the sets P and L.

Let & be an algebraically closed extension field of Fy. We denote by C the image of
the kG-module homomorphism from the permutation G-module k% on L over k to the
permutation G-module k¥on P over &, taking/ € L o ZpEI p € k%', The endomorphism
of k¥ taking each element of P to the ‘all-one’ vector 1 = ZJJFF pinkf isa G-
maodule homomorphism onto the trivial G -submodule k1 of k¥ If ¥p is the kemel of the
‘augmentation map” from kP ok tiking p € P lo 1 € k, then

k* =k1@¥Yp.
Since every element of P isincident with g + 1 elements of L, it follows that 1 € C and
C=klaC,
where C = ¥p M. The Loewy structure of the kG-module {_f_is determined in Theorem 2,
p. 486 of [14]. Here, we determine the Loewy structure of C as a k£2{ f)-module, where
2 f) is the commutator subgroup of the orthogonal group () < G defined by a
nondegenerate quadratic form f on Vig) polarzing to fi. That is, iix, v) = f{x + y) —

Flay — Fiv) holds for all x,y € Vig). There are two such gquadratic forms on Vig), up
to G-equivalence (see Theorem 6, p. 214 of [3]). They are distinguished by the presence
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(hyperbolic case) or otherwise (elliptic case) of 1sotropic projective lines in the set V( f)
of zeroes of f in the projective 3-space P(3,g) over Iy that is, they correspond o the
cases when the Wittindex of fis2or 1 (4.1, p. 18 of [3]). The subgroups O f)and £2( F)
of (7 are isomorphic o (SL{2, g) = SL(2,g0) -2 and SL{(2, g) x §L(2, g), respectively,
when the Witt index of i 2; and to §L(2, ql}l -2 and SL(2, ql}l, respectively, when the
Wittindex of f s 1. We also mention that Spi4, g) contains exactly 2 conjugacy classes of
subgroups of each of the types SL(2, g7) and SL(2. g) % SL(2. g) (see Corollary, p. 247
of [6]).

To state our theorem, we descrnbe the simple FG-modules. Let NV = {001, ..., 2n—1},
with addition taken modulo 2a. Let V = Vig)® & = k% and extend the symplectic
form fi 1o V. Then & is the subgroup of the algebraic group Sp(V) = Spi4, &) fixed by
the r-th power of the Frobenius map o (which 15 the “square-the-matrix-ecntnes’ map on
G4, kD). Ivis well-known that Sp(V') has an endomorphism © with z 1 — 7 (Theorem 28,
p- 146 of [ 19]). For any non-negative integer 1, we denote by ¥ the SpiV i-module whose
veclor space structure is the same as that of 'V oand an element g of Sp(V) acts on V; as
r"{g}l acts on V. For I © N, let Vi denote the kG-module @;2p V; (with Vi = k). Then,
by Stemberg’s tensor product theorem (811 of [18]), { Vi T © N} s a complete set of
mnequivalent simple kG -modules.

Let A = {0,1,..., n — 1}, with addition taken modulo n. For I € N, define
fe={ieN:2Zielland i, ={ie N:2i -1 € I}. Forn = 1, wedenote by N ithe set of
all subsets I of N which has no consecutive elements, that 15, all I such that L and fy are dis-
Jomtandifi € [ theni41 & I,. Foreach subset F ol Ny, the subset NP2+ 100 € T
of Ny will be called the admissible complement of I and will be denoted by 1%, We
observe that for I © N, thesubset K = {2i:§ & T} U {2i — 1:§ & 1"} is the unigue
maximal subset of N suchthat K, = Ffand K, = 1", Also, I™ = Wil || = n—1orifl
N\ IT={i.jhhi=<jamdj #£i+1.Foreachm {0, 1,..., n —2, n}, let 4, denote the
set of all subsets I of Ny such that [1%] = m. We observe that 4, = (¥} and 4, = .
For a module M admitting a chain of submodules M = My 2 M| 2 - 2 M., we
indicate the chain of factor modules E; = M; /M as E, 8 .. Z\Egor Epf .. fE._.
For a kG-module M, we write M as rad"(M), denote by rad' (M) the radical of M (that
is, the smallest submodule of M with semisimple guotient) and, for a positive integer i,
define the i-th radical rad' (M) of M recursively as rad! (rad'~'(M)). Dually, we write
HH.'”{M} = {0}, denole by soc! (M ) the socle of M (thatis, the largest semisimple submod-
ule of M) and, for a positive integer {, define the i-th socle H:U'L'j{ﬂ'” of M recursively by
soc! (M) /soc’ ~H{M) = soc(M /soc'~ (M)). The radical length (respectively socle length)
of M is the positive integer r such that md" (M) = 0 but rad " (M) £ () {respectively
soc’ (M) = M butsoc"~ (M) &£ M). We referto M /frad (M) as the head of M and write it
as hd( M.

Theorem 1.
(a) Letn = 1. As K0 fi-modules,

(i) when f is of Witt index 1, Vg and V| are semisimple; C is multiplicity-free and is
isomorphic to the divect sum of Vo and a k220 f)-module X with hd{X) = V| and
rad(X) == k; and

(it) when [ isof Witt index 2, ¢ is semisimple and each composition _fm.'mrqff appears
with multiplicity one.
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(h) Letn = 2. As a K2 f)-module,

(1) Vi is semisimple for each I € N andC is multiplicity-free;
(ii) soclelengthof Cis n+1andits jth-socle laversoc! (C)/soc! ~H(C),1 < j < n+1,
iy isomorphic to
O w
FeN and |la|=j—1
(i)

O @ Xpn and X,= @ Xm.is
mell, 1, .. =21} fedw

where Xy p is the wunigue indecomposable KQ 0 )-submodule uj'E with head Vi
with K denoting the unigue element of N such that K, = I and K, = I'*. The rad-
ical length of X, 1 ism + | and its j -th radical layerrad! (X, 1 )/rad’> (X, 1),
0= j = m,is isomorphic to

D 4
JeN, L=1 LCiv and |f,|=m—j
and
(iv) soc! (X 1) = d™ ' (X)), 1=j=m.
To prowe this, we use the following:

Theorem 2 (Theorem 2 of [14]). The radical series q,f'(f av a kG -module has length 2n+
L. The radical layers are
rad’ (C)/rad’ " (C) = ap Vi, 0<j<2n
e amd |1 —|1|+n=]
Mareaver,
soc! (C) = rad®+!-1(C).

The crucial observation is that if E is a section of ¢ which is a nonsplit extension of
Vi by Vi, then E s a nonsplit ££2( f)-moduke if and only if L = K U {2t — 1} for some
t € Ny (see the first para of the proof of biii) in §3). Thus either each or none of the simple
K2 fi-factors of Vi descends.

In §2, we study the structune {}I'_'Ir"f as a K20 fl-module and prove Theorem 1 i §3. We
also write the socle strocture of C as a £Q0 f)-module forn = 1,2, 3,4, We view this
work as part of the program of determining the module structure of permutation modules
for finite groups of Lie type (sec [15,16]) and references therein for a few other cases
considered in the Literature.

2. V; as kQ(f)-modules
2.1
Throughout, we choose the nondegenerate symplectic bilinear form fi on IF';: b4 [Fj o be

flixy. xa, x3, xa). (1. ¥2. ¥3. ¥4)) = 2194 + x4 + 3253 + wxa.
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The guadratic forms f, and fi; on IF; polarizing o fi and of respective Witt indices 1 and
2 are chosen to be

. 4 i a1 i
felxy, o, 3, x) = xpog + ¥ I.r,l' + x3x3 + " I.r_{_: and

Jelxy, o, 3, xg) = xpxg + 1233,

where @ is an element of F 2 \Fy such thate + o9 = 1.

This choice of f, and fj, entails no loss of generality in view of the unigueness of a non-
degenerate symplectic form fion Vig), up to GL{V{g))-equivalence (see Corollary 8.2,
p- 387 of [11]); and the uniqueness of g quadratic form on Vig) of a given Witt index and
polarizing to fi, up to G-equivalence (see Theorem 6, p. 214 of [3] and p. 39 of [4]).

2.2 The case f,

The polynomial u!‘f_".r% + x203 + o7 '.r_;__" 15 imeducible over IFH. but factors as (o +
a¥ xa) @ x2 4 oxz) over [Fqg. So, the zero set £ of f, in P(3, g) is an elliptic quadric and
the zero set £ of f, in P(3, g%) is a hyperbolic quadric. Since f, polarizes o fi, £ is an
ovoid in the generalized quadrangle W g ) defined by i (p. 31 of [2]).

(A) Recall that 22(f,) = SL{E,qE}I. We now interpret the KL f-modules V;oas
ESL(2, qu}lrmudulus_ For this, we construct:

(1) an isomorphism from §L(2, qrzj w 24 f. 0. following Theorems 15.3.11 and 15318
of [7]; and
(i} agraphautomorphism r of G, following pp. 38-600f [5] {also see Chapter 12 of [20]).

(i)
(1) The inversive planes (P11, qu}l, Ly and (£, @), Recall that a subline of the projective

line P(1.g°) over [F 2 is the set of all one-dimensional subspaces of F?, generated by
i

the Fy-span of a fixed basis of [Fﬁ_?. Equivalently, it 15 & nonsingular Hermitian variety
Va = VixA(x'""") in P(1, g°) defined by an equation of the form .m.r?l_I + !?.rl.r’il -+
bl + ng_r'f_l, where x = (x].x3) € [F;z, @ = (x},x)amd A= .[:;; ‘i} with
a € Fg.b € JFqg, ajar # bbY (Lemma 6.2, p. 138 of [8]). Let £ denote the set of
all sublines of P{l,ql}l. Then, the incidence structure (P, ql}, L), with symmetrized
inclusion as incidence is an inversive plane of order g; thatis,a 3 —(g° + 1. + 1, 1)
design (p. 257 of [2]). This is isomorphic to the incidence system (£, 4, where £ is as
ahove, d is the set of all planes in P(3, g) which are not tangent to £ and the incidence
again is symmetnzed containment (p. 257 of [2]).
(b) An isomophism between (FP(1, .r,rz}l, Ly and (£, @). To construct this, we follow The-
orem 15.3.11, p. 21 of [7]. Let i be the injective map from Py 1, ql} to P{3, qrq'}l defined
by

i(P(x1. ) = P xixd xfx. 8™

and 1 be the involutory projectivity of P(3, qrz}l defined by

YiPlx, vz, x3.m)) = Pl an + o, oo +oexs, )
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We identify P{3,g) withits image in P(3, g°) under the map Fya qu: wherea =
(aa), 2, @3, 84) € IF';: -Wetreat i chosen in(2.1) also as a nondegenerate symplectic formon
IF:}E. For xin P(3, %), we denote by fi(x, —) the plane in P(3, g°) consisting of all points
yof P(3,g%) such that fi(x, v) = 0. Since o stabilizes ki, yrifix, —)) = hiy(x), —) for
each xin P(3, g%). Let j be the map from £ to @ taking Vy to k(yr(Pla’). =) N P(3. g).
where @' = (ay. b, b9 a2) [F':E. These planes are not tangent to £ because [, takes the
nonzero value ayaz — b on Wi Pla’)) and so i Pla”)) ¢ £ itis known that the tangent
planesto £in P(3, g) are all of the form il x, =N P(3, g). x € £; and the correspondence
o s filo, —) M P(3, g) between the points of P(3,g) and the planes of P{3, g) is
incidence preserving and bijective. The map 1 o from P(1, g7) to £ and the map j from
£ to @ are both bijective and form an incidence preserving pair; that is, if p € Vy € £,
thenr o i (p) € j(Va) € .
(c) The isomorphism from §L{(2, ql}l 1o 20 fo 0. The full automorphism group of the inci-
dence structure (P{1, g7), £) is PTL(2,g7) = SL(2, g7){&). where £557! = §'% =
{.\'i.} forall § = (sj;) € 5[.{2,:;3} (1, 4.1, p. 274 of [2]). We give an explicil 1somor-
phism § from its (unigue) subgroup K isomorphic to SL(2, g%) - 2into Spi4, g7 ) such that
wriim h‘}llﬁ'“' equals the stabilizer O f2) of £ in G (see Theorem 15318, p. 27 of [T]).
For § = (s;5) € 5L{2,q1}, let Py denote the projectivity of P{l.ql} taking FPi{x) to
Pix5). Then, {Pg: § € SL{E,.:]I}} a SL{Z,qI}_ If & s the involutory projectivity of
P{l,ql} taking FPixy, x2) — F'{.r’l", .rg}, then ﬁ'F’_g-ﬁ'_l = Py, where § is as above and
54 = {:.".lj.’]}. So0{Pg: 5 S5L(2, .r,r:r}l}{ﬁ'} 15 the subgroup of PI"L{2, qi} of index n.

Now Py induces a bijection Ty on £ which takes Vi to Voagian- 1. With the corre-
spondence A «+ a’, with @’ as above, the map A — SA((59)~1)" can be written as
a' + a Rg, where

ool el e e
SIS S1183 S8 82185

R g

S1IS|, 118y, S:18), 2183, . (@i

Ke= g g g g |=5 @G
5138]] 81283 §228)| S1283,

q 4

X2

- i i
8128|5128y, $228)5 §2285,

[

Let R g denote the projectivity of P(3, ql}l taking Pix), x2, x3, o P{lx, o2, x3, ) Rs).
Note that 1 and Ry both stabilize fi; Ry fixes the gquadratic form gy, r2, 03, 14) =

x1xy + x2x3; W is a4 bijection between the varieties 'I.f“glg}l and P’;fg{j;.}; and 1,{r‘R,_g1;;—|

is a projectivity of P(3, g) also. So, v Rewr ! is in the stabilizer of £ in G. If Ry is
identity, then so is Ts. These facts imply that the map § — ¥ Rsv ' is a monomorphism

from SL(2. g7) to € f.). Now, the map A — A'Y can be written as a’ — a'R, where
TR denotes the projectivity of P(3, qz} taking FPixy, x2, x3. x4) to Pixy, x3, 22, x4). Fur-
ther, R is in the stabilizer of £ in G,y and R commute and RRsR = R i For each

S e SL(2.g%). So, (yRsw~': § € SL(2.47)} (R} is a subgroup of O f.) and is iso-
marphic to SLa{g”) -2. Now equality holds by order considerations and the isomorphism

follows.

(1)

We now desenibe a graph automorphism © of Sp(V), following pp. 58-60 of [5]. (The
argument presented o loc. cit. constructs a graph automorphism for & = Sp{Vigi).
Howeverthe arguments are valid for Spd V) also.) Let @ denote the nondegenerate quadratic
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form on the exterior square A7V of V defined by
HE zizjzarijer Aoej) = hzhag +Aahas +A4da3

(and whose zerm setl in F'{:".l'lf'}l 15 the well-known Klein guadric). Let # denote the
polarization of @ and y = e A eq+ £2 A ez Then the restriction of O to the hyperplane
U = {x € A’V: fix.y) = 0} of A’V is a nondegenerate quadratic form; and the
restiiction of w0 U5 1s an alternating form with radical £y, The allernating I'urmﬁ induced
by § on U = U/ky is nondegenerate. So the symplectic space (I, f) is isometric to
(V. k). Let p: [J — V he the isometric isomorphism induced by the linearmap p: If — V
defined by

pley nex) =e1, ple) Aex)= ez, plex hey) = €3,
ples neg) =eq, ply)=0.

Then the map taking g € Sp(V) to pi~2(g)p~"' € Sp(V) is a graph automorphism t
of Sp(V ) which, on restnction to 7, gives a graph automorphism of 7.

(B Let W odenote the standard  two-dimensional simple £SL(2, q1}~:m1-r.iulc. For a non-
negative integer 7, let Wy denote, asin§ 1, the £ SL(2, .r,rl}l—mu.lulc whose underdying vector
space structure 15 the same as that of Woand the action of g = {ay ») € SL(2, ql}l on
Wi is the usual action of glf] = ;'_:"}l{m W. For any subset 7 of N, let W; denote the
ESL(2, rfz}l-ETHJdull: #ier Wi Then, by Steinberg™s tensor product theorem, (Wi I = Nbis
acomplete set of inequivalent simple kSL(2. g7)-modules. The following decomposition
was suggested o the first-named author by Peter Sin.

(a2

Lemma 3. Fori € N,

Vailarp) = Wi @ Wy
anel

Vaiciloiry = Wi & Wasio

Proof We prove this by using the above interpretation of V; as kSL(2, g7 )-modules.
The group H = {Rs: § € SL{E,qE}}, where Ry i as in (2.2A00c)) and S2( f) are
both isomorphic to §L(2, g°) and are conjugate in Sp(4, k) (in fact in Sp(4, 7)) (see
the last parmgraph of 2.2.A00c). So, for I = N,V considered as a £ H -module and V)
considered as a KQ0( fo)-module are somorphic S L2, rfl}rm{xlulus. Let (e). €2, €1.e4)
be the standard ordered basis for Voand (vy, 1) be an ordered basis for W, For § €
SL(2.4%). § @ 5§ represents not only the action of § on V with respect to the ordered
basis (g1, €2, €3 €4) of V but also the action of § on Wy @ W, with respect to the ordered
basis (v2 @ v2. 12 @ v, vy @ vz v @ ) of Wy @ W, S0, Vaology = Wo ® W, Now,
an application of oV yields the first part of the lemma.

A simple caleulation shows that R leaves the subspaces M! = keq + kep and M? =
kea 4+ key invanant. Further, the matrix representation of R_E- on M with respect o the
ordered basis (g4, 1) is § and it is 59 on M7 with respect o the ordered basis (e3, e2).
So, an application of t¥~! to V yields the second part of the lemma. |
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For I © Np, ket A7 denote the set ul'_2|‘lI subsets J of N of size | 7] such that, for cach
t el onlyoneofrandn+rsind. Let§f =JTU(n47). Then for K £ N, Lemma 3 yields

P W:_) & Wf . (le)
[T ¥

L:—,"HU

Vilaig 2(

Notice that each rreducible component in (1, ) determines both the sets K, and K. 50
we have the following:

COROLLARY 4

Let K, K" & N be distinct. Then Vi and Vi are semisimple K& fu )-modules with ne
irveducible factors in commaon

23 The case fi

We now study Vo oas a K20 f )-module. The zero set of fi, in P(3, g) is a quadrie of
Witt index 2. Since i, poladzes to fi, the projective lines contained in this quadric are
isotropic with respect o fi. Funther, 2 f;,) = H Ha, [H|, H:] = H N Hz = {1}, where
Hy (respectively Hz) = SL(2, g) 1 the stabilizer of the subspace ki + kna (respectively
kvp +kva)of V. Herewy = e +e1. 2 = ex+e4. 1 = ¢ +e2 and v2 = e31 +¢e4. Further,
the action of & (respectvely Hr) on ke + kug (respectively kv 4 kvp) with respect Lo
its ordered basis (n . w2) (respectively (v, vad) s the standard SL(2, g)-action on K.

Let M and M? be two copies of the standard 2-dimensional simple kSL(2, g)-module.
For j € N, define the jth-standard Frobenius Lwi.atﬂ-fj. of M' asin 22B. For J € Ny,
define M’} as @J.-;_;Mj._ Further, for I and J © Ny, denote by M’}#M} the ouler ensor
product of M} and Mq}. That is, M} #M’_-"; 15 the k-vector space M‘.' @ M} with the action
of (hy,ha) € SL(2,g) = 5L(2, g) on il given by

(hy, ha)(my @ ma) = hlm ) @ halma).

Then, {M}#M}: I.J = Nt a complete set of pairwise nonisomorphic simple
E(SL(2,g) = SL(2, g))-modules (Theorem 9.14, p. 136 of [9]).

Lemma 5. Fori € N,
Vailai gy = M;'I #MF
and
Vaicilaf) = (M) @ (k#M7).

FProaf Leth; € H; be represented by the matmmix A; € SL(2, g) with respect to the ordered
bases mentioned above. The marix A @ Az represents the action of i = hphz on Vowith
respect o i ordered basis (e, 2. £3, eq) as well as its action on (ko ko dWkuz 4 kg
withrespect to its ordered basis (n) @v), w2@v) . w @, w2@wm) S0, Volag) = MliaMT
Now, an application of 72 to V yields the first part of the lemma.

A simple caleulation shows that each of the subgroups H' stabilizes the subspaces kez +
kezand ke + key. Further, the action of H|T (respectively of HIT yon kez + ke (respectively
on ke 4+ keq) withrespect to the ordered basis (e2, e3) (respectively, (e, e4)) 15 equivalkent
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to the standard acton of SL(2.4) on &2 and the action on ke + key frl:spcx;livuly on
kez + kes) is trivial. So, Vilg g, = (M[#k) & (k#M7). An application of 2/~ to v,
now yields the second part of the lemma. m

For any subset 1 of Ny, let M denote the set of 20 ardered partitions (A, By ol I. By

Lemma 5, if K € A, then
Vilaos = {Mfln',#‘”i;} ® (B4, BreMu, M‘_L#M%}
| 2
= (B, My, My, ua#tMg up)- (1)

MNote that for K e N K, and K, aredigjoint. Further K s determined by each imeducible
component in (15 ). S0, we have the following:
COROLLARY 6

Let K, K' € N be distinct. Then Vy and Vi are semisimple KQ0 fi )-modules with no
irveducible factors in commaon.

24

The core of the proof of the theorem s in Lemmas 7 and 8 that we now state. Let £
{ fe. fi} and assume that n = 2 for Lemmas 7 and 8.

Lemma 7. Let 1, K & N If the svmmetric difference of § and K is not equal to {2t — 1}

forsome t € Ny, then Em}lmj.]{vj, Vi) = 0.

Mow, let f = K U{2t —1}and 2t — 1 & K. Then, 2t — 2 ¢ K and. by Theorem,
p. 159 of [17]., there exists a unigque £ G-module E, up toisomorphism, which 1s a nonsplit
extension of Vi by V.

Lemma 8. socponlElai ) = Vilaor. In particular, as a k0 f)-module, E ix a non-
split extension of Vi o By Vila .

Proofs of Lemmas 7 and 8 for the cases f = f; and f = f}, are given separately.

24.1 Thecase f = f.. Foreasy reference, we collect some results due to Alpenn and
due to Sin. Consider the following condittion on I, J © N

TaJ=(ndyu{r} and neither r nor r—1 isin I N J. (Ci s
Lemma 9,

(ay Fer i, J TN, EHJ.!:E'L(" “3]{1-1-‘} . Wi aswell as Exl.lc{vf' Vi are bath k or both zero

accending as whether the condition (Cy p) holds or net.
(by Fori e N, W; @ W; is a uniserial module with composition factors &'\ Wi \k.

FProaf For (a), see Theorem 3, p. 221 of [1] and Theorem, p. 159 of [17]. For (b), see
Lemmad, p. 224 of [1]. [ |
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A typographical error about the assumptions on [ and J in the statement of part (4) in
Theorem 3, p. 221 of [1] has been corrected here (seep. 229 of [1]).

Proof af Lemma 7. In view of the somorphism Extéﬁ{'r";, Vi) = Extéﬁ{'lr"_,rw;, Viag )
the biadditivity of the map (M, N) — Ext! (M, N and Lemma 90a) above, we only need
to consider the case when J = K U {r}, r ¢ K. Inthiscase, the lemma follows from (1,)
and Lemma 9 a). [ |
FProaf of Lemma 8. From (1),

Vil = (Bren,, We) @ W
and

Vilaif = [Breny, (Weon @ Weupsn)1 @ W
We need to show that

Homggp (W @ WE, Ey=10
for each L' € N . Let Dy denote the unique (up to isomorphism) kG-module which is
a nonsplit extension of k£ by Vo, (see Lemma 9(a)). Then E = Dy @ Vi (Lemma 8,
p- 490 of [14]). Since Dy s 1somorphic to a submodule of the £ G-module Va2 & Va2
(see Lemma 2(a), p. 161 of [17]). Dy @ Vi embeds in (V2 ® Vo _2) @ Vi Hence it is
enough o prove that

H{}mkm‘,-‘]ﬂ’l";_- ) H"IE: 5 'Ir"g,_z ] Vlr_z i) Vﬁ:} = 0. f*}

Let L" € Nk, and L' = L U {r} where L € N, ,r =tor n+t. Since simple kQ( f.)-
modules are self-dual, by Lemma 3,

Homgg (s (We @ Wi, Va2 @ Va2 @ Wer @ W)
= Homgg g Wrr @ Wm Wir @ Wm} = (.
S0 (%) holds and the lemma follows, |

2.4.2 The case | = fp.  First we recall a useful result doe to Jones (Theorem 3, p. 629
of [10]).

Lemma 1. Let R be a Dedekind domain, 7| and G2 be finite groups, G = G = G2,
I'' = RG, i = 1,2,and I = RG. Let M; and M; be (left) T';-modules. Then, as R-
maodules,
Ext- (M # M2, M{#M3) = Homp (M), M]) ®g Ext]. (M2, M3)
@ Exty, (M. M) @g Homr, (M>, M})
ane

Homp{ M #M2, M{#M;) = Homp, (M. M|) @g Homr, (M2, M3).
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FProagfof Lemma 7. As i the case f = f.. we need only to consider the case when
J=KuU{rl,wherer & K. If r =2t for some t € Ny, then (1) and Lemma 10 imply
Extyo o)V, Vi) = 0. |

FProaf of Lemma 8. From (1),
Vilaisin = Ba, memy, Mflr, uatM ﬁ_-:',l..,lﬂ‘ )
and

I 2 | 2
Vilam = @i, BeMy (M uaupn# My us) & (Mg ua# Mg o)l

We need to show that
Homgg ) (M g Uaui#Mi.us) © (M Ua# MR Upuig)  E) =0
for cach (A, B) € My,. In view of the discussion regarding Dy in the | = f. case, we
prove that
Homug () (M g auin#Miup) @ (Mg oa# My, g Va—2 @ Va2 @ Vi)

is zem for each (A, B) € Mg, Nowif (A, B), (A", B') € M. then

! 2 ! 2
Homea ) (M g paun®M i ug) & (Mg ua# My Upon )

Vi @ Va2 @ (M, #ML | 2))

= Homga (£, ((Mk_saun# Mk, o) © Va2 @ (My oo #Mg g ) ® Voo,

Va2 ® (MY #M3 g )

= | 2 1 2 I 2
= Homeg g5 ((M g, o M, up) @ (M #M ) & (Mg 2 # My Lpugg)

& {‘w:l—l.#Mrl—l}‘ {""“’I:I—I#‘."]T;I—I}I @ {M.ﬂl:',l._,'.-‘l’#Mi',U 2)

~ | 2 | o
= Hompo 0 UM g Gaup—1n®* Mk usupr—1) ® (Mg oaup o * M usup—10)

1 2 bl
M KedAup—1 :#M KB —1) )=0
by Lemma 10). Here we have used: (1) the duality between the functors *Hom® and “Ten-
sor’, namely for any group X and £X-modules U5, we have Homg y (05, U2 @ U3) =
Homyg y( L ®U,_}‘, Lf1), where U7 is the dual of [7; and (ii) the fact that each simple module
for ¢ = Spi4, g)1s self-dual. So Lemma 8 holds for f = [, also. |

3. Proof of Theorem 1

(ayLetn = 1. Then dimyg {E}l = 9 {see, forexample, p. 308 of [ 13]). By Lemma 4, p. 488 of
[14] and Frobenius reciprocity (p. 689 of [11]) it follows that V., & and Vi {in descending
order) are kG-composition factors of C. Semisimplicity of each composition factor of C
and its multiplicity freeness as a K820 F -module are proved in Comllanes 4 and 6. For
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the remaining part of the proof, we treat the cases separalely. Consider the case [ = fi.
Since Voo = Wo @ W) (Lemma 3) 15 the Steinberg module (and hence projective) for
S0 F1. we need o prove that the £G-module E which is the unigue (up o isomorphism)
nonsplit extension of k& by V) remains nonsplit as a £2( f)-module. Further, since E is
isomorphic to a submodule of the £G-module Vg @ Wy (see Lemma 2(a), p.o 161 of [17]),
Vilain = Wod W (Lemma 3) and Wy & W) s the Steinberg module for £820( ), by
Theorem 1, p. 220 0f [ 1], we have

Homgo (V1. Vo @ W) =00

Now we consider the case f = fj. Then M! . M? and Vig = M'EM? (see Lemma 5)
are the Steinberg modules for Hy, Hz and 20 f), respectively. Hence we need Lo prove
that E as a k82 fi-module sphits. But this 1s clear from Lemmas 5 and 10

(b) Letr = 2. By Theorem 2, { Vi};opr are the £G-composition factors of C and they
appear with multiplicity one. 5o, (1) follows from Corollanes 4 and 6.

We now prove (ii). Let Vi and V,, K. J € A, be in the i-th and j-th kG-socle layers
of C.1 =i = j = 2n. Assume that there is a kG-module E which is a nonsplit extension
of Vi by Vy. Then, by Lemma 9a), j =i + 1. Further, £ is a nonsplit K224 f )-extension
of Vi by Vil and only if J = KU {21 — 1} for somet € N (Lemma 7).

Further, if this holds, socgqpy(E) = Vi (Lemma 8). That is, either all or none, of
the simple K22 ( f)-summands of Vy descend. This observation together with the £G-socle
structure of C yields (i)

MNow letm {0, 1,..., n—2.ntand I £ 4. In what follows, all modules considered
are over k§2( ). Since C is multiplicity free as a k€ ( f)-module, it has a unique submodule
Xy 1 with head Vg, where K is the unigue element of A with K, = 1 and K, = 1%,
First Xyt = Vizr:reqy (see (1) and (1)) and 15 semisimple. Letm = Oand wnte X, g
as L for brevity. Since hd(L ) 15 contained in the m-th socle layer of E, L 15 a submodule
of soc™ (). For each summand of rad' (L)/rad®(L) of the form V;, a nonsplit extension
of Vy by hd{L) appears as a section of L. Further, hd(L) = Vi S0, J = K\ {2r — 1} for
some £ I* {Lemma 8). This proves that rad’ (L) 15 contained in the unigue submodule
L’ of soe™= () whose head is isomorphic to

@ Vy. (3.1)

JeN, L= J,C0% and |J,|=m—1

The multiplicity freeness of C (as a kL2( fy-module) implies that L M L' = rad! (L), We
now show that L' = rad'(L). Since (L + LYL = L{LNLY) = L,."ru-l.!I{L}l = V.
by uniqueness of L, L + L' = L. Thus L' € L and L' = L L' = rad'(L). Thus,
rad! {L}lfnu!l{L} 15 the module in (3.1). Now successive application of this argument Lo
rad‘.{L}ll.-'rud‘._l (L) yields the statement about the radical structure of Xy, ; in (). Further,
(1v) 1% also clear.

Since s0c(Xy 1) = Viar: reny 18 simple, X, 15 indecomposable. For T £ J A
K 1 TV Xy r 18 tnvial becanse their socles are distinet and simple. (In fact, X, ; and X, s
have no composition factors in common.) Let

Xm = @ Xm.f—

le Ay

For distinct m,m’ € {0, 1,....n — 2, n}, X, and X, have no composition factors in
common and every composition factor of ¢ occurs in some X, Thus sum of X, "s equals

C, completing the proof of all parts of (iii) and of Theorem 1. |



468 N § Narasimha Sastry and R P Shukla

Remark 11.

(i) fn =1,asa k2" (f)-module, Vj and V| are semisimple and Cis multiplicity free.
Further, if f 15 of Witt index 1, then Cis isomarphic to the direct sum of Vy and a
kLT fy-module U with hd{L7) = &k and rad(U7) = V. If § is of Witt index 2, then [
15 aLmisimpIL

(i) If n = 2, as a K27 fi-module, then V; is semisimple for each T € N and C is
mul[lp-llLlL_‘p' free and is isomorphic o

@ Um.f
mel ], w-20 \feds

where LDy 5 15 4 unigue mdm_{}mpns.ibll, module of radical length m 4 1. Its j-th
radical layer rad-"{Um ;}I."rdd-"_ (Lhy 1) 00 = 7 = m) s somorphic to

@ V.

JeN,| =1, Lol and |Jf|=j
Moreover, foreachm e {01, ..., n—2.n}
Soc! (Un,1) = rad™ = (U, 1)
Thus (i) and (11) follow from an argument similar to the proof of Theorem 1, vsing
Theorem 2 and Lemmas 7 and 8.
Examples. We illustrate the descent of the composition factors ¥V, in Theorem 2 when
considered as a £82{ f)-module for the casesn = 1,23, 4. ForJ = {i1. 2, ...} T N, we

wrte Vy as Joriyp,ia, ...
Ifn=1, then

It n = 2, then
C=Xo@X2=[08260,21a[1.3/(1& I)/k].
It n = 3, then

L_X:]$X|$X1_[{}74$(}"$ﬂ_ 2,41 [(0,3/0)
B2 52 (L 4/ E[L3 5013 L. 503 5)/(1a3d5)/k].

Ifn =4, then

C=XyDX DX Xy,
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where

Xo= D 2e0.482.0,
JEN =3 0r 4

i @{y, 2i 42,20 4 5)/(2i,2i +2),
(0.3.5/(0.3 & 0.5)/0) & (2.5.7/(2.5 & 2.7)/2)

@(1.4,7/(1. 464, )D& (6, 1,3/(6,166,3)/6),
Xa= AafA3fAzf A1/ Ag,

where A s the direct sum of J as J runs over the subsetsof {13, 5, 7} of size i,
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