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Abstract

For mixture models with unknown number of components, Bayesian ap-
proaches, as considered by Escobar and West (1995) and Richardson and
Green (1997), are reconciled here through a simple Gibbs sampling approach.
Specifically, we consider exactly the same direct set up as used by Richard-
son and Green (1997), but put Dirichlet process prior on the mixture com-
ponents; the latter has also been used by Escobar and West (1995) albeit
in a different set up. The reconciliation we propose here yields a simple
Gibbs sampling scheme for learning about all the unknowns, including the
unknown number of components. Thus, we completely avoid complicated
reversible jump Markov chain Monte Carlo (RJMCMC) methods, yet tackle
variable dimensionality simply and efficiently. Moreover, we demonstrate,
using both simulated and real data sets, and pseudo-Bayes factors, that our
proposed model outperforms that of Escobar and West (1995), while enjoy-
ing, at the same time, computational superiority over the methods proposed
by Richardson and Green (1997) and Escobar and West (1995). We also
discuss issues related to clustering and argue that in principle, our approach
is capable of learning about the number of clusters in the sample as well as
in the population, while the approach of Escobar and West (1995) is suitable
for learning about the number of clusters in the sample only.

AMS (2000) subject classification. Primary .
Keywords and phrases. Bayesian analysis, cross-validation, Dirichlet pro-
cess, leave-one-out posterior, Markov chain Monte Carlo, pseudo-Bayes fac-
tor

1 Introduction

Mixture models are noted for their flexibility and are widely used in the
statistical literature. Such models constitute a natural framework for model-
ing heterogeneity with strong connections with cluster analysis. The entire
literature on mixture models have been almost exhaustively discussed by
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Titterington et al. (1985) and McLachlan and Basford (1988). However, a
particularly challenging situation arises when the number of mixture compo-
nents, which we denote by k, can not be determined based on the available
data set in a straightforward manner. Escobar and West (1995) (henceforth
EW) were the first to propose a modeling style, involving Dirichlet processes,
to introduce uncertainty within the number of components. Gibbs sampling
is then used to learn about all the unknowns involved. However, the mix-
ture model of EW does not resemble the traditional mixture models, which
are often mixtures of normal distributions. For instance, conditional on the
parameters, the predictive distribution in the case of EW is a mixture of non-
central Student’s t and normal distributions. In contrast, Richardson and
Green (1997) (henceforth RG) consider a mixture of normal distributions
assuming k unknown. But acknowledgment of uncertainty about k makes
the dimension of the parameter space a random variable in the case of RG.
They use sophisticated, but quite complicated MCMC methods, known as
reversible jump MCMC (RJMCMC), introduced in the literature by Green
(1995).

In this paper, we propose another alternative model for mixture anal-
ysis when the number of components is unknown. Broadly, as in RG, we
consider a mixture of normal distributions, but instead of complicated (and
often inefficient) RJMCMC methods, view the parameters of the components
as samples from a Dirichlet process. We propose a simple Gibbs sampling
algorithm, thus freeing ourselves of the burden of implementing RJMCMC,
while maintaining the same variable dimensional framework as RG. This is
the implementation advantage of our proposed methodology. On the con-
ceptual side, we demonstrate with simulated and real data sets that our
model is better supported by the data than that of EW. We argue tenta-
tively that the unconventional mixture of the thick-tailed Student’s t with
the normal distributions of the predictive distributions of EW is the reason
for its relatively poor performance compared to our conventional mixture of
normal distributions. Moreover, the implementation time of our model is
far less than that of EW and RG. For example, with the largest of the three
real data sets that we consider, the MCMC algorithm for the implementa-
tion of EW’s method does about 93 iterations per second on a Mac OS X
laptop, RG’s RJMCMC does 160 iterations per second (see Richardson and
Green (1997), page 755), but the MCMC algorithm for implementation of
our proposed model does about 715 iterations per second.

The remainder of our paper is structured as follows. In Section 2 we intro-
duce our proposed methodology for mixture analysis with unknown number
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of components. A simple Gibbs sampling approach for implementing our
model and methodology is proposed in Section 3. Details on the advantages
of our approach as compared to the approaches of RG and EW are provided
in Sections 4 and 5 respectively. Model comparison using pseudo-Bayes fac-
tor is outlined in Section 6. Illustration of our methodology and comparisons
with the proposal of EW using simulated data, are carried out in Section
7. Applications of our methodology to three real data sets are discussed in
Section 8. We summarize the main points and provide directions for future
research in Section 9.

2 Dirichlet Process for Learning Unknown Number of
Parameters

Generically denoting by Θp the set of parameters {θj ; 1 ≤ j ≤ p}, for
any p, where θj = (µj , λj), we show that the mixture of the form

[yi | Θp] =
p∑
j=1

πj

√
λj
2π

exp
{
−λj

2
(yi − µj)

2

}
, (2.1)

although a mixture of a random number of components, may be expressed
simply as an average of a fixed (but perhaps, large) number of components.
To this end, we first express the distribution of yi as the following:

[yi | Θm] =
1
m

m∑
j=1

√
λj
2π

exp
{
−λj

2
(yi − µj)

2

}
(2.2)

In the above, m(≥ p) can be interpreted as the maximum number of distinct
mixture components of [yi | Θm], with πj = 1/m for each j. We now show
that, under an interesting nonparametric prior assumption for {(µj , λj); ` =
1, . . . ,m}, (2.2) boils down to the form of (2.1).

In Θm, the parameters {θ1, . . . ,θm} are samples drawn from a Dirichlet
process (see Ferguson (1974), Escobar and West (1995)). In other words, we
assume that, (θ1, . . . ,θm) are samples from some unknown prior distribution
G(·) on <×<+. We further suppose that forG ∼ D(αG0), a Dirichlet process
defined by α, a positive scalar, and G0(·), a specified bivariate distribution
function over <× <+. Put more simply, we assume that

[θ1, . . . ,θm | G] ∼ iid G

and
G ∼ D(αG0)
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A crucial feature of our modelling style concerns the discreteness of the prior
distributionG, given the assumption of Dirichlet process; that is, under these
assumptions, the parameters θ` are coincident with positive probability. In
fact, this is the property that we exploit to show that (2.2) reduces to (2.1)
under the above modelling assumptions. The main points regarding this are
sketched below.

On marginalising over G we obtain,

[θj | Θ−jm] ∼ αam−1G0(θj) + am−1

m∑
l=1,l 6=j

δθl
(θj) (2.3)

In the above, Θ−jm = (θ1, . . . ,θj−1,θj+1, . . . ,θm) and δθl
(·) denotes a unit

point mass at θl and al = 1/(α+ l) for positive integers l.

The above expression shows that the θj follow a general Polya urn
scheme. In other words, it follows that the joint distribution of Θm is
given by the following: θ1 ∼ G0, and, for j = 2, . . . ,m, [θj | θ1, . . . ,θj−1] ∼
αaj−1G0(θj)+aj−1

∑j−1
l=1 δθl

(θj). Thus, given a sample {θ1, . . . ,θj−1}, θj−1

is drawn from G0 with probability αaj−1 and is otherwise drawn uniformly
from among the sample {θ1, . . . ,θj−1}. In the former case, θj is a new, dis-
tinct realisation and in the latter case, it coincides with one of the realisations
already obtained. Thus, there is a positive probability of coincident values.
For more on the relationship between a generalized Polya urn scheme and
the Dirichlet process prior, see Blackwell and McQueen (1973) and Ferguson
(1974).

Now, supposing that a sample from the joint distribution of θ1, . . . ,θm
yields p∗ distinct realisations given by θ∗

1, . . . ,θ
∗
p∗ , and if m` denotes the

number of times θ∗
` appears in the sample, then π∗

` = m`/m. Certainly, it
holds that

∑p∗

`=1 π
∗
` = 1. Hence, (2.2) reduces to the form (2.1).

With our modelling style using Dirichlet process, the prior for m` is im-
plicitly induced; for more details, see Antoniak (1974), Escobar and West
(1995). For recent use of Dirichlet process to estimate many arbitrary
functions in the context of palaeo environmental reconstruction, see Bhat-
tacharya (2006).
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2.1. Choice of G0. It is now necessary to specify the prior mean G0(·) of
G(·). Following EW, we assume that under G0(·), θj = (µj , λj) is normal-
gamma. In other words, we assume that, under G0,

[λj ] ∼ Gamma(s/2, S/2) (2.4)

[µj | λj ] ∼ N

(
µ0,

ψ

λj

)
(2.5)

In the above, we define Gamma(a, b) to mean a Gamma distribution with
mean a/b and variance a/b2. The choices of the prior parameters s, S, µ0, ψ
will generally depend upon the application at hand. Hence, at this moment,
we leave them unspecified. One may also specify prior distributions on µ0

and ψ; following EW it is possible to consider that, a priori, µ0 ∼ N(a,A)
and ψ−1 ∼ Gamma(w/2,W/2), for specified hyperparameters a,A,w, and
W . In the applications, our choices will closely follow those of EW and RG.
The choice of the maximum number of components, m, will also depend
upon the given problem; however, following RG, who chose 30 as the maxi-
mum number of components for all their illustrations, we will generally take
m = 30. In the applications we present in this paper, almost all posterior
probability mass is concentrated on less than 30 components. We also need
to either specify a value for α or put a prior distribution on it. Because of
our ignorance of the actual value of α, we resort to quantify the uncertainty
about α by assigning to it a Gamma(aα, bα) prior distribution; the values of
aα and bα will be chosen based on the values used by EW.

We have thus defined a semiparametric model with priors on the pa-
rameters Θm = {θ1, . . . ,θm} being non-parametric, viewed as samples from
the Dirichlet process, but the distribution of [yi | Θm] has a parametric
form, given by (2.2). In the next section we discuss implementation of our
methodology by Gibbs sampling.

3 Markov Chain Monte Carlo Implementation of the Proposed
Model

3.1. Representation of the mixture using allocation variables and asso-
ciated full conditional distributions. The distribution of [yi | Θm] given by
(2.2) can be represented by introducing the allocation variables zi, as follows:
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For i = 1, . . . , n and j = 1, . . . ,m,

[yi | zi = j,Θm] =

√
λj
2π

exp
{
−λj

2
(yi − µj)2

}
(3.1)

[Zi = j] =
1
m

(3.2)

It follows that the full conditional distribution of zi (i = 1, . . . , n) given the
rest is given by

[zi = j | Y,Θm,Z−i, ] ∝
√
λj exp

{
−λj

2
(yi − µj)2

}
; j = 1, . . . ,m (3.3)

In the above, Z−i = (z1, . . . , zi−1, zi+1, . . . , zn)′. Note that the allocation
variables play the role of clustering the observation vector Y, into maximum
m components, assuming initially that all the parameters are distinct.

Next we use the allocation variables Z to determine the full conditional
distributions of θj = (µj , λj) given the rest.

3.1.1. Full conditionals of θj. To write down the full conditional dis-
tribution of θj given the rest, we first define nj = # {i : zi = j} and ȳj =∑

i:zi=j
yi/nj . Then, using the Polya urn scheme given by (2.3) and the dis-

cussion in Section 3.1 it can be shown that the full conditional distribution
of θj given the rest is given by

[θj | Y,Z,Θ−jm] = q0jGj(θj) +
m∑

`=1,` 6=j
q`jδθ`

(θj) (3.4)

In the above, Gj(θj) is a bivariate normal/gamma distribution such that
under Gj(θj):

[λj ] ∼ Gamma

s+ nj
2

,
1
2

S +
nj(ȳj − µ0)2

njψ + 1
+

∑
i:zi=j

(yi − ȳj)2




(3.5)

[µj | λj ] ∼ N

(
nj ȳjψ + µ0

njψ + 1
,

ψ

λj(njψ + 1)

)
(3.6)
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In (3.4) q0j and q`j are given by the following:

q0j ∝ α

(
S
2

) s
2

Γ( s2)
× 1√

njψ + 1
×

(
1
2π

)nj
2

×
2

s+nj
2 Γ( s+nj

2 ){
S + nj(ȳj−µ0)2

njψ+1 +
∑

i:zi=j
(yi − ȳj)2

} s+nj
2

(3.7)

and,

q`j ∝
(
λ`
2π

)nj
2

exp

−λ`
2

nj(µ` − ȳj)2 +
∑
i:zi=j

(yi − ȳj)2


 (3.8)

The proportionality constant is chosen such that q0j +
∑

`=1,` 6=j q`j = 1.

Note that the full conditional distribution of θj , given by (3.4) is a mix-
ture of normal-gamma distribution and point masses δθ`

, where δθ`
(θj) = 1

if θj = θ` and zero otherwise. The mixing probability of the former is q0j
and that of the latter are q`j . Thus, to sample from (3.4) one must either
choose with probability q0j the normal-gamma distribution jointly given by
(3.5) and (3.6), and draw a realization from it or draw an already observed
value, say, θ` (` 6= j) with probability q`j .

We note that the approach we have provided so far is applicable when
each of the data points y1, . . . , yn, are univariate. The reader might wonder
if our approach will be applicable in case the observations are multivariate.
We assure that our approach is, of course, applicable even when each of
the data points y1, . . . ,yn are vectors, consisting of d components. Also,
configuration indicators (see, for example, MacEachern (1994), Müller et el
(1996)) may be used for updating only the distinct parameters; this method
has the additional advantage of being applicable even when the base measure
G0 is not conjugate with (3.1). The full conditional distributions of α, µ0

and ψ have forms that are similar to those corresponding to the approach of
EW. Due to reasons of space, we omit details on these interesting facts, but
these are available from the author on request.

4 Comparison With the Approach of RG

In fixed dimensional problems, sampling from a non-standard posterior
distribution is usually carried out via Metropolis-Hastings algorithms. For
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instance, if the posterior of a fixed-dimensional parameter φ ∈ Φ is propor-
tional to prior times the likelihood, given by π(φ)L(φ), then staring with
an initial value φ(0), a new iterate φ(1) may be obtained by proposing from
an arbitrary distribution q(· | φ(0)), and accepting the proposed value with
probability

min

{
π(φ(1))L(φ(1))q(φ(0) | φ(1))
π(φ(0))L(φ(0))q(φ(1) | φ(0))

, 1

}
(4.1)

In this way, under very mild conditions, a Markov chain {φ(0), φ(1), . . .} is
generated, which converges to the stationary distribution, which is also the
posterior distribution of interest. However, construction of a Markov chain
which converges to the posterior distribution is not straightforward in the
case of varying dimensional model, since the ratio in the acceptance proba-
bility (4.1) would not make sense when the numerator and denominator are
associated with parameters of different dimensionalities. Green (1995) was
the first to propose “dimension-matching” transformations to circumvent the
problem. We briefly illustrate the ideas below.

Defining a collection of models by Mp = {f(· | φp);φp ∈ Φp}; p =
1, . . . , P , the prior distribution of (p, φp) may be represented as π(p, φp) =
π(p)π(φp | p). The latter is a density with respect to the Lebesgue measure
on the union of spaces Φ = ∪p{p}×Φp. In our set up, Mp is the p-component
normal mixture distribution (2.1). Following Robert and Casella (2004) we
motivate MCMC for general variable dimensional models, such as (2.1), from
the perspective of fixed dimension MCMC. In other words, when considering
a move from Mp1 to Mp2 , where dp1 = dimΦp1 < dimΦp2 = dp2 , it is
possible to describe an equivalent move in a fixed dimensional setting.

The crux of the RJMCMC algorithms described in Green (1995) (see
also RG), lies in adding an auxiliary variable up1p2 ∈ Up1p2 to φp1 so that
Φp1 × Up1p2 and Φp2 are in bijection relation. Observe that, proposing a
move from (φp1 , up1p2) to φp2 is the same as the fixed dimensional proposal
when the corresponding stationary distributions are π(p1, φp1)π(up1p2) and
π(p2, φp2) respectively. As for the proposal distribution, consider that the
move from (φp1 , up1p2) to φp2 proceeds by generating

φp2 ∼ Ndp2
(Tp1p2(φp1 , up1p2), εI); ε > 0 (4.2)

and that the reverse proposal is to take (φp1 , up1p2) as the Tp1p2-inverse
transform of the normal distribution Ndp2

(Tp1p2(φp1 , up1p2), εI). Taking into
account the Jacobian of the aforementioned transformations and probabili-
ties of the moves between Mp1 and Mp2 , we obtain, after taking ε→ 0, the
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Metropolis-Hastings acceptance probability from a fixed dimensional per-
spective, as

min
(

π(p1, φp1)πp2p1
π(p1, φp1)π(up1p2)πp1p2

∣∣∣∣∂Tp1p2(φp1 , up1p2)∂(φp1 , up1p2)

∣∣∣∣ , 1)
(4.3)

In the above, πij is the probability of choosing a jump to Mpj while in Mpi .

The efficiency of the algorithm very much depends upon the dimension
matching transformation selected. Indeed, this is a potential cause for inef-
ficiency of the algorithm and requires extremely demanding tuning steps. In
the words of Robert and Casella (2004), “. . .this is a setting where wealth is
a mixed blessing, if only the total lack of direction in the choice of the jumps
may result in a lengthy or even impossible calibration of the algorithm”. In-
deed, the analysis of (2.1) using RJMCMC as described by RG is extremely
complicated even for univariate data, so much so that an error crept into
the analysis of RG (the corrigendum of the error is provided in Richardson
and Green (1998)). Obviously, the computational complexity increases a lot
with increasing dimensionality making the method extremely inefficient and
error-prone. In contrast, the Gibbs sampling algorithm we proposed in this
paper retains its efficiency in all dimensions.

5 Comparison With the Approach of EW

EW proceed by assuming a hierarchical model for the data Y: for
i = 1, . . . , n, yi ∼ N

(
µi, λ

−1
i

)
; θi = (µi, λi) ∼ G; G ∼ D(αG0), where

G0 is normal/inverse Gamma. Observe that, unlike our model, yi in the
approach of EW are not iid. Note that the literature on modelling based on
Dirichlet processes invariably refers to the set up where the observed data
set is clustered into number of clusters less than or equal to the total num-
ber of observations. In other words, in the approach of EW, the number of
distinct components in the mixture, denoted by k is less than or equal to n,
the total number of observations. But this set up is not appropriate in cases
where the true model is a mixture of many distributions, but a relatively
less number of data are obtained. To clarify, suppose that, for i = 1, . . . , n,
data yi ∼

∑k
j=1 πjfj where

∑k
j=1 πj = 1, and fj ; j = 1, . . . are the mixture

components. Now if n < k, then all components of the mixture are not rep-
resented in the data, and one must use prior information to learn about all
the mixture components, and the mixing probabilities πj . But approaches
available in the literature do not allow for using such prior information. Our
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approach to mixture modelling using Dirichlet processes allow for incorpo-
ration of prior knowledge by assuming the mixture model yi ∼ 1

m

∑m
j=1 fj ,

for typically large m, allowing for m >> n, and modelling the parameters
of fj as samples from an unknown distribution G, which is modelled as a
Dirichlet process. Coincidences among the m parameters will then reduce
the effective number of parameters, taking the resulting mixture close to
the truth. In practice, m may be elicited using prior opinion of experts.
For instance, to classify vegetation of a forest, the collected data may not
include all possible vegetation, so classification based on the data only will
be misleading. Experts can, however, provide some information, at least
an upper bound, of the actual number of distinct vegetation in the forest.
In our approach, we might take m to be the upper bound provided by the
expert. To summarize, the traditional approaches that use Dirichlet process
for clustering, are only appropriate for learning sample number of clusters,
but they can never learn about the population number of clusters. In our
approach, however, it is possible in principle to learn about the population
number of clusters using available prior information. We will illustrate this
with an example.

We also note that the upper bound provided by the expert may even
be much smaller than the number of observations collected. This can again
be utilised by our approach to rule out minor, unimportant clusters, that
may get significant probabilities in the traditional approaches as of EW,
that gives positive probabilities to all possible clusters associated with the
observations.

A technical point related to the approach of EW must also be taken into
account. The predictive distribution of yn+1, a new observation, given Θn

(note that, n 6= m), is a mixture of a Student’s t distribution and n normal
distributions, given by (see equations (4) and (5) of EW)

[yn+1 | Θn] =
∫

[yn+1 | θn+1] [θn+1 | Θn] dθn+1

= αan
Γ

(
s+1
2

)
Γ

(
s
2

) (
1

Msπ

) 1
2 1{

1 + (yn+1−µ0)2

Ms

} s+1
2

+ an

n∑
i=1

√
λi
2π

exp
{
−λi

2
(yi − µi)2

}
(5.1)
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where an = 1/(α+n) and M = (1+ψ)S/s. It may be pointed out that when
a normal component can fit the data, it will perform better than a thick-
tailed Student’s t component. As a result, it is arguable that our mixture
model, which consists of normal components only, will perform better than
the model of EW. We demonstrate with both simulation studies and real
data examples that this is indeed the case.

6 Model Comparison Using Pseudo-Bayes Factor

The pseudo Bayes factor (PBF) owes its origin to Geisser and Eddy
(1979). Using cross-validation ideas (Stone (1974), Geisser (1975)), PBF
has been proposed as a surrogate for the Bayes factor by Geisser and Eddy
(1979). Before discussing the advantages of PBF over Bayes factor (BF), it
is useful to briefly touch upon the latter.

6.1. Bayes factor. The Bayes factor is given by

BF =
[Y |M1]
[Y |M2]

(6.1)

where [Y | Mj ]; j = 1, 2 are the marginals of the data under the competing
models Mj . In particular, denoting by Φ the entire set of model parameters,
and letting [Φ] denote the prior for Φ, we note that,

[Y |Mj ] =
∫

[Y | Φ][Φ]dΦ (6.2)

In the above, [Y | Φ] is simply the likelihood under the observed data set Y.
Jeffreys (1961) recommends selection of model M1 if BF > 2. A well-known
property of the Bayes factor is that it tends to put too much weight on
parsimonious models; this is also known as Lindley’s paradox. Also observe
that the above marginal is improper if the prior [Φ] is improper. Since
improper priors are used very widely in realistic problems, it is useful to
seek alternatives to the traditional Bayes factor.

6.2. Pseudo Bayes factor. The pseudo Bayes factor, which is based on
cross-validation, can be defined as

PBF (M1/M2) =
n∏
i=1

[yi | Y−i,M1]
[yi | Y−i,M2]

(6.3)
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In the above, Y−i = {y1, . . . , yi−1, yi+1, . . . , yn}. The factors [yi | Y−i,Mj ]; j =
1, 2 are the cross-validation predictive densities, given by

[yi | Y−i,Mj ] =
∫

[yi | Φ][Φ | Y−i,Mj ]dΦ (6.4)

Note that the cross-validation predictive density [yi | Y−i,Mj ] is proper
whenever the posterior [Φ | Y−i,Mj ] is proper. Thus, (6.4) avoids the
impropriety problem generally encountered by the traditional Bayes factor
given by (6.1). Another point worth mentioning is, it follows from Brook’s
lemma (see Brook (1964)) that the set of cross-validation predictive densities
{[yi | Y−i,Mj ]; i = 1, . . . , n} is equivalent to the marginal [Y | Mj ], given
by (6.2) whenever the latter exists. Gelfand and Dey (1994) show that
asymptotically,

PBF (M1/M2) ≈ log(νn) +
p2 − p1

2
(6.5)

where

νn =
L(Φ̂1;Y,M1)
L(Φ̂2;Y,M2)

(6.6)

is the likelihood ratio, Φ̂1, Φ̂2 being maximum likelihood estimates of model
parameters Φ1 and Φ2, of dimensionalities p1 and p2, respectively. Very
importantly, unlike BF, PBF does not suffer from Lindley’s paradox (Gelfand
and Dey (1994)).

6.3. Computation of pseudo Bayes factor. Computation of all n cross-
validation predictive densities must preceed computation of PBF . However,
this is a very challenging task, since it requires computation of n leave-one-
out posteriors [Φ | Y−i,Mj ]; i = 1, . . . , n. In order to handle this computa-
tional challenge, Gelfand (1996) proposed an importance sampling strategy.
In this paper, we arrive at the same result as Gelfand (1996), but in a more
direct manner.

Note that

[yi | Y−i,Mj ] =
∫

[yi | Φ][Φ | Y−i,Mj ]dΦ

=
∫

[yi | Φ]
[Φ | Y−i,Mj ]
[Φ | Y,Mj ]

[Φ | Y,Mj ]dΦ

= E[Φ|Y,Mj ]

(
[yi | Φ,Mj ]

[Φ | Y−i,Mj ]
[Φ | Y,Mj ]

)
(6.7)
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Note that [Φ | Y−i,Mj ]/[Φ | Y,Mj ] ∝ 1/[yi | Φ,Mj ]. Now assuming that
a sample {Φ(`); ` = 1, . . . , N} is available (usually via MCMC) from the full
posterior [Φ | Y,Mj ], (6.4) can be approximated as

[yi | Y−i,Mj ] ≈
N∑N

`=1
1

[yi|Φ(`)
,Mj ]

(6.8)

Thus, (6.8) is a harmonic mean of {[yi | Φ(`),Mj ]; ` = 1, . . . , N}; this is
exactly the estimator obtained by Gelfand (1996) which they obtained in
a somewhat indirect manner. Considering model M1 to be our proposed
model, [yi | Φ(`),M1] is given by

[yi | Φ(`),M1] =
1
m

m∑
j=1

√
λ

(`)
j

2π
exp

{
−
λ

(`)
j

2

(
yi − µ

(`)
j

)2
}

(6.9)

Denoting by M2 the model of EW, we note that [yi | Φ(`),M2] follows from
(5.1), and is given by[

yi | Φ(`),M2

]
= αan−1

Γ
(
s+1
2

)
Γ

(
s
2

) (
1

Msπ

) 1
2 1{

1 + (yi−µ
(`)
0 )2

Ms

} s+1
2

+ an−1

n∑
j=1;j 6=i

√
λ

(`)
j

2π
exp

{
−
λ

(`)
j

2
(yi − µ

(`)
j )2

}
(6.10)

Hence, the sets {[yi | Y−i,M1]; i = 1, . . . , n} and {[yi | Y−i,M2]; i =
1, . . . , n} can be easily obtained using (6.8). In our experience, computa-
tion of PBF is much more stable than the more traditional BF , partic-
ularly when the data set Y is large. This is because PBF can be com-
puted by taking the sums of logarithms of the univariate cross-validation
densities; this computational procedure ensures stability. This is not the
case with computation of BF . Moreover, the set of cross-validation pre-
dictive densities {[yi | Y−i,Mj ]; i = 1, . . . , n}, j=1,2, can be used as un-
conditional density estimators at the points {y1, . . . , yn} respectively, while
{[yi | Φ(`),Mj ]; i = 1, . . . , n} may be used as sample density estimates at the
points {y1, . . . , yn} under model Mj , given a particular MCMC realization
Φ(`). In other words, given k distinct θ∗’s in Θ(`)

l (l = n or l = m, de-
pending upon whether the model referred to is EW’s model or our proposed
model), the sample density estimates {[yi | Φ(`),Mj ]; i = 1, . . . , n} are to
interpreted as conditional on k components. We now illustrate our proposed
methodologies with simulation examples.
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7 Simulation Study

Since our modelling ideas are similar to that of RG, the major difference
being implementation issues, we confine ourselves to comparing our proposed
model and methodology with that of EW.

Based upon simulated data, we chose to simulate just 5 observations
from a mixture distribution with 10 mixture components. Very obviously,
EW will now always put zero posterior probability on 10 components, since
the model is based upon clustering of the data only, and the data size is
only 5. For our model, instead of putting a prior on α, we set it equal
to 5. This choice of α implies a relatively strong belief in G0. We ran
MCMC algorithms for our proposed model as well as for the model of EW
for a burn-in of 300,000 iterations, and a further 15,00,000 iterations, storing
one in 150 iterations, thus obtaining a total of 10,000 realizations from the
posterior distribution. Convergence of our MCMC algorithms have been
confirmed by Kolmogorov-Smirnov tests as described in pages 466–470 of
Robert and Casella (2004).

The posterior probabilities of the possible number of clusters ranging
from 1 to 30 are given by {0.0000, 0.0003, 0.0022, 0.0091, 0.0274, 0.0497,
0.0727, 0.0965, 0.1232, 0.1275, 0.1230, 0.1088, 0.0876, 0.0651, 0.0412, 0.0309,
0.0176, 0.0091, 0.0052, 0.0017, 0.0006, 0.0001, 0.0004, 0.0001, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000}. Thus, the true number of components, 10,
get the highest posterior probability.

Apart from the above simulation study, we also compared our model
with that of EW using a different simulated data set, where the data size,
15, is greater than the true number of components, 10. Brief results fol-
low. With a relatively weak prior on α, taken to be Gamma(5, 1), the
posterior probabilities of the number of clusters with respect to our model,
are given by {0.0000, 0.0000, 0.0003, 0.0017, 0.0063, 0.0186, 0.0335, 0.0650,
0.0899, 0.1260, 0.1315, 0.1352, 0.1167, 0.0958, 0.0698, 0.0507, 0.0300, 0.0140,
0.0082, 0.0046, 0.0013, 0.0008, 0.0001, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000}. Thus 10 components gets very significant posterior proba-
bility, 0.1260, which is close to the highest posterior probability. For EW’s
model, these are given by {0.0000, 0.0011, 0.0100, 0.0388, 0.0906, 0.1550,
0.1765, 0.1913, 0.1570, 0.0987, 0.0521, 0.0214, 0.0057, 0.0017, 0.0001}; 10
components getting posterior probability 0.0987, which is close that of our
model. However, PBF (M1/M2) = 335.6571 still says that our model is sup-
ported by the data much better than EW’s model. This is accordance with
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the discussion in Section 5. Several other simulation studies supported the
same conclusion.

8 Application to Real Data Problems

We now illustrate our methodologies on the three real data sets used
by RG, and available at http://www.stats.bris.ac.uk/∼peter/mixdata.
The first data set concerns the distribution of enzymatic activity in the
blood, for an enzyme involved in the metabolism of carcinogenic substances,
among a group of 245 unrelated individuals. The second data set, the ‘acidity
data’, concerns an acidity index measured in a sample of 155 lakes in north-
central Wisconsin. The third and the last data set, the ‘galaxy data’, has
been analysed under different mixture models by several researchers. It con-
sists of the velocities of 82 distant galaxies, diverging from our own galaxy.
For details on these data sets, see RG. We remind the reader again that since
our set up is the same as in RG, it is not meaningful to compare our model
with theirs, the only important difference being that our implementation is
much more straightforward and simple, as compared to RJMCMC used by
RG. We, however, compare our model with that of EW and demonstrate
that our model performs much better. As in the case of simulation studies,
in the real data situation also we ran MCMC algorithms for our proposed
model as well as for the model of EW for a burn-in of 300,000 iterations, and
a further 15,00,000 iterations, storing one in 150 iterations, thus obtaining
a total of 10,000 realizations from the posterior distribution.

8.1 Enzyme data. Following both RG and EW, we chose the prior pa-
rameters as s = 4.0;S = 2× (0.2/1.22) = 0.3278689;µ0 = 1.45; aα = 2; bα =
4;ψ = 33.3. In the value of S, the factor 0.2/1.22 is actually the expec-
tation of a Gamma-distributed hyperparameter considered by RG. We do
not think that the extra level of hierarchy is necessary; in fact, it only adds
to the computational burden. Hence, in all the applications we consid-
ered, we fixed the value of the hyperparameter as the expected value of the
prior distribution of the hyperparameter. Following RG, we chose m = 30.
Apart from fixing the values of µ0 and ψ above, we also experimented with
vaguely informative and non-informative priors on the hyperparameters as
described in EW. In particular, we assigned that, a priori, µ0 ∼ N(a,A) and
ψ−1 ∼ Gamma (w/2,W/2), where A−1 → 0, w → 0 and W → 0. However,
the results remained almost exactly same as in the case of fixed values of µ0

and ψ, in all three applications we discuss below.
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According to the model of EW, the posterior probability of the num-
ber of components {1,2,3,4,5,6,7,8,9,10} are given, respectively, by {0.0000,
0.0006, 0.2721, 0.3417, 0.2287, 0.1016, 0.0354, 0.0141, 0.0043, 0.0015}, the
rest having zero posterior probabilities. In our contrast, our model gives the
respective probabilities as {0.0000, 0.0010, 0.4483, 0.4026, 0.1228, 0.0226,
0.0023, 0.0004, 0.0000, 0.0000}, the rest having zero posterior probabilities.
These are not exactly same as the results obtained by RG, but broadly the
results are similar, the posterior of number of components, k, favouring 3–5
components (see page 743 of RG). That our model performs much better
than EW is reflected in PBF (M1/M2) = 3656.644. Figure 1 shows the
density estimates of the histogram of the enzyme data using EW’s model
and our model. The density estimates look similar. It is however, worth
mentioning in this context, that the density estimates we present in this
application and other two applications below, are not the same as presented
by RG or EW (the latter consider the galaxy data only), as they did not use
cross-validation to obtain the density estimates or sample density estimates.
It is apparent from the papers by RG and EW that their densities were not
evaluated at the observed data points, but all the observed data points were
used to estimate the densities at arbitrary points on the sample space (the
Y -space). As a result, our figures are different from theirs. In our opinion,
for the purpose of model comparison, use of our cross-validation predictive
density estimates makes more sense.

It is important to note that while implementation of our approach took
42 minutes, implementation of that of EW took 5 hours and 24 minutes on
a Mac OS X laptop.

8.2 Acidity data. Based on the priors of RG and EW we take s = 4;S =
2× (0.2/0.573) = 0.6980803;µ0 = 5.02; aα = 2; bα = 4;ψ = 33.3;m = 30.

In this case, according to the model of EW, the posterior probabilities
of the number of components {1,2,3,4,5,6,7,8,9,10,11} are {0.0000, 0.1620,
0.3185, 0.2761, 0.1470, 0.0651, 0.0212, 0.0078, 0.0019, 0.0001 0.0003}, the
rest having zero posterior probabilities. With our model these are {0.0000,
0.1091, 0.3444, 0.3092, 0.1628, 0.0564, 0.0147, 0.0028, 0.0003, 0.0002, 0.0001}.
In this example as well, 3–5 components are favoured by our model, a result
which is once gain in agreement with the analysis of RG. The model of EW
seems to favour 2–5 components. The pseudo Bayes factor again prefers our
model to that of EW; PBF (M1/M2) = 38.97128. Figure 2 shows the density
estimates of the histogram of the acidity data using EW’s model and our
model; again, the density estimates look similar.



Gibbs sampling based bayesian analysis of mixtures with
unknown number of components 149

Posterior Predictive Density Estimate (EW)

y

d
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

Posterior Predictive Density Estimate (EW)

y

d
e

n
s
it
y

Posterior Predictive Density Estimate (SB)

y

d
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4

Posterior Predictive Density Estimate (SB)

y

d
e

n
s
it
y

Figure 1: Density estimates of the histogram of the enzyme data using the
model of EW (upper panel) and our model (lower panel).
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Figure 2: Density estimates of the histogram of the acidity data using the
model of EW (upper panel) and our model (lower panel).
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In this case, implementation of our approach took 29 minutes, while that
of EW took 2 hours and 4 minutes.

8.3 Galaxy data. Following EW we consider the following values of the
prior parameters: s = 4;S = 2;µ0 = 20; aα = 2; bα = 4;ψ = 33.3;m = 30.

For the galaxy data, under EW’s model, the posterior probabilities of
the number of components {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16} are given
by {0.0000, 0.0000, 0.0893, 0.1760, 0.2148, 0.1951, 0.1495, 0.0891, 0.0487,
0.0233, 0.0091, 0.0035, 0.0008, 0.0006, 0.0001, 0.0001} and the others have
zero posterior probabilities. So, in this example, k = 4, 5, 6, 7 are well sup-
ported by the model of EW. For our model, the posterior probabilities of k
are given by {0.0000, 0.0000, 0.0035, 0.0322, 0.1210, 0.2072, 0.2354, 0.1895,
0.1210, 0.0574, 0.0247, 0.0055, 0.0021, 0.0004, 0.0001}, thus putting most
posterior mass on k = 5, 6, 7; RG too mention that 5–7 components are in-
dicated by the galaxy data with their RJMCMC analysis. PBF (M1/M2) =
495439.7 shows that our model is much better supported by the data, as
compared to the model of EW. Figure 3 displays the density estimates of
the histogram of the galaxy data using the model of EW and the model we
proposed. However, unlike in the cases of enzyme and acidity data, in this
case, our density estimate, even in the naked eye, looks much accurate than
that of EW.

Again, our approach turned out to be much faster than that of EW, the
respective implementation time being 18 minutes and 36 minutes.

9 Conclusion

We have proposed a new and simple approach for Bayesian modelling and
inference on mixture models, and argued that our proposal is better than
that of RG implementation-wise, and is better than that of EW model-wise
(in terms of pseudo Bayes factors) and in terms of the ability to take account
of prior information about the number of mixture components in the popu-
lation. Moreover, computationally of our approach is much less demanding
than the approaches of EW and RG. Numerical experiments, conducted with
simulated as well as real data sets, have demonstrated considerable power
and flexibility of our approach, and confirmed the arguments we put forward
in support of our proposal.

Another advantage of our proposed methodology is the ease with which
regression function estimation can be done. Suppose, for example, that
we have d-variate data, {yi; i = 1, . . . , n}, where yi = (y1i, . . . , ydi)′. Now
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Figure 3: Density estimates of the histogram of the galaxy data using the
model of EW (upper panel) and our model (lower panel).
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suppose that it is of interest to obtain a weighted regression of y1 on the
other components y2, . . . , yd. Now, according to our model, y is a mixture
of d-variate normal distributions, given by

[y | Θm] =
1
m

m∑
j=1

|Λj |
1
2

(2π)
d
2

exp
{
−1

2
(
y− µj

)′ Λj

(
y− µj

)}
(9.1)

where µj and Λj are, respectively, the multivariate means and the inverse
of the dispersion matrix (precision matrix) of y. In simplified notation, we
write (9.1) as

[y | Θm] =
1
m

m∑
j=1

Nd

(
y : µj ,Λ

−1
j

)
(9.2)

It follows that the conditional distribution of y1 given y−1 = (y2, . . . , yd)′ is
given by

[y1 | Θm,y−1] ∝
1
m

m∑
j=1

Nd−1

(
y−1 : µ−1j ,Λ

−1
−1j

)
×N

(
y1 : µ(j)

1|2,...,d, λ
(j)
1|2,...,d

)
(9.3)

where µ(j)
1|2,...,d and λ(j)

1|2,...,d are, respectively, the univariate conditional mean
E(y1 | y−1,Θm) and the inverse precision 1/V (y1 | y−1,Θm) under the
assumption that y ∼ Nd(µj ,Λj). The (d − 1) dimensional parameters
µ−1j ,Λ−1j stand for µj ,Λj but without the first component.

As a result, assuming k distinct components θ∗
1, . . . ,θ

∗
k in Θm, and as-

suming further that each distinct component θ∗
j occurs mj times, we have

E[y1 | Θm,y−1] =
k∑
j=1

w(j)(y−1)µ
(j)
1|2,...,d, (9.4)

which is a weighted sum of the component regression functions µ(j)
1|2,...,d, where

the associated weight w(j)(y−1) is given by

w(j)(y−1) ∝
mj

m
Nd−1

(
y−1 : µ∗

−1j ,Λ
∗−1
−1j

)
(9.5)

and the proportionality constant is chosen such that
∑k

j=1w
(j)(y−1) = 1.

Note that the regression function estimator developed above is struc-
turally quite different from that given by Müller et al (1996). It will an
interesting future work to compare our regression function estimator (9.4)
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with that of Müller et al (1996) after subjecting both the methodologies to
various challenging applications.

Acknowledgements. We are grateful to Mr. Mriganka Chatterjee for
his assistance in the preparation of this manuscript, and to an anonymous
referee, whose comments have led to an improved presentation of the paper.

References

Antoniak, C. E. (1974). Mixtures of Dirichlet Processes With Applications to Non-
parametric Problems., Ann. Statist,, 2, 1152–1174.

Bhattacharya, S. (2006). A Bayesian semiparametric model for organism based envi-
ronmental reconstruction, Environmetrics, 17 , 763–776.

Blackwell, D. and McQueen, J. B. (1973). Ferguson distributions via Pólya urn
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