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Abstract

A computationally efficient algorithm is proposed for estimating the param-
eters of sinusoidal signals in presence of stationary errors. The proposed es-
timators are consistent, and they are asymptotically equivalent to the least
squares estimators. Monte Carlo simulations are performed to compare the
proposed one with the other existing comparable methods. It is observed
that the proposed estimator works quite well in terms of biases and mean
squared errors. The main advantage of the proposed method of estimation
is that the estimators can be obtained using only fixed number of iterations.
Some real data sets have been analyzed for illustration purposes.
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1 Introduction

We consider the following model:
p
y(t) =Y [A; cos(wst) + Bjsin(w;t)] + X (t); t=1,...,N. (1.1)
i=1

Here Ajs and Bjs are unknown amplitudes and none of them is identically
equal to zero. The wjs are unknown frequencies lying strictly between 0 and
m, and they are distinct. The error random variables X (t)s are stationary
linear processes, and they satisfy the following assumption.
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AssUMPTION 1: The error random variables X (¢)s have the following

structure.
o0

X(t)= Y a(elt —3j), (1.2)

j=—00

where e(t)s are independent and identically distributed (i.i.d.) random vari-
ables with mean zero and finite variance 02 and a(j)s are real numbers such
that

> )] < 0. (1.3)

j=—o0

The number of components p is assumed to be known. The problem is
to estimate the unknown parameters A;s, Bjs and wjs, given a sample of
size N, namely y(1),...,y(N). In this paper, we mainly consider efficient
estimation of w;s, even though the estimation of the linear parameters is
also very important.

Estimation of frequencies in presence of additive noise is a very important
problem in the time series analysis and in the area of statistical signal pro-
cessing. Starting with the work of Fisher (1929), this problem has received
considerable attention. Brillinger (1987) discussed some of the very impor-
tant real life applications of this particular problem, see Kay and Marple
(1981) also. Stoica (1993) provided an extensive list of references up to that
time and see Kundu (2002) for some of the recent references.

The optimum rate of convergence can be obtained by the least squares
estimators, and their convergence rate is O,(N~%/2). Here O,(N~%) means
N%0,(N—%) is bounded in probability. The periodogram estimators (with-
out the constraint of Fourier frequency) also provide the best possible rate,
and they are asymptotically equivalent to the least squares estimators. Find-
ing the least squares estimators tends to be computationally intensive as the
functions to be optimized are highly non-linear in parameters. Thus, very
good (close enough to the true value) initial estimates are needed. Sev-
eral techniques are available in the literature, for example Pisarenko (1973),
Chan, Lavoie and Plant (1981), which attempt to find computationally ef-
ficient frequency estimators. However, these procedures produce estima-
tors having convergence rate O,(N~1/2). The periodogram maximizer over
Fourier frequencies does not generally provide good initial estimates with the
convergence rate is O,(N 1), see for example Rice and Rosenblatt (1988),
whereas an initial estimate of the convergence rate O,(N~17%) (§ > 0) is
needed for most of the iterative techniques to work.
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In this paper, we propose a new iterative procedure similar to the proce-
dure of Bai et al. (2003). The method uses a correction term based on Py (j)
and @Qn(j) to be defined in Theorem 3.1, which are functions of the data
vector as well as the available frequency estimator corresponding to the j-th
component. The forms of the functions Py (j) and Qn(j) are motivated by
the least squares method. Tt is observed that if the initial guess is accurate
up to the order O(N~'), then our three step iterative procedure produces
fully efficient frequency estimator, which has the same rate of convergence
as the least squares estimators. In the proposed method, we do not use the
fixed sample size available for estimation at each step. At first step, we use
a fraction of it and at the last step, we use the whole data set by gradually
increasing the effective sample sizes.

The rest of the paper is organized as follows. Two different estimators
and their properties are discussed in Section 2. The proposed algorithm is
presented in Section 3. Simulation results and analysis based on some real
data are presented in Section 4, and finally the conclusion appears in Section
5. All the proofs are provided in the Appendix.

2 Estimation Procedures

There are mainly two different methods of estimation of the unknown
parameters. We will briefly discuss both of them below.

2.1. Least Squares Estimators. The least squares estimators (LSEs) of
the unknown parameters can be obtained by minimizing the residual sum of
squares, namely,

2

P
R(A,B,w) Z y(t Z Ajcos(wjt) + Bjsin(w;t)] | (2.1)
t=1 7j=1

with respect to A = (A4;,...,4,), B=(By,...,Bp) and w = (wy,...,wp).
Note that R(A,B,w) can be written as follows.

R(A,B,w) = R(a,w) = [Y — X(w)a]” [Y - X(w)a], (2.2)
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where Y =[y(1),...,y(N)]", a=[A1,..., 4, B1,..., B , w=(w1,...,w,)"
and X(w) is an N X 2p matrix of the form

[ cos(wi) ... cos(wp) sin(wi) ... sin(wp) ]
cos(2wy) ... cos(2wpy) sin(2w;) ... sin(2wy)
X(w) = (2.3)
lcos(Nwy) ... cos(Nwp) sin(Nwi) ... sin(Nwp)]

From (2.2), it is clear that a can be separated from w. Therefore, by using
the separable regression techniques of Richards (1961), the LSE of « can be
obtained in terms of w. For fixed w, the LSE of a can be obtained as

a(w) = [X7 ()X (w)] ' X" (w)Y. (2.4)
If we substitute &(w) in (2.2), we obtain
Q(w) = R(a(w),w) =Y" [I-Px,]Y, (2.5)
where
Py (w) = X(w) [XT (@)X(w)] " X"(w)

is the projection matrix on the column space spanned by the matrix X(w)
for a given w. Therefore, the LSE of w can be obtained by minimizing (2.5)
with respect to w. If @ minimizes (2.5), then the corresponding estimator
of the linear parameter a can be obtained as

a(w) = [XT (@)X (@)] ' XT(@)Y. (2.6)

Most of the special purpose algorithms, for example the methods proposed by
Bresler and Macovski (1988), Kumaresan, Scharf and Shaw (1986), Kundu
and Kannan (1994) and Smyth (2000) attempt to minimize (2.5), which
naturally saves computational time.

2.2.  Approrimate Least Squares Estimators. An alternative way to es-
timate the frequencies is to maximize the periodogram function. The peri-
odogram function I(w) can be defined as follows.

I(w) = (2.7)
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The periodogram estimators obtained under the condition that frequencies
are Fourier frequencies, provide estimators with convergence rate O,(N 1.
When this condition is dropped, the estimators obtained by finding p lo-
cal maxima of I(w) achieve the best possible rate and are asymptotically
equivalent to the LSEs. So it is called approximate least squares estimators
(ALSEs) in the literature. A frequency A is a Fourier frequency if it is of the
form A = 27k /N, for some integer 1 < k < N/2. Let us denote the ALSE
of w=(wi,...,wp) as &= (Q1,... ,&)p). It is known that & and & are both
consistent estimators of w with the following asymptotic distribution:

N32(@ — w)—N, (0,240°F) (2.8)
N32(& — w)—N, (0,240°E) (2.9)

where ¥ is p X p diagonal matrix as follows.

> = diag [—2 C’;] . (2.10)
1 Pp

Here

and p? = A; + BJZ.

The LSEs of A4; and B; are estimated using (2.6) and ALSEs, say A; and
B%- that are obtained as

N
~ ) R
P y(t) cos(@jt) =N ;_1 y(t) sin(w;t). (2.11)

[\
M =
QU:b

I

These expressions are used in Section 4.2 to estimate the linear parameters.
Thus, according to (2.8) and (2.9), both the LSEs and the ALSEs produce
frequency estimators which have convergence rate O, (N —3/2) In this paper,
we have considered the efficient estimation of non-linear frequency parame-
ters, and we do not discuss anything related to the rate of convergence of the
linear parameters. In the next section, we describe a method which produces
frequency estimators and which have the same convergence rate as the LSEs
or the ALSEs.
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3 Proposed Algorithm

Given a consistent estimator @;, we compute @; using (3.1) for j =
1,...,p as follows.

. 5 12 Py (g
=t 3 G0 o
where
N
et = Yuo (¢ ) e, (32)
t=1
N
QnG) = D ye ™, (3.3)
t=1

and Im[.] denotes the imaginary part of a complex number. We can start
with any consistent estimator @; and improve it step by step using (3.1).
The motivation of the algorithm is based on the following theorem.

THEOREM 3.1. If for j = 1,...,p, @ — wj = Op(N"'7%), where § €
(0,1/2], then

(@) @j—wj =0, (N*I*Q‘s) if 6<1/4, and

(b) N32(& — w)=N, (0,240%%) if &> 1/4.

PROOF. See in the Appendix. O

We start with the maximizer of the periodogram over Fourier frequencies
and improve it step by step by the above recursive algorithm. The m* step

estimator d)](-m) is computed from the (m — 1) step estimator d)](-m_l) by the
formula i)
(m) _ (m-1) , 12 [PNm ] ]
Wy =W 4+ — Im | ————|, 3.4
! ! N L@ () G4

where Py, (7) and Qn;,, (j) can be obtained from (3.2) and (3.3) by replacing

N and w; with Ny, and d)](-m_l) respectively. We repeatedly choose N,
suitably at each step as follows.

e Step 1: With m = 1, choose N; = N%8® and GJ](-O) = wj, the maximizer
of the periodogram estimator at the Fourier frequencies. Note that
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Wj —w; = O0p(N71) = Op(Nl_l_l/4). Substituting NY® and d)](-o) = w;
in (3.4), and applying part (a) of Theorem 3.1, we obtain

o) —w; = 0, (N7 = 0,(N1115),

e Step 2: With m = 2, choose Ny = N9, Compute d)J(-2) from djj(-l). Since
d)J(-l) —wj = Op(N7171/5) = Op(NQ_I_l/?’) and 1/3 > 1/4, therefore
using part (b) of Theorem 3.1 , we have

& — wj = Op(N7*?) = Op(N17/20),

e Step 3: With m = 3, choose N3 = N and compute GJJ(-?’) from GJJ(-Q) and

apply part (b) of Theorem 3.1 again, we have

N3/ (a:(3> . w) — N,(0,240°5).

Therefore, it is observed that if at any step, the estimator is of the or-
der O,(N~179), then the method provides an estimator which improves the
order to O,(N~1729) if § < 1/4, and if 1/4 < § < 1/2, then it provides
the efficient estimator. We obtain the initial estimator by maximizing the
perodogram function, defined in Section 2, under the condition that the fre-
quencies are Fourier frequencies. This way, using varying sample sizes, we
get an estimator with rate of convergence O,(N~'~%) for some d§ € (0,1/2].
This can then be used as an initial estimator because the Theorem 3.1 needs
a starting value of order O,(N~'7%) to work. With the increasing num-
ber of iteration, more and more data points are used to obtain an efficient
estimator. The method provides an efficient frequency estimator from the
relatively poor initial estimate of the periodogram maximizer. We would
like to mention it again that the initial estimator used here is not the ALSE
(ALSE is obtained without any constraint on the frequencies) and so is not
asymptotically equivalent to the LSE.

For multiple sinusoidal model (p>2), the LSEs of w; and wy, for j#k are
asymptotically independent. We observe the same for the proposed estima-
tors also, and the proposed algorithm does not involve joint estimation of the
frequencies in case p>1. This is due to the fact that the correction factor

due to the frequency wj is %I m [SJ;’V ((]]))}, which does not depend on  w;.

There are several iterative procedures available in the literature to es-
timate the parameters of sinusoidal frequency model. In the proposed al-
gorithm, the novelty lies in its implementation. Basically, it is an iterative



290 Swagata Nandi and Debasis Kundu

scheme, which needs starting estimates of order larger than O,(N~!) to
work. But the existing non-iterative procedures and the periodogram maxi-
mizer at Fourier frequencies give estimates of orders O,(N~'/2) and O,(N~")
respectively. So, following the theory, one cannot use them directly as start-
ing estimates. To overcome this problem, we increase the sample size step by
step, in each iteration, starting from a sub series of the observed time series
to N, the available data points. We would like to mention here that this
varying sample size technique may be used in some other existing algorithms,
and thus one may have a bound in the number of iterations required.

4 Numerical Experiments and Data Analysis

4.1.  Numerical Ezperiments. In this section we present some numer-
ical results to observe how the proposed method works for different sample
sizes and for different error variances. We use the random deviate generator
RANZ2 of Press et al. (1993). All the programs are written in FORTRAN
and they can be obtained from the corresponding author on request. For
comparison purposes, we consider two different models.

e Model 1: y(t) = 2cos(0.5t + 7/4) + X (1).

e Model 2: y(t) = 2cos(0.5t + 7/4) + 2 cos(1.5¢t + 7/3) + X ().

In both cases, the error random variable X (¢) is of the form
X(t) = e(t) +0.75¢(t — 1),

where {e(t)} is a sequence of i.i.d. Gaussian random variables with mean
zero and variance 2. Note that Models 1 and 2 are equivalent to (1.1).

We consider N = 100, 200, 300, 400, 500 and o = 0.25, 0.50, 0.75,
1.00. For each sample, we estimate the frequency/frequencies based on the
proposed method and using the optimization algorithm described in the
Numerical Recipes (Press et al., 1993), and from now on, we will name this
algorithm as the NR algorithm. In all cases, we consider the initial guesses
as the periodogram maximizer at the Fourier frequencies. For NR algorithm,
we also use the true parameter values as the initial guesses. In Tables 1 and
2, NR-1 and NR-2 represent the NR algorithms when the initial guesses are
the periodogram maximizers at the Fourier frequencies and the true values
respectively.
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TABLE 1. THE AVERAGE ESTIMATES AND THE CORRESPONDING SQUARE ROOT OF THE
MEAN SQUARED ERRORS OF THE FREQUENCY BASED ON 1000 REPLICATIONS ARE
REPORTED WITHIN BRACKETS BELOW FOR MODEL 1. THE TRUE PARAMETER VALUES
AND THE SQUARE ROOT OF THE ASYMPTOTIC STANDARD DEVIATIONS ARE REPORTED

WITHIN BRACKETS BELOW.

o Methods N=100 N=200 N=300 N =400 N = 500

Proposed  0.499859  0.500032  0.500047  0.500025  0.500015
(1.0202e-3)  (3.6663e-4)  (2.0306e-4)  (1.3188e-4)  (9.4561e-5)

NR-1  0.499982  0.499985  0.500002  0.500023  0.500011
0.25 (1.0209¢-3)  (3.6691e-4)  (1.9582e-4) (2.6448e-4) (1.7661e-4)

NR-2  0.499982 0499985  0.500002  0.499995  0.499999
(1.0209¢-3)  (3.6640e-4)  (1.9561e-4)  (1.2559e-4)  (8.9925¢-5)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(1.0390e-3)  (3.6735e-4)  (1.9996e-4)  (1.2988e-4)  (9.2933¢-5)

Proposed  0.500004  0.500056  0.500067  0.500028  0.500020
(2.0303e-3)  (7.3551e-4)  (3.997le-4) (2.6045e-4)  (1.8794e-4)

NR-1  0.499963  0.499974  0.500008  0.500041  0.500026
0.50 (2.0557e-3)  (7.3874e-4)  (4.0039e-4)  (4.1028e-4)  (3.2738¢-4)

NR-2  0.499962  0.499968  0.500005  0.499986  0.499999
(2.0540e-3)  (7.3523e-4)  (3.9090e-4)  (2.4881e-4)  (1.7869¢-4)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(2.0781e-3)  (7.3470e-4)  (3.9992e-4)  (2.5976e-4)  (1.8587¢-4)

Proposed  0.500144 0500081  0.500087  0.500032  0.500024
(3.0846e-3) (1.1119e-3)  (5.9713e-4)  (3.8959e-4)  (2.8199¢-4)

NR-1  0.499944 0499968  0.500031  0.500080  0.500110
0.75 (3.1072e-3)  (1.1176e-3)  (6.1652e-4)  (5.7175e-4)  (5.6810e-4)

NR-2  0.499941 0499955  0.500012  0.499982  0.500000
(3.1073¢-3)  (1.1039-3)  (5.8358e-4)  (3.7506e-4)  (2.6569¢-4)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(3.1171e-3)  (1.1021e-3)  (5.9988¢-4)  (3.8964e-4)  (2.7880e-4)

Proposed  0.500274 0500103  0.500107  0.500034  0.500028
(4.2552e-3)  (1.5036e-3)  (7.9654e-4)  (5.1962e-4)  (3.7739e-4)

NR-1  0.499924 0499954  0.500042  0.500092  0.500170
1.00 (4.1922e-3)  (1.4924e-3)  (8.2129e-4)  (7.3619e-4)  (8.8899e-4)

NR-2  0.499915  0.499950  0.500009  0.499984  0.499992
(4.1932¢-3)  (1.4732e-3)  (7.7078e-4)  (5.0181e-4)  (3.4860e-4)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(4.1561e-3)  (1.4694e-3)  (7.9984e-4)  (5.1951e-4)  (3.7173e-4)

We replicate the procedure 1000 times and report the average estimates
of the frequencies and the corresponding square root of the mean squared
errors. For Model 1, the results are reported in Table 1. For Model 2, the
results are reported in Tables 2 and 3 for the frequencies 1 and 2 respectively.



292

TABLE 2. THE RESULTS FOR MODEL 2 AND FREQUENCY 1.
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THE AVERAGE ESTIMATES AND THE CORRESPONDING SQUARE ROOT OF THE MEAN
SQUARED ERRORS BASED ON 1000 REPLICATIONS ARE REPORTED WITHIN BRACKETS
BELOW FOR DIFFERENT METHODS. THE TRUE PARAMETER VALUES AND THE SQUARE

ROOT OF THE ASYMPTOTIC STANDARD DEVIATIONS ARE REPORTED

WITHIN BRACKETS BELOW.

o Methods N =100 N = 200 N = 300 N = 400 N = 500

Proposed  0.498501 0.499772  0.499956  0.499974  0.499984
(1.8158e-3)  (4.3695e-4)  (2.0758e-4)  (1.3586e-4)  (9.7147e-5)

NR-1 0.500752  0.501320  0.501600  0.501760  0.501521
0.25 (2.0860e-3)  (2.1688¢-3)  (1.7190e-3)  (1.8096e-3)  (1.6729¢-3)

NR-2  0.500004  0.500006  0.500003  0.499999  0.500001
(8.3956e-4)  (2.3704e-4)  (1.1027e-4)  (6.7066e-5)  (4.6175e-5)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(1.0390e-3)  (3.6735e-4)  (1.9996e-4)  (1.2988e-4)  (9.2933e-5)

Proposed  0.498758  0.499829  0.499992  0.499988  0.499995
(2.4060e-3)  (7.6718e-4)  (4.0428¢-4)  (2.6662e-4)  (1.9149¢-4)

NR-1 0.500482  0.501004  0.501658  0.501770  0.501533
0.50 (2.2384e-3)  (1.9270e-3)  (1.7658¢-3)  (1.8255e-3)  (1.7268¢-3)

NR-2  0.499987  0.499993  0.500003  0.499998  0.500002
(1.6752e-3)  (4.6894e-4)  (2.2325e-4)  (1.4013e-4)  (9.3547e-5)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(2.0781e-3)  (7.3470e-4)  (3.9992e-4)  (2.5976e-4)  (1.8587e-4)

Proposed  0.499025  0.499884  0.500029  0.500001 0.500005
(3.2762e-3)  (1.1363e-3)  (6.0565¢-4)  (3.9899e-4)  (2.8746¢-4)

NR-1 0.500334  0.500938  0.501680  0.501781 0.501343
0.75 (2.9161e-3)  (1.9315e-3)  (1.7624e-3)  (1.8509e-3)  (1.7870e-3)

NR-2  0.499980  0.499997  0.500007  0.499999  0.500001
(2.5281e-3)  (7.2823e-4)  (3.4500e-4)  (2.1034e-4)  (1.4190e-4)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(3.1171e-3)  (1.1021e-3)  (5.9988e-4)  (3.8964e-4)  (2.7880e-4)

Proposed  0.499209  0.499936  0.500066  0.500013  0.500015
(4.3669e-3)  (1.5323e-3)  (8.0922¢-4)  (5.3199e-4)  (3.8481e-4)

NR-1 0.500227  0.500950  0.501689  0.501776  0.501115
1.00 (3.6166e-3)  (1.9464e-3)  (1.7830e-3)  (1.9094e-3)  (1.9016e-3)

NR-2  0.499914  0.500001 0.500019  0.499998  0.500002
(3.3998e-3)  (9.7823e-4)  (4.9387e-4)  (2.7539e-4)  (1.9273e-4)

Parameter  0.50000 0.50000 0.50000 0.50000 0.50000
(4.1561e-3)  (1.4694e-3)  (7.9984e-4) (5.195le-4)  (3.7173¢-4)

We also report the true parameter values and the corresponding asymptotic

standard deviations of the LSEs for comparison purposes.
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TABLE 3. THE RESULTS FOR MODEL 2 AND FREQUENCY 2.

THE AVERAGE ESTIMATES AND THE CORRESPONDING SQUARE ROOT OF THE MEAN
SQUARED ERRORS BASED ON 1000 REPLICATIONS ARE REPORTED WITHIN BRACKETS
BELOW FOR DIFFERENT METHODS. THE TRUE PARAMETER VALUES AND THE SQUARE

ROOT OF THE ASYMPTOTIC STANDARD DEVIATIONS ARE REPORTED WITHIN
BRACKETS BELOW.

o Methods N=100 N =200 N =300 N =400 N = 500

Proposed  1.500400 1500302  1.500098  1.499993 1.499978
(8.9044e-4)  (4.1304e-4)  (1.8984e-4) (1.015le-d)  (7.6678e-5)

NR-1 1.502041 1.501075  1.498575  1.500006 1.500966
0.25 (2.9637e-3)  (3.2403e-3)  (1.5957e-3)  (2.7695e-4)  (1.0921e-3)

NR-2  1.499981 1.500011 1.500005  1.500000 1.499999
(6.2126e-4)  (1.8723e-4)  (8.3067e-5) (5.1740e-5)  (3.5315e-5)

Parameter  1.50000 1.50000 1.50000 1.50000 1.50000
(7.9103e-4)  (2.7967e-4)  (1.5223e-4)  (9.8879e-5)  (7.07518e-5)

Proposed  1.500557 1500356  1.500116  1.500001 1.499987
(1.7092e-3)  (6.7421e-4)  (3.4650e-4)  (2.0325e-4)  (1.4821e-4)

NR-1 1.501921 1.501033  1.498587  1.500020 1.501004
0.50 (4.3563¢-3)  (4.8358e-3)  (2.2669¢-3)  (3.8784e-4)  (1.5696¢-3)

NR-2  1.500025 1.500028  1.500005  1.500001 1.499998
(1.4955e-3)  (4.4035e-4)  (1.9885e-4)  (1.2016e-4)  (7.9629¢-5)

Parameter  1.50000 1.50000 1.50000 1.50000 1.50000
(1.5821e-3)  (5.5934e-4)  (3.0447e-4)  (1.9776e-4)  (1.4150e-4)

Proposed  1.500722 1.500417  1.500133  1.500008 1.499995
(2.5747e-3)  (9.6144e-4)  (5.1238e-4)  (3.0629e-4)  (2.2244e-4)

NR-1 1.502171 1.500854  1.498706  1.500039 1.501042
0.75 (5.6615e-3)  (6.2034e-3)  (2.7460e-3)  (4.6992e-4)  (1.9444e-3)

NR-2  1.499998 1500037  1.500007  1.499997 1.499998
(2.5762e-3)  (7.4791e-4) (3.4162e-4) (2.0314e-4)  (1.3635e-4)

Parameter  1.50000 1.50000 1.50000 1.50000 1.50000
(2.3731e-3)  (8.3901e-4) (4.5670e-4)  (2.9664e-4)  (2.1226e-4)

Proposed  1.500887 1500475  1.500153  1.500014 1.500004
(3.4886e-3)  (1.2648¢-3)  (6.8424e-4)  (4.1088e-4)  (2.9817e-4)

NR-1 1.502087  1.500857  1.498709  1.500022 1.501047
1.00 (7.0993¢-3)  (7.5094e-3)  (3.1600e-3)  (5.4387e-4)  (2.2575¢-3)

NR-2  1.499982 1.500044  1.500005  1.499997 1.499998
(3.8856e-3)  (1.1272e-3)  (5.2067e-4)  (3.0229e-4)  (2.0151e-4)

Parameter  1.50000 1.50000 1.50000 1.50000 1.50000

(3.1641e-3)  (1.1187e-3)  (6.0894e-4)  (3.9552e-4)  (2.8301e-4)

The following points are observed from this experiment. In most of the
cases, for Model 1, all methods work almost in an identical manner. The
square root of the mean squared errors in most of the cases are quite close to
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the asymptotic standard deviations. Interestingly, for sample sizes 400 and
500, the square root of the mean squared errors are quite higher than the
corresponding asymptotic standard deviations for the NR-1 algorithm. Since
it is known (see Rice and Rosenblatt, 1988) that for large sample sizes the
least square surface has several local minima, it seems that there are local
minima close to the periodogram maximizers and the conventional algorithm
converges to some local minimums rather than the global minimum. On the
other hand, it is clear from the mean squared errors that starting from the
true values, NR algorithm converges to the global minima. For Model 2,
the performances of the proposed and NR-1 algorithms are quite different.
Although the initial guesses are same for both of them, the performance
of the proposed algorithm is much better than that of the NR-1 algorithm
in terms of the lower mean squared errors. The performance of the NR-
2 algorithm is very good, having slightly lower mean squared errors than
that of the proposed one in several cases. It is not surprising because it
uses the true values as the initial guesses. Moreover, the performance of
NR-2 algorithm indicates that NR algorithm works very well provided the
starting estimates are quite close to the true parameter values. The proposed
algorithm produces fast and efficient frequency estimators quite effectively
from the periodogram estimators even when multiple sinusoids are present.

4.2.  Data Analysis. In this subsection, we illustrate the proposed algo-
rithm with three real data examples. We analyze the widely used variable
star data and two short duration voiced speech signals. We estimate the
frequencies using the algorithm described in Section 3, and the linear pa-
rameters are then estimated by approximate least square technique using the
frequency estimates (as given in (2.11)). Two voiced speech data, namely
“eee” and “uuu” are analyzed. In each data set, 512 signal values sampled
at 10 kHz frequency are available. We have used the mean corrected data
in each case for this analysis. The data sets “eee” and “uuu” are displayed
in Figures 1 and 2, and their periodogram functions in Figures 3 and 4.

The plots in Figures 1 and 2 suggest that the signals are non-stationary
and there exists strong periodicity. The number of components are estimated
from the peridogram plots. For both data sets, we estimate p as 4. As
described in Section 3, the periodogram maximizer at the Fourier frequencies
2rj/N, 5 =1,..., N are used as initial estimates for the frequencies. Then,
using the three-step algorithm, we first estimate the frequencies and then
the linear parameters. The estimated parameters (Ak, Bk,wk), k=1,...,4
for both “eee” and “uuu” data sets are listed in Table 4. Using these point
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TABLE 4. THE PARAMETER ESTIMATES FOR DIFFERENT DATA SETS.

DATA SET: “EEE”

Ay 893.430237 B 1115.15039 wy  0.227799729
Ao 611.317688 B> 511.464569 wz  0.114047945
Az 575.300537 B3 401.475098 w3 1.46539402
Ay 347.595306 By -51.168354 wq  1.80787051

DATA SET: “vuu”
Ay 8.92728806 B 1698.65247 w1 0.228173435
Ay -584.679871 B -263.790344  wo  0.112697937

Az -341.408905 Bz  -282.075409 ws 0.343263
A4 -193.936096 Bs  -300.509613 = wa 0.4577021

DATA SET: “STAR.DAT”

A 7.48262215 By 7.46288395 wr  0.216232359
Ay -1.85116708 B> 6.75062132 w2 0.261817634
As  -0.807285547 Bz 0.0688061789 w2 0.213608354

estimates, we obtain the predicted signal for both data sets. The predicted
signals (solid line) along with observed (dotted line) data sets are plotted in
Figures 5 and 6 for “eee” and “uuu” data sets respectively. The fitted values
match quite well with the observed series.

Next, we consider an astronomical data set, which represents the daily
brightness of a variable star on 600 successive midnights. The data is
collected from Time Series Library of StatLib (http://www.stat.cmu.edu;
Source: Rob J. Hyndman). The observed data is plotted in Figure 7, and
its periodogram function in Figure 8. This is a well-known data set used in
the study of multiple frequency model (1.1). From the periodogram plot,
it seems that number of components p = 2. However, with p = 2, we see
that the periodogram plot of the residual series gives evidence of another
significant component (plot is not provided here). This third component is
not visible in the periodogram plot of the original series (Figure 8), as the
first two frequencies are dominant due to the large absolute values of the
associated amplitudes. Also, the first one is quite close to the third one
as compared to the available data points to distinguish them. So we have
considered p = 3 and then estimated the other parameters. The parameter
estimates of this data set, (Ag, By, @),k = 1,...,3 are also given in Table
4. Similarly as before, the observed (solid line) and the estimated values
(dotted line) are plotted in Figure 9. In Figure 9, it is not possible to dis-
tinguish the estimated one from the observed series. So the performance of
the developed algorithm is quite good for the data sets considered here for
the analysis.
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values (dotted line).
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5 Conclusions

In this paper, we propose a new 3-step iterative procedure to estimate
the frequencies of sinusoidal signals from an initial estimator, which has
the rate of convergence O,(N~!). There are several algorithms available in
the literature for estimating the parameters of sinusoidal frequencies. It is
known that all the non-iterative algorithms produce estimators which have
convergence rate O,(N ~1/2) and most of the iterative algorithms have the
convergence rate O,(N~3/2). The performance of any iterative algorithm
heavily depends on the stopping criterion as well as on the maximum number
of iterations. The estimators, which can be obtained by the proposed 3-step
procedure, do not have those deficiencies. The performance of the estimators
is also quite good and for multiple sinusoids the proposed one is better
than some of the existing estimators. The algorithm is basically a iterative
algorithm, but at the same time since the number of steps is fixed, it can be
implemented like non-iterative procedures, and so it can easily be used for
on-line implementation purposes.

Finally, we should mention that our proposed method works, unlike any
existing methods, even if the initial estimators have the convergence rate
Op(N -1/ 2). In this case, the proposed method takes seven steps to converge
to the estimator which has the optimum convergence rate O, (N —3/2),

Appendix

PrROOF OF THEOREM 3.1.

N
OnGG) = 3 ylt)e it
7j=1

Z {Aj cos(wit) + By sin(wgt)} + X(t)] it

—iw;t

{ﬂ (eiwkt + e—iwkt) + ﬂ (eiUJk-t _ e—z’wkt)} +X(t)|e
2t

Xp: <% _ %) Zei(wartIJj)t]
2

=1 t=1



300 Swagata Nandi and Debasis Kundu

Now we would like to study the behavior of Zi\;l e~ U@Ewe)t for different
k and j, when @; — w; = O,(N~'79). Note that

Mz

e~ Wk"i'w] = Op(]_) for all k,] - ]-7 Ry 2
t=1
N
Zezwk w] — Op(l) fOI' allk#]zlap?
t=1
and
N N o
ZeZ(wrwj)t — N ti(w — @) Zez(wj*wj)t
=1 t=1
= N—l—Op(Nilié)Op(NZ)

where w? is a point between w; and w;. Choose L large enough such that

L& > 1. Therefore, using Taylor series approximation of e~*it up to the
L-th order terms

00 N
ZX e @it = N7 a(k)) e(t—k)e @
k=—00 t=1
00 N
= > a(k)) e(t—k)e ™’
k=—00 t=1
00 L—1 (—i(@; — ))z N
+ Y a(k) %Ze(t—k)tle_mﬁ
k=—00 =1 ) t=1
00 O — s L N
+ > () 2 5 ) > le(t — k),
k=—00 ) t=1

N L-1
i 19) N—(1+d)l
X (e @it = op(N1/2)+§j—”( T )0, (N1+1/2)

+0, ((N.N*H)L.N)
— Op(Nl/Z) + Op(Nl/ZJrJfLJ) + Op(leLé) — Op(N1/2).
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Therefore,
) A; B s L2
OnG) = (F+32) (N+0,(N' 7)) + 0p(1) + Oy (N'?)
N —
= 3 [(A —iBj) + Op(N 5)}
as 0 € (0,1/2].
N
] N\ iz,
Px(j) = Y y(t) (t—5>e it
t=1
1< N
= EZAICZ <t_ E) [ez(wk—w])t +e Z(wk+w])ti|
k=1  t=1
1 - N t(wr—w;j)t —i(wg+w;)t

p N
— Ag By N (wr—@j)t
- 2 |(Fa) B (og)e
k=1 t=1
P30 (A B 5 (N iy
k=1 2 ‘ t=1 2 ’

N N o
Z(t—_> i@t — O (N)  forall  k,j,

N N\ ., .
Z (t _ E) ellwr—oi)t Op(N) for k#j,
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. ) N3 N
_i(wj — @) S (i- E) 13 oiwj —w3)t

N(N + 1)(N +2)
12

_wNZ(N +1)(N 4 2)0,(N~179)

—5 (7 = )0,(N 2 #)0,(N")

= O(N) +i(wj — @) Op(N?) + (wj — @) Op(N*7)
+i(wj — @;)O0p(N?7)

= O(N) +ilw; — &) N* [0p(1) + Op(N %) + O(N")]

= - +ilwj — @)

where, w;f is a point between w; and w;. Moreover,

iX(t) (t — %) et

t=1

k=—00 t=1
%) N N )
= a(k) Y e(t—Fk)[t—=)e wit
%) L—-1 i — w 1 N )
+ Z a(k) il = wi)) Jl! i) Ztl (t — %) e(t — k)e Wit
k=—00 =1 t=1
00 i — wa . N
+kz a(k)H(N( JL! i) ;(t-;) le(t — k)|

(here |9] < 1)
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+ ) a(k)O,(N°279),

k=—00

Therefore,

12 Py (j
oy =5y )
) 12 Zzo:_ooa(k) Zi\;l e(t—k) (t—g) e*iwjt—l—Op(N5/27L6)
= @it 2 Im[ N (Aj —iB;j) 4+ Op(N-9)]
—i X (@5 — wj)(Aj — iB;) (1 + Op(N %))
N[(Aj —iBj) + Op(N79)]
= wj+0,(N70)(@; — wj)+
24, [zz‘;_m a(k) zii o) ] 51)
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Now

Im [ZZOOO a(k) o et — k) (t— %) eiwjt]

A; —iB;
1 00 N -
A? n B]2 A; ) 7ooa(k) ; e(t —k) <t — —> s1n(wjt)]
1 i N
+A§ n BJZ B; kzooa(k) tz:; e(t — k) (t - —> cos(wjt)]
1 > N N
R x | —A; k:_ooa(k);e(t — k) <t——>
{sin(w;(t—Fk)) cos(kw;)+ cos(w;(t—k) sin(kw;)}
o0 N
B S alk) S e(t—k) (t—%)
k=—o00 t=1
{cos(w;(t—Fk)) cos(kw;)— sin(w;(t—k) sin(kwj)}]
= X;  (say).
Note that

24 OO_ alk e—ikwj 2 .
Var< Xj> :2402@’“——00 (k) | :24020—92; i=1,...,p,

2 2
N/ (45 + Bj) j
(5.2)
and for j # k,
24 24

Therefore, if &; —w; = O,(N~'7%) and § < 1/4, then from (5.1), &j — w; =
O,(N~1=20) 1f § € (1/4,1/2], then from (5.1)-(5.3) and using the Central
Limit Theorem of the linear process (Fuller, 1976, page 251, see also Hannan,
1971 and Kundu, 1997), it follows that N3/2(& — w) — Np(0,240°X).
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