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Abstract

Nonuniform rates of convergence to normality are studied for standardized
sample sum of independent random variables in a triangular array when
mth moment of the variables is of order Lm exp(γm log m), L > 0, 0 < γ <
1, ∀m > 1; equivalently, supn≥1 n−1 ∑n

i=1 E exp(s|Xni|
1/γ) < ∞, for some

s > 0. This assumption goes beyond the existence of moment generating
functions of individual random variables. As 0 < γ < 1, one gets a clear
picture of the role of γ on rates of convergence, while one moves from the
assumption of existence of the moment generating functions of the random
variables to the boundedness of the random variables, by varying γ. Lin-
nik (1961) considered convergence rates in iid setup with variables having
moment generating functions at the most. The general results considered
in the present paper reduce to those of Dasgupta (1992) in the special case
γ = 1/2. The nonuniform bounds are used to obtain rates of moment type
convergences and Lp version of Berry-Esseen theorem. An upper bound for
the tail probability of standardized sample sum being greater than t is com-
puted. For 0 < γ < 1/2 and t large, this probability is shown to have a faster
rate of decrease than normal tail probability. The results are extended to
general nonlinear statistics and linear process.

AMS (2000) subject classification. Primary 60F99; secondary 60F05, 60F10,
60G50.
Keywords and phrases. Nonuniform rates, Lp version of Berry-Esseen theo-
rem, tail probability, linear process.

1 Introduction

Let [Xni : 1 ≤ i ≤ n, n ≥ 1] be a triangular array of random variables,
where variables in each array are independently distributed. Assume, with-
out loss of generality,

EXni = 0, ∀n ≥ 1, 1 ≤ i ≤ n. (1.1)
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Define Sn =
∑n

i=1 Xni, s2
n =

∑n
i=1 EX2

ni and Fn(t) = P (s−1
n Sn ≤ t). Let,

inf
n≥1

n−1/2sn = C(> 0). (1.2)

Then Fn → Φ, weakly under Lindberg-assumption. To study the speed of
convergence, one needs to assume the existence of moments slightly higher
than two of the random variables Xni. Consider then

sup
n≥1

n−1
n

∑

i=1

EX2
nig(Xni) < ∞, (1.3)

where g(x) is a non-negative, even, nondecreasing function on [0,∞).

Assumption (1.3) gives rise to following three broadly classified cases.

I. Some finite order moment ≥ 2 of the individual random variables ex-
ists.

II. Moments of all finite order exist but moment generating functions of
the random variables may not exist.

III. Moment generating functions of the random variables exist but the
random variables may not be bounded.

The uniform bound O(n−1/2) in CLT due to Berry and Esseen was ex-
tended by Katz (1963) in the iid set up. The nonuniform rates of convergence
of |Fn(t)−Φ(t)| to zero has been studied under various moment assumptions,
see e.g. Petrov (1975), Michel (1976). See also Chen and Shao (2004) for
nonuniform bounds under local dependence.

Michel (1976) computed the deviation zone for tn where 1 − Fn(tn) ∼
Φ(−tn), tn −→ ∞ in the iid set up, with g(x) = |x|c; c > 0. This was
generalized for slightly more general g, by Ghosh and Dasgupta (1978), for
triangular array of independent random variables.
With g(x) such that, |x|k << g(x) << exp(s|x|), ∀ k > 0 and some s > 0,
Dasgupta (1989) computed nonuniform central limit bounds and computed
the normal approximation zone of tail probabilities; the necessary and suffi-
cient conditions for such results are shown to be identical for some forms of
g. All these results refer to case I and case II.
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The remaining case, viz. case III is considered in this paper. We study
the nonuniform rates of convergence under the assumption:

sup
n≥1

n−1
n

∑

i=1

E|Xni|
m ≤ Lmeγm log m, ∀ m > 1, where L > 0, 0 < γ < 1;

(1.4)
or, the following equivalent assumption (vide remark 2.1), where the sum-
mands have a 1/γ th power with finite moment generating function; viz. for
some s > 0,

sup
n≥1

n−1
n

∑

i=1

E exp(s|Xni|
1/γ) < ∞. (1.5)

Nonuniform rates of convergence in case III have not attracted much
attention except the case when the random variables are bounded. However,
in Dasgupta (1992), the author considered a special case γ = 1/2, to compute
the nonuniform bounds of |Fn(t) − Φ(t)|. In this paper we cover a broad
spectrum of g in a more general situation where γ has a larger range of
variation, i.e. 0 < γ < 1 in (1.4). This provides a clear picture of changes in
rates and tail probabilities, as one moves from the assumption of existence
of moment generating functions (γ = 1) to the boundedness of the random
variables (γ → 0) while γ varies in the range (0,1). See Theorems 2.1–2.3.

The tail probabilities of the standardized sample sum are expected to
decrease fast in a ‘continuous’ manner if the tail probabilities of individual
random variables decrease rapidly. Theorem 2.1 provides a result in this
direction. Combining Theorem 2.1 with the results of Ghosh and Dasgupta
(1978) and Dasgupta (1989), one obtains a sharp overall nonuniform bound
in the CLT as stated in Theorem 2.2. Consequently, results on moment type
convergences and Lp version of Berry-Esseen theorem are immediate.

The technique of proof in Theorem 2.1 can be briefly described as follows.
The assumption (1.5) yields a moment bound (1.4) for the random variables
Xni. Next, a term wise comparison of the series expansion of the moment
generating functions of the individual random variables with an appropriate
exponential function provides a sharp bound for the moment generating func-
tions of the standardized sample sum of the independent random variables
in a triangular array. Theorem 2.1 then follows from Markov inequality.

In this paper we obtain large deviation probabilities under weaker as-
sumptions alongwith moment type convergences and Lp version of Berry-
Esseen theorem. The tail probabilities stated in Theorem 2.1, under weaker
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assumptions go beyond the known results even when specialized to iid bounded
random variables, see Remark 2.1.

The paper is arranged as follows. Section 2 provides results on standard-
ized sum of independent random variables in a triangular array. Examples of
random variables, including extreme value distribution satisfying the condi-
tions of Section 2 are given in Section 3. The results are extended to general
nonlinear statistics in Section 4. Convergence rates for linear process are
considered in Section 5.

2 Results for Standardized Sum of Independent Random

Variables in a Triangular Array

We start with the following theorem, stating an upper bound of the tail
probability 1 − Fn(t) = P (s−1

n Sn > t), for large t.

Theorem 2.1. Let [Xni : 1 ≤ i ≤ n, n ≥ 1] be a triangular array of
random variables satisfying (1.1), (1.2) and (1.4). Then there exist a positive
constant λ = λ(L, γ) such that, for all t > λn1/2

1 − Fn(t) ≤ exp[−α∗n(snt/n)1/γ ], 0 < γ < 1 (2.1)

where α∗ = γ[(1 − γ)e/α](1−γ)/γ ; α = α(L, γ) > 0 is a constant such that
for each L > 0, α(L, γ) remains bounded for γ in a neighbourhood of zero.

Proof. Write,

P (s−1
n Sn > t) ≤

n
∏

i=1

βi exp(−hsnt), βi = E exp(hXni), h > 0; i = 1, · · · , n.

(2.2)
Then

(

n
∏

i=1

βi

)1/n

≤ n−1
n

∑

i=1

βi ≤
∞

∑

m=0

hm

m!

(

n−1
n

∑

i=1

E|Xni|
m

)

≤
∞

∑

m=0

hm

m!
eγm log mLm, under(1.4).

≤
∞

∑

m=0

(L∗h)me−(1−γ)m log m =
∞

∑

m=0

a(m),

(2.3)
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say; by Stirling’s approximation, where L∗ > L/e. Below we write L in place
L∗, without any confusion. For d ≥ α/e, we shall show that the above series
is dominated by

exp(dh1/(1−γ)) ≥
∞

∑

r=0

[

αh1/(1−γ)
]r

e−r log r =
∞

∑

r=0

b(r), (2.4)

say; for a sufficiently large choice of α, provided h 6−→ 0.
To this end, note that

b(r) =
[

αr−1h1/(1−γ)
]r

≥ (Lhmγ−1)m = a(m), 0 < γ < 1; (2.5)

if, the following three conditions hold.

αr−1h1/(1−γ) ≥ 1, (2.6)

r ≥ (1 − γ)m, (2.7)

(αr−1)(1−γ) ≥ L. (2.8)

(2.6)–(2.8) are satisfied by taking α to be large enough, since h 6−→ 0 and
taking

r = m∗, the smallest integer ≥ (1 − γ)m + γ. (2.9)

This particular choice of r will be made more clear later.

So, given a (large) integer m, there exists an integer m∗ such that the
mth term a(m) of the series in (2.3) is dominated by the m∗th term b(m∗)
of the series in (2.4). Observe that m − m∗ ' γm for large m.

Again, by a large choice of α, the (m + 1)th term of the series in (2.3) is
dominated by (m∗ + 1)th term of the series in (2.4), and so on. This is so,
because

a(m + 1)

a(m)
≤

b(m∗ + 1)

b(m∗)
(2.10)

if, to a first degree of approximation

h > [α−1(1 − γ)L(em)γ ](1−γ)/γ . (2.11)

Since h 6−→ 0, (2.11) can be ensured by selecting α large. Hence,

∞
∑

i=m

a(i) ≤
∞

∑

i=m∗

b(i) (2.12)
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Again,

m−1
∑

i=0

a(i) ≤ (m − 1)
[

1 ∨ (Lh)m−1
]

≤
[

αh1/(1−γ)/m∗
]m∗−1

, [≤ b(m∗ − 1)],

(2.13)
if,

[

(m − 1)1/(m−1){1 ∨ (Lh)}
]m−1

≤
[

α(1−γ)h(m∗)γ−1
](m∗−1)/(1−γ)

. (2.14)

Observe that m1/m ↓ 1 as m ↑ ∞. Therefore, (2.14) holds if

(m∗)(γ−1)α(1−γ)h > {1 ∨ (Lh)}(m − 1)1/(m−1), i.e., if

α >
[

{L ∨ hγ−1}(m − 1)1/(m−1)
]1/(1−γ)

m∗. (2.15)

And if, (m∗ − 1)/(1 − γ) ≥ (m − 1). i.e., if,

m∗ ≥ (1 − γ)m + γ. (2.16)

Select α large, so that (2.15) holds and note that (2.16) is fulfilled by the
choice of m∗ as in (2.9). Then, from (2.12) and (2.13), we get

∞
∑

i=0

a(i) ≤
∞

∑

i=0

b(i). (2.17)

Hence from (2.3), (2.4) and (2.17), one gets

(

n
∏

i=1

βi

)1/n

≤ exp
[

dh1/(1−γ)
]

. (2.18)

Therefore, from (2.2)

1 − Fn(t) ≤ exp
(

dnh1/(1−γ) − hsnt
)

. (2.19)

The minimum of the r.h.s. of (2.19) with respect to h is attained when

h = h0 = [snt(1 − γ)/(dn)](1−γ)/γ . (2.20)

This value of h is required to satisfy (2.11). In view of (1.2), this states

t > Le−1(em)γn/sn ≥ [LC−1e−1(em)γ ]n1/2. (2.21)
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The minimum value of r.h.s. of (2.19) gives

1 − Fn(t) ≤ exp
[

−α∗n(snt/n)1/γ
]

, (2.22)

where α∗ is defined in the theorem. Observe that the conditions (2.6) - (2.8),
(2.15), (2.21) are all well behaved for γ → 0. The resulting α satisfying
these conditions also remains bounded as γ → 0, for every fixed L > 0. This
completes the proof. 2

The upper bound of the tail probabilities 1 − Fn(t) computed above
decreases at a faster rate than the normal tail probability for γ → 0; as
seen from the following remark. The same cannot be said for |Fn(t)−Φ(t)|,
as Φ(−t) ∼ (2π)−1/2t−1e−t2/2, t → ∞; and for γ < 1/2, Φ(−t) becomes
dominant in the difference |Fn(t) − Φ(t)| = |1 − Fn(t) − Φ(−t)|.

Remark 2.1. From symmetry, a similar bound holds for the tail proba-
bility, Fn(−t), t > 0. Theorem 2.1 essentially applies to large values of t and
for such values the bound is sharper than existing bounds. It is known that
an upper bound of the type n−1/2 e−t2/2 holds for |Fn(t) − Φ(t)|; t lying in
a neighbourhood of the origin. In view of this, till now the aim has been to
approximate the tail probability 1 − Fn(t) by an upper bound of the type
e−t2/2, even for large t. See e.g. Pollard (1984), Appendix B. These bounds
are not sharp enough, as 1 − Fn(t) may even be zero for large values of t.
For large t, t > (ln1/2)1/(1−δ), l > 0, consider the bound (2.1) for small γ:

1 − Fn(t) ≤ exp[−α∗n(snt/n)1/γ ] ≤ exp[−α∗n(Cl)1/γtδ/γ ],

t > (ln1/2)1/(1−δ) >> n1/2

for 0 < δ < 1, as n−1/2sn ≥ C. Now,

α∗(Cl)1/γ = [γγ(1 − γ)Cle/α](1−γ)/γ → ∞, if l > α/(Ce), as γ → 0.

Hence,

1 − Fn(t) ≤ e−b∗(γ)ntδ/γ
, t > [n1/2α/(Ce)]1/(1−δ)(>> n1/2), 0 < δ < 1,

(2.23)
where b∗(γ) → ∞ as γ → 0. The bound in (2.23) decreases at a faster
rate than the normal tail probability, if γ < δ/2. Then r.h.s of (2.23) is
faster than exp(−|t|δ), δ > 2, thus it is sharper than available results of
polynomial decay of t corresponding to case I, or exponential decay of t
corresponding to case II; see e.g. Dasgupta (1988), Dasgupta (1989) and
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Ghosh and Dasgupta (1978). Hence we obtain a sharper bound of the type
exp(−|t|δ), δ > 2 under weaker assumptions (1.4) or (1.5), which do not
require boundedness of the random variables. Such exponential error bounds
are of interest with application to compute the V -C dimension of a class of
functions, e.g. see Chapter 2, Sections 2 and 4 of Pollard (1984).

Next, we show that the moment assumption (1.4) can be related to the
finite expectation of some exponential type function of the random variables
Xni.

Proposition 2.1. Condition (1.4) implies condition (1.5).

Proof. From (1.4), one can write

n−1
n

∑

i=1

P (|Xni| > t) ≤ t−mLmeγm log m, m > 1. (2.24)

We shall minimize the r.h.s. of (2.24) with respect to m to find an optimal
bound. Differentiating the logarithm of the right hand side of (2.24) with
respect to m and equating it to zero, we obtain the optimal value of m as
m = e−1(t L−1)1/γ . The corresponding optimal bound for (2.24) is

n−1
n

∑

i=1

P (|Xni| > t) ≤ exp(−γe−1L−1/γt1/γ). (2.25)

It may be mentioned that selecting an optimal value of m was also con-
sidered in Dasgupta (1979, page 177), Dasgupta (1988), Dasgupta (1989).

Now, observe that for a random variable Y ,

Eg(Y ) =

∫ ∞

0
g′(t)P (|Y | > t)dt, (2.26)

where g ≥ 0 is an even function; g(0) = 0. Therefore, (2.25) implies that,

n−1
n

∑

i=1

Eg(Xni) < K, g(x) = exp(s|x|1/γ) − 1, 0<s<γe−1L−1/γ , K >0,

(2.27)
that is,

sup
n≥1

n−1
n

∑

i=1

E exp(s|Xni|
1/γ) < ∞, (2.28)
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for some s > 0. Hence the proposition. 2

Remark 2.2. The reverse implication of proposition 2.1 is shown to
hold in Dasgupta (1988, page 449); (the first inequality of page 450 therein
should be read in the reverse direction), Thus, conditions (1.4) and (1.5) are
equivalent. Observe that when γ = 1, the moment generating functions of
the random variables exist, whereas γ can be taken arbitrarily near to zero,
when the variables are bounded.

As a general phenomena note that convergence rate of |Fn(t) − Φ(t)| =
|P (s−1

n Sn ∈ (t,∞))−P (T ∈ (t,∞))| to zero is faster for larger t. For example,
the error in approximating the probability of the event of hitting a ball in
a Hilbert space H by CLT is seen to decrease not only if the number of
summands in Sn increases but also if the distance between a bound of the
ball and zero in the space H increases, see e.g. Bogatyrev (2002). Next, let

c∗∗ = min0<r<∞ supn≥1 n−1
∑n

i=1[(2r/3)E|Xni|
3 exp(2r|Xni|)−1]r. A bound

of the type |Fn(t) − Φ(t)| ≤ bn−1/2 exp(−kt2) holds for t lying in a neigh-
bourhood of the origin; see, e.g. Theorem 2.5 and (2.23), (2.24) of Dasgupta
(1992). The following theorem provides a similar bound for all t.

Theorem 2.2. Let [Xni : 1 ≤ i ≤ n, n ≥ 1] be a triangular array of
independent random variables where variables in each array are independent
and satisfy (1.1), (1.2) and (1.4). There exist a constant b(> 0) and k ∈
(0, 1/2) depending on L, γ and c∗∗ such that for all real t, the following holds.

|Fn(t) − Φ(t)| ≤ bn−1/2 exp(−k|t|2∧1/γ).

Proof. The idea of the proof is as follows : It is possible to obtain an
upper bound for |Fn(t) − Φ(t)| of the type n−1/2e−t2/2 for t lying in a large
neighbourhood of origin. See e.g. Ghosh and Dasgupta (1978), Dasgupta
(1989). On the other hand, for t sufficiently large, one may use Theorem 2.1.
Now, Φ(−t) ≤ bt−1e−t2/2, t > 0. Write, |Fn(t)−Φ(t)| = |1− Fn(t)−Φ(−t)|
to obtain a bound.

Without loss of generality take t > 0. The case t < 0 is similar. Observe
that the moment generating functions of the random variables Xni exist, as
0 < γ < 1 and therefore the computations (2.20)–(2.21) of Dasgupta (1992)
hold in the range t ≤ f(p)n1/2 for some f(p) > 0.
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Following the steps (2.25)–(2.27) with g(x) = x2 exp(u|x|1/γ), one gets

sup
n≥1

n−1
n

∑

i=1

EX2
ni exp(u|Xni|

1/γ) < ∞, 0 < u < γe−1L1/γ . (2.29)

Therefore, calculation of
∑n

i=1 P (|Xni| > rsnt), in Dasgupta (1992, p.204),
can be rewritten in the present case as follows.

n
∑

i=1

P (|Xni| > rsn|t|) ≤ bt−2 exp(−u|rsnt|1/γ)

≤ bn−1/2 exp(−u1|t|
1/γ),

(2.30)

where b > 0 denotes a generic constant and u1 > 0 may be taken arbi-
trary large, as sn ≥ Cn1/2 under (1.2). Theorem 2.2 holds in the region
t < f(p)n1/2, in view of (2.30) above and the calculations (2.20)–(2.21) of
Dasgupta (1992).

Next, for t > λn1/2, where λ is large enough so as to apply Theorem 2.1,
one can write from the said theorem,

|Fn(t) − Φ(t)| ≤ |1 − Fn(t)| + Φ(−t)

≤ exp[−kt2] + Φ(−t), if 0 < γ < 1/2,

≤ exp[−kt1/γ ] + Φ(−t), if 1/2 < γ < 1.

(2.31)

Also, for t > 0,

Φ(−t) ≤ bt−1e−t2/2 ≤ bn−1/2 e−t2/2, for t > λn1/2. (2.32)

From (2.31) and (2.32), it follows that Theorem 2.2 holds for t > λn1/2.

Finally, for the region f(p)n1/2 < t ≤ λn1/2, one may adopt the same
procedure used to get (2.23) of Dasgupta (1992), (see also (2.4.77) of Das-
gupta, 1979) to obtain

|Fn(t) − Φ(t)| ≤ besnc∗∗t ≤ bn−1/2e−kt2 , as t = Oe(n
1/2) (2.33)

and c∗∗ < 0. This completes the proof. 2

One of the pleasant features of the nonuniform bounds is that, it produces
moment type convergences, tail probabilities of standardized sample sum and
Lp version of Berry-Esseen theorem as by products. Although very helpful,
the uniform rates of convergences of Fn(t) to Φ(t) or Edgeworth expansion
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of Fn (see e.g. Bhattacharya and Rao, 1986) fail to provide such results.
The following results are immediate from Theorem 2.2; see also Theorem
2.5 and Corollary 2.1 of Dasgupta (1992).

Theorem 2.3. Let the assumptions of Theorem 2.2 be satisfied. Let
g : (−∞,∞) → [0,∞) be an even function, g(0) = 0 and Eg(T ) < ∞, where
T is a normal deviate. Suppose, g′(x) = O[exp(k|x|2∧1/γ)(1 + |x|)−q], q > 1.
Then,

|Eg(s−1
n Sn) − E g(T )| = O(n−1/2).

Corollary 2.1. Under the assumption of Theorem 2.2,

‖ exp(k|t|2∧1/γ)(1 + |x|)−q(Fn(t) − Φ(t))‖q = O(n−1/2), for any q > 1.

3 Some Examples

Next we provide a few examples of random variables satisfying the as-
sumptions of Theorem 2.2. Observe that (1.4) is equivalent to (2.25) and
(2.28). The condition (2.25) essentially states the tail behaviour of the distri-
bution of the random variables, whereas (2.28) ensures finite expectation of
some exponential type functions of the variables. We will check the condition
(2.28) for some s > 0.

Example 1. Let P (X = i) = A−1e−β|i|α , i ∈ Z = {0,±1,±2,±3 · · · }
where A =

∑∞
i=−∞ e−β|i|α < ∞; α > 1, β > 0. Let Xni be iid random

variables distributed as X. Condition (2.28) is satisfied for γ > 1/α.

Example 2. Extreme value distribution of second and third types.

Consider a random variable X with distribution function:

G2,α(x) =

{

1 for x ≥ 0,

exp(−(−x)α), for x < 0,

and let Xni be iid copies of X. Then (2.28) is satisfied for γ > 1/α.

For G3,α(x) = exp(−e−x), −∞ < x < ∞; a similar conclusion holds;
(2.28) is true for any γ, 0 < γ < 1. This provides an example where γ may
be taken arbitrary near to zero, although the variables are not bounded.

Mean of the above distributions are nonzero. So one should really check
(2.28) with |Xni| replaced by |Xni − µ|. However, this does not create any
problem since |Xni − µ|1/γ ≤ 2(1−γ)/γ

(

|Xni|
1/γ + |µ|1/γ

)

, γ ∈ (0, 1).
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The above distributions explain the limiting behaviour of sample ex-
tremes. Average of several such extremes has a much faster rate of conver-
gence to normality according to the results of Section 2.

Example 3. Let X be a random variable with probability density f(x) =
A exp(−β|x|α), −∞ < x < ∞, where A−1 = 2

∫ ∞
0 exp(−βxα)dx, β >

0, α > 1. Let Xni be iid copies of X. Then (2.28) is satisfied for γ > 1/α.

Example 4. Let Xni be a symmetric random variable taking values
±αni, each with probability 1/2. Then, one may select any sequence of
positive reals {αni}, such that supn≥1 n−1

∑n
i=1 exp(s(αni)

1/γ) < ∞, e.g.,
take

αni =

{

α(log i)γ , if 1 ≤ i < kn,

α, if kn ≤ i ≤ n,
(3.1)

where α > 1, kn = [nε], the integer part of nε, 0 < ε < 1. Then,

∑

1≤i<kn

exp(s(αni)
1/γ) =

∑

1≤i<kn

iβ, where β = sα1/γ

≤

∫ kn

0
xβdx = (β + 1)−1kβ+1

n ≤ (β + 1)−1nε(β+1).

(3.2)
Therefore,

sup
n≥1

n−1
n

∑

i=1

exp
(

s(αni)
1/γ

)

≤ sup
n≥1

n−1{(β + 1)−1nε(β+1) + (n − [nε] + 1)α} < ∞,

provided, ε ≤ (β + 1)−1 = (sα1/γ + 1)−1.

(3.3)

The calculated bounds of |Fn(t) − Φ(t)| and 1 − Fn(t) decrease fast with
small choice of γ and that requires ε to be small for small γ.

Example 5. Linear combination of variables satisfying the assumptions
of Theorem 2.1. Let [(Xni, Yni) : 1 ≤ i ≤ n, n ≥ 1] be two triangular arrays
of independent random variables satisfying condition (1.4) with L = L1 and
L = L2, for X and Y arrays respectively; γ ∈ (0, 1), being same for both
arrays. Also let (1.2) and (1.3) hold for X, Y variables. Then, for the random
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variables Zni = α1Xni + α2Yni, where α1 and α2 are any fixed real numbers

1
n

n
∑

i=1

E|Zni|
m ≤ 2m−1[|α1|

m 1
n

n
∑

i=1

E|Xni|
m+|α2|

m 1

n

n
∑

i=1

E|Yni|
m],

≤ 2m[|α1L1|
m + |α2L2|

m]eγm log m, from (1.4)

≤ Lmeγm log m, for some L > 0.
(3.4)

So, the assumption (1.4) is fulfilled for Zni = α1Xni + α2Yni. Further,
EZni = 0, as EXni = EYni = 0. Also,

Var

(

n
∑

i=1

Zni

)

=
n

∑

i=1

EZ2
ni = α2

1

n
∑

i=1

EX2
ni + α2

2

n
∑

i=1

EY 2
ni > C1n,

for some C1 > 0, as (1.2) holds for the variables X and Y , when X array
is independent of Y array. Therefore (1.2) holds for Zni and the theorems
remain valid. The independence of Xni and Yni are used only to check the
assumption (1.2). By directly checking the condition (1.2), one may relax
the assumption of independence of (Xni, Yni).

4 Rates of Convergence for Nonlinear Statistics

Consider a nonlinear statistics Tn of the form:

Tn = s−1
n Sn + Rn, (4.1)

where, Sn = Σn
i=1Xni, s

2
n = Σn

i=1EX2
ni, infn≥1 n−1 s2

n > 0. Here, Xn1, Xn2,
. . . , Xnn are independent random variables with zero expectation and Rn

is a negligible remainder. A representation of this type is fairly general
and is obtainable, e.g., via Hájek’s projection lemma. Nonuniform central
limit bound for Tn are obtained under different moment assumptions on the
remainder in Ghosh and Dasgupta (1978), Dasgupta (1989) and Dasgupta
(1992), with applications to probabilities of deviations, moment convergences
and allied results. Here we deal with the situation when the variables Xni

satisfy (1.4). Assume that, for some β ≥ 0,

E|Rn|
m ≤ c(m)n−m/2(log n)βm, m > 1, (4.2)

where, c(m) ≤ Lm
1 e(γ+δ) m log m, for some δ ≥ 0 and L1 > 0.



634 Ratan Dasgupta

In Section 5, we shall show that these conditions are fulfilled in particular
case of linear process. The bound (4.2) implies that, for (γ + δ) > 0

P (|Rn| > an(t)) ≤ exp
[

−(γ + δ)e−1{n1/2(log n)−βL−1
1 an(t)}1/(γ+δ)

]

,

(4.3)
see (2.24) and (2.25). Take an(t) = εn−1/2(log n)β+γ+δ|t|, ε > 0. Then (4.3)
states, for some ε∗ > 0,

P (|Rn| > an(t)) ≤ e−ε∗|t|1/(γ+δ) log n ≤ bn−1/2 exp
[

−k1|t|
1/(γ+δ)

]

, (4.4)

where k1 may be taken large enough for |t| > to, say.

Due to representation (4.1), one may write

|P (Tn ≤ t) − Φ(t)| ≤ |P (s−1
n Sn ≤ t ± an(t)) − Φ(t ± an(t))|

+|Φ(t ± an(t)) − Φ(t)| + P (|Rn| > an(t)).
(4.5)

The first term in the r.h.s. of (4.5) may be approximated from Theorem
2.2, the second term is less than ban(t)e−t2/2 ≤ bn−1/2(log n)β+γ+δ|t|e−t2/2

and the third term is estimated in (4.4). Combining these, one may ob-
tain a bound like (4.6) below, for |t| > to (see also (4.5)–(4.7) of Das-
gupta (1992), for similar calculations). Also, observe that an uniform bound
O

(

n−1/2(log n)β+γ+δ
)

is available for ||P (Tn ≤ t) − Φ(t)||, letting an(t) =

n−1/2(log n)β+γ+δ and using the relation

||F (X + Y ) − Φ|| ≤ ||F (X) − Φ|| + (2π)−1/2an + P (|Y | > an).

Thus (4.6) holds for |t| ≤ to. Therefore, one may obtain the following theorem
for Tn, providing a nonuniform bound for all t.

Theorem 4.1. Under the assumptions of Theorem 2.2 and (4.2), there
exist constants b(> 0), and k ∈ (0, 1/2) such that the following holds for the
nonlinear statistics Tn defined in (3.1),

|P (Tn ≤ t) − Φ(t)| ≤ b n−1/2(log n)β+γ+δ exp
(

−k|t|2∧1/(γ+δ)
)

. (4.6)

In view of (4.6), results similar to Theorem 2.3 and Corollary 2.1 hold for
Tn where γ is replaced by (γ + δ).
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5 Rates of Convergence for Linear Process

Consider Xn = Σ∞
i=1aiξn−i+1 or, Xn = Σ∞

i=1aiξn+i−1 where ai is a se-
quence of constants with Σ∞

i=1a
2
i < ∞ and ξis are pure white noise. Without

loss of generality, let E ξ = 0 and E ξ2 = 1. Write,

Sn = Σn
i=1Xi = Σn

i=1Xii + Σn
i=1(Xi − Xii); Xm,n = Σm

i=1ai ξn−i+1. (5.1)

In the above expression of Sn, the first part is the leading term and the second
part may be treated as remainder. Assume that, for some γ, 0 < γ < ∞ ;

E|ξ1|
m ≤ Lmeγm log m,∀ m ≥ 1. (5.2)

By Minkowski’s inequality we get,

E|Σn
i=1(Xi − Xii)|

m ≤ (Σ∞
i=1 i|ai|)

m E|ξ1|
m ≤ Lm

1 eγm log m, (5.3)

where L1 = L Σ∞
i=1i|ai|. Then, following the steps of Dasgupta (1992), Sec-

tion 4; see also Babu and Singh (1978), one may write

Yn := [V (Sn)]−1/2 Sn = [V (Sn)]−1/2 Σn
i=1 Xii + Rn, (5.4)

where Rn = [V (Sn)]−1/2 Σn
i=1 (Xi −Xii) satisfies (4.2) with β = 0, δ = 0.

Thus, Theorem 4.1 holds for the linear process Xn. We restate below the
theorem in this special case. See also (4.6) of Dasgupta (1992).

Theorem 5.1. Let Σ∞
i=1 i|ai| < ∞ and Σ∞

i=1 ai 6= 0 for a linear process
Xn. Let E ξ = 0, Eξ2 = 1 and (5.2) holds. Then there exist constants
b(> 0), and k ∈ (0, 1/2) such that for the standardized sum Yn defined in
(5.4) of the linear process Xn, one has

|P (Yn ≤ t) − Φ(t)| ≤ b n−1/2(log n)γ exp
(

−k|t|2∧1/γ
)

.

Acknowledgements. The author thanks the editor and co-editor whose
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