Optimal Response-Adaptive Designs for Continuous Responses
in Phase III Trials

Atanu Biswas-', Rahul Bhattacharya’, and Lanju Zhang’

U Applied Statistics Unit, Indian Statistical Institute, 203 BT, Road, Kolkata 700108, India
* Department of Statistics, Asutosh College, 92 5. P. Mukherjee Road, Kolkata 700026, India
¥ Department of Biostatistics, Medlmmune Inc., One Medimmune Way, Gaithersburg, MD, 20878, USA

Received 18 October 2006, revised 24 January 2007, accepted 5 April 2007

Summary

Optimal response-adaptive designs in phase I clinical tial set up are gaining more interest. Most of
the available designs are not based on any optimal consideration. An optimal design for binary re-
sponses is given by Rosenberger et al. (20001} and one for continuous responses is provided by Biswas
and Mandal (2004). Recently, Zhang and Rosenberger (2006) proposed another design for normal re-
sponses. This paper illustrates that the Zhang and Rosenberger (2006) design is not suitable for nor-
mally distributed responses, in general. The approach cannot be extended for other continuous response
cases, such as exponential or gamma. In this paper, we first describe when the optimal design of Zhang
and Rosenberger (2006) fails. We then suggest the appropriate adjustments for designs in different
continuous distributions. A unified framework to find optimal response-adaptive designs for two com-
peting treatments is proposed. The proposed methods are illustrated using some real data.

Key words: Constraints; Ethical allocation; Minimization; Truncated normal distribution;
Two parameter exponential family.

1 Introduction

Response-adaptive randomized designs are used in phase 11T clinical tnals o achieve some ethical
zain by allocating a larger number of patients 1o the better weatment. The idea is o skew the alloca-
tion in favor of the betier treatment by using the available information, for sequentially entering
patients. Several response-adaptive designs are available for this purpose, most of which were intro-
duced from intuitive considerations. The play-the-winner (PW) rule (Zelen, 196Y9), the mandomized
play-the-winner {RPW) rule (Wei and Durham, 1978), the generalized Polya urn (GPU) design { Wei,
1979y, and the drop-the-loser (DL) rule (Ivanova, 2003) are for binary treatment responses. The de-
signs for continuous responses are the linear rank test statistic based design {Rosenberger, 1996), link
function based design {Bandyopadhyay and Biswas, 2001}, Wilcoxon score based design (Bandyopad-
hyay and Biswas, 2004), and wtlity based design (Atkinson and Biswas, 2005), among others. Real
life applications of response-adaptive designs are due w0 Bartlett et al. (1983), Rout etal. (1993),
Tamura et al. (1994), Biswas and Dewanji (2004), among others.

Optimal response-adaptve designs drew much attention recently. Rosenberger et al. (2001) extended
the approach of Hayre (1979) and introduced the optimal design for binary responses. Biswas and
Mandal (2004) provided a response-adaptive design for continuous responses. Specially, they studied
normally distributed responses and exponentially distributed responses. The design of Atkinson and



Biswas (2003) was obtained by maximizing some utility function. Recently, Zhang and Rosenberger
(2006), as an aliemative to the approach of Biswas and Mandal (2004), proposed an optimal design
for nomally distributed responses. 1L is important to note that the design of Zhang and Rosenberger
(2006) provides an allocation rule which takes square root of the estimates of normal mean, which
can be negative. Consequently, this design fails, in general.

In this paper, we propose appropriate modifications to make the design of Zhang and Rosenberger
(2006) applicable in a geperal situation in Section 3. In Secton 4, we provide suitable adjustments o
apply the Zhang and Rosenberger (2006) rule for positive-valued random vadables like the exponen-
tial or gamma. Optimal response-adaptive designs for general two-parameter exponential families, in a
general sitwation, are discussed in Section 5. The designs are illustrated wsing some real data in Sec-
tion 6. Section 7 concludes.

2 Designs Proposed in the Literature

Zhang and Rosenberger (20006) discussed some of existing response-adaplive designs, namely the doubly
adaptive biased coin design of Hu and Zhang (2004), the fink function based design of Bandyopad-
hyay and Biswas (2001}, and the optimal design of Biswas and Mandal (2004). In addition, Zhang
and Rosenberger (2006) proposed a new optimal design as follows. Let ny and ng be the target sam-
ple sizes 1o the two treatments, iy + ng = n. Zhang and Rosenberger (2006) assumed X, ~ N{u__‘,ﬂi:l
and Xy ~ N(l,, 03 ). where X, and Xj are the responses of patients assigned to two treatments A and
B, and a smaller response is more desirable. Consequently a smaller value of the total expected
responses from all the subjects is desirable. Hence they considered the following optimization prob-
lem:
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for some constant K. This restriction on —* 4+ will preserve a specified level of power for the test
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of treatment equivalence. Solution of (1) yields p, the targeted allocation proportion 1o A, as
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In contrast, Biswas and Mandal (2004) considered the following optimization problem
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subject o (2), where ¢ is some threshold constant. Thus Biswas and Mandal (2004) considered mini-
mization of the wtal number of responses larger than a threshold o, Since a smaller response is desir-
able, a sufficiently large response indicates adverse effiect of the treatment, which is treated as a failure.
The threshold ¢ is a boundary between treatment effectiveness and treatment failure. The minimization
of (4) can be interpreted as minimization of the total expected failures. The solution of (4) is
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In practice, the design is implemented by estimating the parameters using the available data up to
the first § patients, and plug them in the expression of p o find the allocation probability to teatment
A for the (i + 1)th patient.

It is important to note that for nomally distributed responses, p, and [, can take any value in the
real line, positive or negative. If, at any stage, the estimate of @, or @, becomes negative, the design
of Zhang and Rosenberger (2006) fails. For the numerical computations, they considered large positive
values of p, and p, and small values of oy and gg. Consequently, the design worked. But, in reality,
in many cases, |, and [g. or their estimates can be negative. Consider the tral of fluoxetine hydro-
chloride reported by Tamura et al. (1994). The responses were the changes in HAMD,5 (or negative of
this change) after the treatment, which are measured on a 53-point scale. The change can be approxi-
mated as a continuous variable (see Atkinson and Biswas, 2005). In reality, the changes can be posi-
tive or negative. Quile naturally, at some stage, the estimate of @, or |, that is the observed mean of
changes, can be negative, and the design (3) would fail in such a sitwation. Thus, the design proposed
by Zhang and Rosenberger (2006) is not suitable in reality, in general, specially for normally distribu-
ted responses.

We conducted a simulation study using 5,000 simulations for n = 80 patients with different values
of (|, Wy, 04, 0g). We obtained the percentage of cases where the ZR rule will crash (due o negative
estimate of p, andfor pg for at least once among the 80 allocations). Figure 1 gives the percentages
against the teatment difference, py — (. It is quite clear that there is considerable probability of such
negative estimate unless both py, /oy and g /og are large positive. For a fixed value of . the value
of g strats from this value and increases gradually to exibit higher treatment difference. Quite natu-

b= 1, sigman - 1, sgmab-1
1 -2, sigmad - 1, sgmall-1
Bk, sman - 1, sgmab-1
-2 sigmaf -3, sgmaB-1
muli= 1, sigmad - 1, sgmall-3
s =2, sigmad -1, agmab-3
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-
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Figure 1 Probability of crashing ZR rule against
treatment difference pg — 1, for nommal responses
for different combinations of (|, 04, Og).
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rally, the percentage increases when |,. g are small. When p, and g are close o zero (say
Wy — 204 Or W — 20g 15 negative ), this percentage 15 alarming. This indicates that the ZR rule is not
applicable. in general, in reality. Also, the limiting proportion given by (3) does not exist when
and/or |, 15 negative.

The above drawback of the ZR rule can be controlled if a large positive constant o is added to all
the responses, as the allocation probability will be the estimate of

0y V“'Ii g +d
Ouv/llg +d +0gy/1, +d

where the terms under squared-root can be made positive for large value of 4. But the allocation
probability will largely depend on the choice of 4. Thus, although we can get rid of estimated nega-
tive mean responses, this will induce funher arbitrariness in the procedure. Also, for large value of d,
the allocation becomes the Neyman allocation, which is not an ethical allocation.

The ZR design may be applicable in some other sitwations, where Xy and Xy are known o be
positive valued andom variables, e.g., for Xy ~ exponential (),) and Xg ~ expenential (). The ob-
jective function (1) is sensible, where X ~ exponential (1) means E(X) = 1. Here the constraint (2)
will be replaced by

2 2
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See Biswas and Mandal (2004, Section2) for a similar siwation for exponential responses. If, for
example, X follows the gamma distribution with density

: 1 ;
fix) = i eXp (—x/1y) H o xso0,

the objective function is
[t s + Pylghs
and the constraint will be
Bt Botd _ . @
ny ng
The solution 15 given by (7), the same as exponential.

In the following Sections we will develop appropriate designs for general nomally distributed re-
sponses and a unified approach for distributions in the exponential family.

3 Design Based on Truncated Normal Distribution

For normal responses, the BM rule works well. To apply the Zhang and Rosenberger (2006) approach
for normal responses when one or two of p, and pg are close to ), we need o ensure that the
estimates of 's are always positive. Here we assume that X ~ N(w, o7 ), k = A, B, where p = 0.
Thus, f, =X, if X, =0, and i, =0 if X; <0,

Alternatively, one may assume that the mesponses would be always positive. Thus, one needs
consider X; ~ TNg- (W, 07 ), k = A, B, which is a truncated normal distribution, where the N{p;,o?)
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density is tuncated in BT, the positive part of the real line. Letting ¢ and @ be the density and
distribution function of standard normal, we have
P/ on)

G S i — o L, el
Wi = Eg(Xe) = 1y + ®(p, /o) g,

and

oo S (/o0 (/o) dln/on)
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both of which are functions of 1, and 0. See Johnson and Kotz (1970, pp. 81 -83). The problem (1)
and (2) and the solution (3) should be the same except that g and op are replaced by !.1: and of. In
some applications, where the responses will be always positive by nature, this type of truncation may
be the method to work. In case of large p, and p, and small 04 and og (as in the simulation study of
Zhang and Rosenberger (2006)), this truncation will nol matter much from the computational point of
view, but the background theory will be correct. Depending on the situation, one can think of truncat-
ing in some interval [, b C BT, See an example in Section 6.

Figure 2 gives the limiting allocation proportion to the better treatment against treatment difference
A =g — W, where o, =1, ag = 1, for the three rles: (1) ZR: Zhang and Rosenberger rule, (ii) BM:
Biswas and Mandal rule, and (iii) TN: Truncated normal rule. For BM mile, ¢ = (p, + Wg)/2 is taken.
The limiting allocation proportion of the BM rule is always much higher. However, this is true for a ¢
which is close 10 the median of the responses, and not true for any choice of ¢ If ¢ is in the @il of
both the response distributions, which is a very poor choice of ¢, the BM rle will fail o allocate
ethically. The allocation will be close to the Neyman allocation in this case. Our computations show
inot given in this paper for the sake of brevity) that for a choice of ¢ near 1o the inferior treatment
mean, the BM rule assigns fewer number of subjects 1o the better treatment, which is even less than
the comresponding number for the ZR rule.

From the Figure 2 we further observe that the ZR rle and the TN rule are almost equivalent up to
a treatment difference of 3. 1t is interesting 1o note that the allocation proportion (o the better treat-
ment decreases in A after A = 4.5, This is due to the fact that o is a complicated function of .
and 03  becomes much larger than oy for large A. This factor dominates the allocation after
A = 4.5, Thus, we observe that the limiting allocation in the ZR rule is quite different from TN rule
for large treatment difference.
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Figure 2 Limiting allocalion propor-
tion to treatment A for o, = 1, oy = L.
ZR: Zhang and Rosenberger, BM: Bis-
was and Mandal, TN: Truncated nommal.
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In contrast, the design (5) will work well for any kind of responses, exponential or normal. In fact,
the objective function in (4) has the interpretation that it is the expected number of responses greater
than the threshold o,

4 Design for Positive Valued Random Variables

The optimal design of ZR provides the allocation proportion (7) for exponential or gamma distribu-
tions. Although apparently this is aldght (no possibility of negative estimates in the process), it has
serous drawback. Since we are consistently assuming a smaller value indicates a better response,
Wy < Wg should provide p = 0.5, Also, p should be an increasing function of A = pg/p,. But, the
expression provides a completely opposite pattern of allocation, a larger p, provides a smaller alloca-
tion proportion to A. The reason is that for exponential (|, ), the variance is |3, while the expectation
is . Hence, AU, 0g is dominated by /TG, which is the square-root of the expectation of the re-
sponses by teatment 8. Thus, the vanances dominate the allocation procedure, and the nature of the
distribution make the allocation completely wnethical. A similar scenario arises for gamma distribu-
tions. Thus, the optimization problem (1) subject to (6) is not even suitable for exponential or gamma
responses. We need woset this optimal rule in some other way.

To achieve this, o pul more weight on the mean (than the vanance), we set the opumal rule as o
minize

|.1_‘_:n_.1, “+ Ii}:-"h' i 9

subject o (6), where o is a design parameter which is 1o be determined by satisfying some (ethical)
requirement. The solution of (9) subject 1o (6) reduces o
af2—1
Hy -
p= afl-] afi-1" {1(]‘)
Ha + Uy
A choice of =1 in (10) gives the ZR rle. For ethical allocation, we need o > 2. One may fix the
value of o, for example, by fizing the allocation proportion to p, = 0.5 at a treatment difference
8 = U/, = 0g = L In that case,

For gamma responses, the design minimizes

(Batta)® na + (Buhtg) ng (11)
subject to (8). The solution for = vy in (11) is
)

H[u— 1 _|.-'2Ii[u—_3_|._
A H

= [a—1),2 [u—2)02 [a—1)/2 [a-2)/2 ° {12)
P PR -

Here o can be detenmined by seting an allocation proportion pg, at ﬁﬂl-‘-rr."fm_.gli_.g:'=ﬁ| and
Patti/ (Bani) = b2, that is

2 E log 62 + log (lf—”m)]

- log &
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Figure 3 Limiting allocation propor-
tion to treatment A for exponential and
gamma  distributions  using  different
rules.

Figure 3 provides the limiting allocation proportions for the exponental and gamma distributions
(fy =Py =1 in the gamma case provides the exponential) against & = g /1,. In paticular, we con-
sider (i) ZR: Zhang-Rosenberger-type rule of (7), (ii) Exponential: optimal design of the exponential
model provided by (10), here a0 = 2 (% -+ 1) is chosen by setting py = 0.73 at pg /1, = 8y = 2, (iii)
Gamma: optimal design of the gamma model provided by (12), here oo = 2{log 2 +0.5log 1.2 +log 3}/
(log 2 + log 1.2) is chosen by setting p, = 0.75 at pg/p, =2 and fg /P, = 1.2, and (iv) same as (iii)
for B, /Pg = 1.2. Here o = 2({log2 — 0.5 log 1.2 4 log 3)/(log 2 — log 1.2). From Fgure 3, we observe
that the allocation proportion o A for the ZR rule decreases as 6 increases, for both the exponential
and gamma models (allocation proportions are same for ZR rule), and it is unethical. The optimal mle
for the exponential distribution has limiting allocation 0.5 at & = 1, and it increases steadily with 6.
For gamma distribution the allocation proportion at & = 1 may be greater than or less than 0.5 depend-
ing on the value of Pg /P, U Bg/Py = 1, the allocation proportion at & = 1 is greater than 0.5, and it
is less than 0.5 at & =1 when Pg/py < 1. But, in any case, unlike the ZR-type rule, the allocation
proportion increases with the increase of 8. Less than 5306 allocation to A for a & slighly greater than
1, is due to the fact that the allocation at this stage is more driven by the variances.

Here we discuss the possible choice of o from another consideration. In any clinical trial, there is
an upper bound of the allowable sample size due o funding and time constraint. We examine the
possible size of the trial for different values of a. The approximate sample size o detect a departure
A from the null with power 1 — [ for a size & test is

; 2
(00T, + 01 1)
n=—_—>"

A2
where t]f Jn is the asymptotic variance of the estimated treatment difference under H, i = 0.1, Hy and
H, be the null and altemative hypotheses. For numerical illustration, we determine the approximate
sample size required in each procedure to maintain 80% power to detect a given shift A = 04, 0.6,
0.8 when p, = 1.0. We always consider a test with size 0.05. Figure 5 gives the plot for proposed
procedure (P), ZR rule (which is same as that for the equal allocation (E) rule). We observe that the
size of the tnal is lower in the proposed procedure whenever o < 2, is equal for a = 2, and is higher
otherwise. However, this amount of additional samples required for o =2 is almost negligible (an
excess of 1-2% than in the equal allocation case). Bul for such a sample size the ethical gain for the
proposed procedure 15 maximum. Thus any given o exceeding 2 can be a sensible chowee.
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5 General Optimal Allocation Rule

As a general approach, one may choose o minimize

naW(y,) + nsWiiy), (13)
subject to (2), where W(-) is a function such that Wix) is increasing in x, and ¥ : | — S(RT), S(RT)
being a subset of B,

Note that, the minimization problem (13} subject to (2) is guite similar to the formulation of Jennison
and Tumbull (2000, p. 328), where the formulation was for continuous treatment responses, and W,
and Wy were functions of treatment differences. In panticular, Jennison an Turnbull (2000 considered
minimizing the loss function of the form
Ln) = u(n)ns +v(n) ng,

where 1= [, — Wy, and win) and vin) are swictly positive with v(1)) increasing in 1 for 1 > 0 and
w1 increasing as 1) decreases for 1) < (), when a high response is desirable. But, we present this as a
function of individual reatment parameters, which is easy o interpret.

Now, based on this W, the optimal allocation is
Y, R
O/ P pg) + o Wi,

One may wish to choose an appropriste W, This can be done in several ways. One may wish w
achieve a specified allocation proportion py > 0.5 for a treatment difference A= pg—p, = 6 = 0 If
we consider Wix) = exp (dr), then from (14) we immediately get

B 2 [
=58 (o)

For other forms of W, eg., Wix) = ®(dy) or Wix) = Wix —d), one may choose 4 by fixing
p=py =05a (A=28u, =W, As an example, in Figure 4, we plot the limiting allocation propor-

(14)

(LR
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AROCERN Propoimios
-

B50

T T T T
00 05 10 15

Traatmrent Diffaranc e
Figure 4 Limiting allocation proportion to
treatment A for 0, = 1, 05 = 1. E: W(x) =
exp (de), L: Wix) = ®(dx). Here p, = (.55
at & = (.2,
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Figure 5 Size of the trial against o for the propose (P), ZR (or equal (E)) allocation rules. The three
figures are for A = 0.4, 0.6, 0.8 respectively.

tion for the two cases: (1) W{x) = exp (dx), and (ii) W(x) = d(dx), where p, =0.55 at & = 0.2 and
n4 = (. The performance of W{x) = exp (dx) is much better than the other.
We consider a general two-parameter exponential family where X has the density

- Xy — bl ) - -
Flag) = exp {— + clxg, ) (15)
aldy) '

for some specific functions al-), b(-) and of-). For details about such a family of distributions, see, for
example, Lindsey (1997) and McCullagh and Nelder (1989). The variance of the usual estimator of
B () B(g)

2= alda) +— = aldp).

Ha Hg

Therefore, finding the optimal allocation proportion is equivalent to minimize (13) subject to the
restriction Var (A)] = K. Solution to this problem yields the optimal ratio

N

where T = a(d, ) b(u,). A convex linear combination of overall number of failures and total expected
number of allocations to the inferior treatment can be used as the objective function. The weights in
the convex combination should be determined keeping some crterion (say cost) in mind.

For asympiotic variance, we consider the most general form (16). Now suppose, after possible
reparameterization, p = p(0). where 0 is a vector of the first two or all of {p,. Wy, 04, 05 b dependent
on which specific distribution in the exponential family. Let 8 s a consistent estimator of 0 with
covanance matrix . We use the allocation function g(x, y), defined on [0,1] x [0, 1], recommended in
the Hu and Zhang (2004) in the DBCD procedure

the risk difference A = B'{1,) — B (1y) can be expressed as Var (A) =

(16)

g(0,y) =1,
gll,v] =0,
¥y Y
¥l
gix,v) = (r) O<x<1,

' I—py Y’
()

x l —x
where Vp(0) is the gradient of p. Here x is the current value of allocation proportion, and v is the
targel allocation proportion. See Hu and Zhang (2004) for details. Then we can obtain the asymplotic
vadance of the procedure as

p(1 —p) +2(1 +¥)(Vp(0) ZVp(0))
1+ 2% '
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6 Illustration with Real Trial

To illustrate the need of the adaptive procedures, we consider the real clinical tnal conducted by
Dworkin et al. (2003). This data set was also used by Zhang and Rosenberger (2006) for illustration.
It was a randomized, placebo-controlled trial with an objective 1o evaluae the efficacy and safety of
pregabalin in the weatment of postherpetic newralgia (PHN). There were n= 173 patients of which
84 received the standard therapy placebo and 89 were randomized o pregabalin. The primary efficacy
measure was the mean of the last 7 daily pain ratings, as maintained by patients in a daily diary using
the 11 point numencal pain rating scale (0 = no pain, 10 = worst possible pain) and, therefore, a
lower score (response) indicates a favorable sitnation. After the 8 week duration of the thal, it was
observed that pregabalin-treated patients experienced a higher decrease in pain score than patients
treated with placebo. We use the final mean scores, ie. 3.60 (with 5D = 225) for pregabalin and
529 {with 8D = 2.20) for placebo as the true ones for our purpose with an appropriate assumption
regarding the distribution for pain scores.

The results in the following were obtained by simulations with 10,000 repetiions of a response
adaptive tral for n = 173 patients with N{(3.60,2.25) distribution for pregabalin and N(5.29,2.207)
distribution for placebo. Allocation probabilities are updated according w the rule considered.

The BM procedure has an expected allocation probability o A of 0.3985 (5D = 0.0901). If we
carry oul the ZR procedure, the probability of gelting negative response at at least once is 0.0154. On
the other hand, if we carry out the TN mle (where we assume that the responses are truncated only in
the domain [0, 10], the expected allocation is 0.550 (SD = 0.0882). Thus, the BM procedure is best
as far as the allocation proporion is concerned. There is a small, bul sizable probability of difficulty
in implementation of the ZR rle in this data set at least once. One remedy may be 1o use p = 1/2 in
case of a negative estimate of p, and pg.

It is clear that the BM rule has a slightly larger variance. This is also clear from our detailed
simulation study, which is not reported for the sake of brevity. This varability should also be taken
into account for a fair and legiimate comparson. This slightly higher variability is true in real trials,
but the difference in variability with other designs is not so alamming, specially when almost all the
adaptive trials are subject to high variability.

For the balanced random allocation, both the allocation proportion and failure proportion are 0.50
(with standard error 0.04 for both the cases). As one referee has suggested, we camied out a compar-
ison of the BM procedure with the modified BM (MBM) procedure where the initial 15% patients are
randomly assigned to either treatment followed by a BM procedure for the remaining 853% patients.
We camied out a numerical study with n = 80, and the mital 15% (12 in number) are randomly
allocated for the MBM procedure. A simulation study of 3000 repetitions yields the comparisons in
Tables 1-3. It is clear that the BM procedure works better {(worse) than the MBM procedure in tenms
of allocation proportion, failure proportion and power when oy is larger (smaller) than oy, The perfor-
mances of these two designs are almost similar when 0, = 0.

7 Conclusions

The mam contnbution of the present paper 15 W provide a general optimal design through the generml
objective function (13), which embraces almost all the existing designs and also provides a greater
scope of generating a variety of new designs. This is further generalized to a broad family of distribu-
tons (15).

The development of this paper was motivated by the limitation of the ZR mle in case of negative
responses. Optimal response-adaptive designs depend on the underlying distribution of responses. 1f
there 15 reason o believe that the mesponses are nomal or any other distribution which can take
negative values, the ZR (2006) cannot be used in a straightforward way. Either one needs 1o consider
some kind of modification in the objective function like the BM rule, or one needs 1o assume a
truncated distribution, which 1s truncated in the approprniate positive domain.
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Table 1 Allocation proportions o treatment A and standard errors (in parentheses) when p, = 1.

Hg
1.0 12 L4 1.6 1.8 20
Design (o =1, as=1)
MBM 0.500 0.526 0554 0.5381 0.605 0.627
i0.141) ((L137) (0.133) (0.131) (0.126) (0.123)
EM 0.500 0527 01.552 0576 (.604 (.623
i0.134) {0.131) i0.136) (0.134) (0.134) ((.128)
{"J.-t =12, Og = 1:'
MBM 0.644 0.656 (.669 0.680 (L6589 0.699
(0.072) (0.071) {0,069 (0.071) (0.066) (0.067)
BM 0.671 (.685 0.700 0.714 0.729 0.742
(0.124) {0.118) (L1117 (0.118) (0.116) (0.111)
{GA =1, 08= 2:'
MBM 0.357 0369 0.383 0.398 0.413 0.432
(0.072) (0.072) (0.073) (0.074) {0.075) (0.067)
BM (0.331 0.347 0.371 (.390 (.412 (.435
i0.125) {0.127) (0.125) (0.124) (0.124) (0.125)
Table 2 Overall failure proportions o treatment A and standard errors (in parentheses) when p, = 1.
Hg
1.0 12 1.4 1.6 1.8 20
Design (g =1, 08 =1)
MBM 0.500 0.499 0.492 0.479 0.466 0.452
(0.055) {0.056) {0.058) (0.063) {0.065) {0.069)
EM 0.500 0.499 0.491 0.482 0.467 0.452
(0.056) (0.056) (0.059) (0.064) {0.067) (0.072)
{'D:-‘- e 2& Og = 1:'
MBM 0.501 0.502 0498 0498 0.493 0.487
{0.035) {0.035) (0.055) (0.056) (0.057) (0.057)
BM 0.500 0498 0.494 0.491 0.485 0.475
(0.055) (0.055) {0.057) (0.058) {0.061) {0.062)
{‘1‘: =1, 08= 2:'
MEBM 0.501 0498 0.491 0487 0.481 0.474
(0.056) {0.056) (0057 {0.058) (0.057) (0.057)
EM 0.497 0.498 0.491 0.489 (.482 0.472
{0.054) {0.057) (0.056) (0.059) (0.061) (0.064)
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Table 3 Power of a test for treatment equivalence.

Hg
1.0 12 L4 1.6 1.8 20
Design (o4 =1, 08 =1)
MBM 0.050 0208 0.501 0.805 0.946 04991
EM 0.050 0.194 0.526 0.513 0.956 0.990

(ow=2,08=1)

MBM 0.050 (0.136 (.28Y9 (.526 0.753 (.897
BM 0.050 0,107 (.235 (.438 ().645 (.842

(O =1, 08=2)

MBM 0.050 0.121 (.268 0.502 0.708 (.881
BM 0.050 0.127 (.258 0.486 0.720 (.584

For the Tamuara et al. (1994) data set, the responses are the changes in some score, which can be
either positive or negative. In such a simation, the truncated distribution is not a good assumption.
One should simply use the BM-type rule, where the W's in the general type objective function (13)
are always positive.

A careful investigation on which objective function is the most appropriate for specific distributions
in the exponential family may be desitable. Also, in principle, our present methodology can be ex-
tended 0 more than two teatments al hand. But the choice of the variance constraint is nol quite
immediate in such a case. A careful choice of such varance constrant (one or more) is the first step
for such problem. An iterative solution of the allocation probabilities can then be obtained. We skip
the details for some future study.

Acknowledgement The authors wish to thank the Associate Editor and two anonymous referees for their valu-
able comments which led to some improvement over an earlier version of the paper.
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