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Abstract

In this work, we exploit the Grover operator for the weight analysis of a
Boolean function, specifically to solve the weight-decision problem. The
weight w is the fraction of all possible inputs for which the output 1s 1.
The goal of the weight-decision problem s to find the exact weight w from
the given two weights wy and ws satisfying a general weight condition as
wyp+w: = land 0 = wy =< ws = 1. First, we propose a limited weight-
decision algonthm where the function has another constraint: a weight 15 in
{u;. = sin"{ﬁ%}l, wn = cos {ﬁ%}l} for integer k. Second, by changing
the phases in the last two Grover ilerations, we propose a general weight-
decision algorithm which 15 free from the above constraint. Finally, we show
that when our algonthm requires (k) queries o find w with a unit success
probability, any classical algorithm requires at least £2(k%) queries for a unit
success probability. In addition, we show that our algorithm requires fewer
quenes to solve this problem compared with the quantum counting algorithm.

PACS number: 03.67.Lx

1. Introduction

In 1985, Deutsch designed a quantum algorithm to determine exactly whether a given Boolean
function on one bit 15 constant or balanced vsing only one evaluation [1]. Deutsch and Jozsa
generalized this algorithm to Boolean functions on n bits, showing an exponential speedup fora
quantum machine compared to classical ones [2]. The most important contnibution in this field
was achieved when Shor discovered polynomial-time quantum algorthms for factoring and
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computing discrete logarithms, which are exponentially faster than classical algonthms [3]
Because the quantum factoring algorithm shows an exponential speedup, many researchers
started to look for other applications. Perhaps the next most significant breakthrough occurred
when Grover discovered a quantum database search algonthm which 1s quadrtically faster
than classical algorithms [4, 5]. Because the database search is one of the most widely used
algorithms in computer applications, the impact was huge, and more researchers have sought
other applications.

In this paper we use the Grover operator to efficiently and exactly analyse the weight of
a Boolean function. A weight is defined o be the ratio of the number of solutions over all
possible inputs of a Boolean function. The weight analysis of Boolean functions s widely
used for cryptanalysis [6]. coding theory [7], fault-tolerant circuit design [8] and built-in
self-testing of circuits [9]. For some restricted classes of Boolean functions, a polynomial-
time weight-finding algonthm has been developed, while a general weight-finding algonthm
requires an exponential query complexity O(2") where » is the number of vanables [10]. For
example, a Deutsch-Jozsa-based algonthm was analysed for eryptanalysis purposes o show
an exponential speedup compared to elassical approaches [11]. Henee guantum algonthms
for the weight analysis of a Boolean functon will likely find real-world applications.

Here we shall focus on a special type of weight analysis problem o find an exact weight
w from the given set of two weights {wy, wajuy + w2 = 1,0 < wy = ws < 1}, which is called
a weight-decision problem. In other words, we assame that it s already known that a Boolean
function f has a weight of either wy or s where wry +ws = 1. Our algorithm must detemine
which of these two possible values 15 the exact weight of the given Boolean function. Note
that in this work we only consider the case wy + w, = | because it 15 a comparatively easy
problem, and we hope it will provide hints for the more general case. Meanwhile our approach
15 a suitable one when wy and wa are close to 0.5, When wy 1s close to O and ws 15 close o
1, even a few classical queries are sufficient to decide the exact weight with high probability.
However, when wy and ws are close to (1.5, the success probability 1s very low i a classical
approach. This case motivates our work, Meanwhile, it should also be emphasized that a
sure-success algorithm is mandatory for some applications such as eritical decision systems.
Hence, we consider only the sure-success algorithm i our work.

MNote that the difference between the Grover search and our approach should be emphasized
since our approach 1 heavily based on the Grover search. Given an oracle fix) with one
solution fix,,) = 1, the Grover search determines x.,), where x 15 an n-bit input. In other
words, we can view the Grover search as an attempt to determine which of 2% possible orcles
has been handed to us. However. regardless of which oracle is present, the initial state of the
Grover search can always be written as [} = m"’%l:.‘} - m""w%im.‘}, where |5} and [ny) are
normalized solution and non-solution basis states, respectively. The Grover search is simply
arotation of this inital state which 1s identical for all possible oracles, onto the final state |5},
which differs for different oracles. On the other hand, the initial state of our algorithm {in the
2-state representation) depends on the actual weight of the omcle. The mitial state may be
written as [1fF) = s} + Junlns) or W) = Jwsls) + wijns) with the weight condition
wy +wp = 1. Then vsing £ operations, we attempt to motate this mitial state onto opposile
poles of the Bloch sphere m a manner dependent on the actual weight of the oracle.

Specifically, we make the following contnbutions.

o Limited weight-decision algorithm. We show that using & iterations of the Grover operator
. i P i TRERIRRTEATL I o SIT 0 ) i k .
Tﬂ.\{}uld dll{nﬂ._us Lo dL‘LI_{.IL u_&auly w from {m. —_hll.'J {!.L-+I 5 } ura —_l‘_{h {_,—HI EH_I{}L’
mteger £, Note that since it has another constraint on the given weights, we call it a
limited weight-decision algorithm,
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e General weight-decision algorithm. We propose a general weight-decision algorithm,
withoutthe above imiting constramt, by exploiing a sure-success database search method.
The general weight-decision algonthm uses £—2 Grover iterations followed by two further
phase-modified Grover operators.

e Performance analvsis. We show that if our quantum algorithm requires (k) Grover
iterations, where k is an integer value, then any classical algorithm requires (k%) queries.
MNote that Cm) and £2 (m ) mean that the algorithm requires asymptotically at most and at
keast moquenes, respectively. Hence our quantum algorithm achieves at least a quadratic
speedup.

Meanwhile one could solve this weight-decision problem using the gquantum counting

algorithm, allowing a direct estimate of the weight of the function involved. However,

our approach does not rely on the guantum Fourer transform and reguires fewer gqueries.

This paper is organized as follows. Section 2 defines two weight-decision problems and
analyses the Grover operator in the Hilbert space and on the Bloch sphere. Section 3 shows
what weights can be decided exactly after £ Grover iterations and the conseguent limitation
on the weights. Section 4 shows how to decide exactly the weight w by modifying the
phases of the last two Grover iterations when the set of two weights has only the general
weight condition. Performance comparisons between our algorithm and the classical, and the
quantum counting approach are discussed in section 5. Section 6 concludes the paper with a
brief summary and mentions several open problems.

2. Preliminaries

2. Definitions

Definition 1 (Weight w of a Boolean function f). The weight w of a Boofean function f is
defined as the ratio of the number of inputs for which owtputs are 1 over the number of all
possible inputs of f.

Definition 2 (General weight condition). The weight of a Boolean function [ ix one of two
weights in {w, unjuy +wa=1,0=<uy < us < 1}

Definition 3 { General weight-decision problem). Given a Boofean function f with the general
weight condition, decide exactly w of f.

Definition 4 (Limited weight-decision problem).  Given a Boolean function [ with the
general weight condition and also the condition that the weights can be written as
{w. = sin’ {ﬁ%} un = cos’ {ﬁ}} }_,ﬁ:rr some integer k, decide exactly wof f.

2.2, Analysiy of the Grover operator

22.1. The Grover operator. Consider a Boolean function § witha weight w = sin® & The
uniform superposition of all states is used as the nitial state for the algonthm and may be
expressed as

[0k = sin %L\'} + 0% %ln.\'}, (13

where [} and |ns} denote the uniform superposiions of solution (e, where fx) = 1) and
non-solution (Le., where fix) = 0) basis states, mespectively. Now the peneralized Grover
operator consists of two inversion operators as

G = —1y, (80 (d), (2)
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Figure 1. Grover's database search (# = ¢ = 7). Evolution of the quantum states thmough (@) the
Hilbert space and {#) the Bloch sphere.

where the mversion operator s defined
Iy (8) =T —(1 — )Yyl (3)
In the standard Grover search algorithm, 8 = ¢ = 7. Hence the standard form is
G =—ly, g7 ifalT)
= (2o H{rwol — 10T — 2|sHs(), (4)

where — 1) () inverts all states about the average. and [, () flips the sign of all solution
states. In short, we might summarize the Grover operator as consisting of Dwo inversions—aone
about the initial uniform-superposition state and the other about the solution states.

After applying the standard Grover operator £ imes, the initial state becomes

| et = sin(2k + 1}@“‘} +cos(2k + l}lgin.\'}. (5)

If we now measure this state in the computational basis, we can find one of the solutions with
a success probability of sin®(2k + )22, Figure 1{a) shows the evolution of the states in the
Hilbert space under the Grover operation.

222 The Bloch sphere. Because the action of the Grover search algorithm takes place
within a 2D Hilbert space, we may represent all actions on the surface of the 3D Bloch sphere.
The two inversion operators in the 2D Hilbert space can be regarded as a pair of mtation
operators on the 3D Block sphere [13] as

{5 = —L‘”g-'-g:lﬂw...":{—H}Rh;{_‘;—'{'}‘ fﬁ}
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and the initial state becomes a vector

sin
o | )

—oos f,

Figure 1(h) shows the evolution of the gquantum states on the Bloch sphere. Note that all
figures hereafier are viewed from the +Y -axis of the Bloch sphere for casier comprehension.
The vector of the state [y, () 15

sin[(2k + 1)f. ]

1] . (8)
—cos[(2k+ 114,

Algorithm 1 Limited weight-decision algorithm
Apply k Grover operators to i, o).
Measure [y, i} I the computational basis,
Let the measured result be 5.
Ifkisevenand f(Z) =1, w=unelse w = uy.

Ifkisoddand fix) =1, w = wy else w = .

Because the Bloch sphere representation provides a simple geometric picture, we shall
use it o illustrate all the algorithms we devise here.

3. Limited weight-decision algorithm

In this section, we study which weights can be decided exactly after & Grover iterations.

Consider a situation where the weight is wy, = sin-’{ﬁ‘}}l, s0 f,, should be ﬁﬂ'. Nole
that if the weight is wy = cos® (5753 ). we may reformulate it as
P k m of2k+1—k—1xm
SRMIEELD LT L Jkad &
o k+1lm
= sin” e )
2k+12

to conclude that 8, should be —f;_'lJT.

After applying & Grover operators, the final states for the two cases w = wy and w = un

are
sin{ &) 1] ]
1w &)= 1] = 1] = 0 (10}
—cos(kT) —cos(kT) {—=1)+
and
sin[{k + 1)m] 0 0
| wlfﬁ.k } — 0 = ] = 0 5 (1 1 ::I
—cos[{k+1)m] —cos[{k+ 1)m] (="

respectively.
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MNote that if kis even, 1y, oF = (0,0, — 13" which denotes the nomalized non-solution
state; similarly, [, b = (0.0, +1) ¥ which denotes the nommalized solution state. As a result,
if k 1% even and the measured value 3 15 one of the solutions, then we can conclude that w = ws
otherwise w = wy. On the other hand if & is odd, the two final states are exchanged. Hence if
the measured value © s one of the solutions, we can conelude that w = wy otherwise w = wa.
Algorithm 1 summarizes this procedure. Note that the case for k = 1 was desenbed m [12].

MNote that this algorithm can find the exact weight only when wy + w2 = 1 and

k

u = .r,in"{m%} and un = cos? {ﬁ}} Unfortunately the limited weight-decision

algorthm has two problems as follows.,

s Irrational weights. If w = sin’ {ﬁ %} where k18 an integer, w cannot be rational, and
therefore cannot correspond o a real oracle except for the wivial cases k=10, 1.

o Notsure siccess. As a consequence of £ =0, 1 providing the only exact solutions, if we
apply the algorithm anyway with the integer number of steps & chosen so that sin’ {ﬁ %}l
and cos’ {ﬁ lz} maost closely approximate wy and wa, we will end up with an algonthm
which does not perform with sure success (i.e.. with unit probability). Though the ermor
probability may be small in many cases, this may stall be unsansfactory. For example,
if the difference between the given two weights 15 very small, the ermor in the limited
weight-decision algorithm will not be negligible.  Even worse, if the Limited weight-
decision algorithm is used repeatedly as a submoutine n a larger quantum program, the
error lerance of the whole procedure will continually diminish.

Notwithstanding these problems, we considered the limited weight-decision algonthm
here to motivate the general weight-decision algorithm, for which we will be able to relax the

restriction that the weights have the form {sin" {ﬁ z), cos? {ﬁ %}}

4. General weight-decision algorithm

4.1, Mottvation

In order to resolve the problems discussed above with the limited weight-decision algorithm,
we consider a general weight-decision algonthm with the looser general weight condition.
This generalization is potentially worthwhile both theoretically and practically. To achieve
this goal we exploit the sure-success approach for the Grover search. Note that since thene
are many different sure-success approaches, it 15 likely that there are many different ways
to incorporale sure success into our algorithm.  Howewver, in this work we focused on
what we feel is the simplest approach. Thus, we first review the sure-success database
search.

42, Sure-success database search

To achieve a sure-success database search many approaches have been developed [13-26].
Typically, a sure-success database search 1s based on a method changing the two phases, #
and ¢ of Ty (8 and {,;, (@), In this work, we exploit the approach developed by Brassard
et al [24]. This procedure is based on the following approach.  First, one caleulates the
required minmum number £ of the Grover iterations.  Then, from the 1st to the (8 — 1jth
operation, the standard Grover operator s applied.  However, for the last (kth) operation, a
generalized Grover operator is applied by choosing two phases, 8, ¢ # 7, for fj, o (8) and
{1y (gh), respectively.
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Algorithm 2 General weight-decision algorithm

Lo Iwel = I0/®1),i = 0,
If uy <sin”§,kis2,

e b et elims ol k=1 : il kI
otherwise k satisfies sin {_'-'J:—I _T} < uy % i {ﬁ_ﬂ
k-1 k
fres EL I T £
||I-:rn"I +.|H|r'3 =n.

I

Whileii = (k —2)) do
“1.‘5'-"-.4+I} = _f|np...|}{-1?}fh:{-'T}hﬁ"lr'.aLf =i+ 1}
3 “:'!"lr'.k—l } — _-lr||,i|...|: ‘._'-':-'II .:'-'I-I.'\-:‘.-'T}I"I:'Erlr'.k—_’}
H‘Erlr-.k} = _‘II'.L"..- u:{_ﬁl!”l.'-': {-'T::'ll.&lr-.k—l}
5. Measure [y, ;) in the computational basis.
Let the mesult be X,
G6-1. Itk s odd and if f{%) = | then w = wy else w = wa.
6-2. Wk sevenandif f(3) = lthen w = un else w = w.

d4.3. Modified approach for a general weight-decision algorithm

AL the first sight it looks like that Brassard er af approach can be directly applied to the general
weight-decision problem. However, the cumrent application s somewhat different from the
usual database search scenario as follows. The Brassard et af method changes only the last
operation becawse its goal 15 to rotate the state Wy, (-} onto the solution state. Howewver, in
the weight-decision scenano, we need to satisfy a more stringent condition: the initial state
corresponding to different weights, e, |1,!r,r., I,}I and |1,.E-',,.L.;.J'|, should be comrectly motated o
the solution (non-solution) state and the non-solution (solution) state, exclusively. From this
condition, we can obtain a relaton between “y!r,r., _“:I, |1;r,,.1_“H and {|s}, [ns}}. To satisfy this
condition, we propose an approach which changes the last two Grover operations as follows.
From the 1st o the (£ — 2)th Grover operation, we use the standard Grover operator with (o,
) phase angles for the Ty, (8 and 1), (¢} operations. However, for the (& — 1)th and the
kth operations, we use slightly modified Grover operators with the phases ( —9,, 7 ) and (-5,
), respectively. Algorithm 2 summarizes the proposed procedure.

4310, Modification of the phases for the last two Grover operations. 'We now concentrale
on the evolution of the quantum states during the last two steps of our algonthm. Figure 2
shows how we can rotate two mitial states, |1,{r,r.| _u:l and |‘95’|r-;.ir:|= to the states |ns) and |s),
respectively. In the figure, two initial states for two different weights are shown differently,
but they are actually the same initial state in the algorithm. Likewise, two sets of solutions
and non-solutions for different weights are shown as the same state in the figure, but the actual
set of solution and non-solutions are different. Note that figure 2 shows a case when only
two operations are sufficient o decide w exactly. In the figure, the circle and the diamond
denote the two states |1, ;) and [y, o3 respectively. If the cirele /diamond s filled, the stae
points towards the positive Y-axis, otherwise the negative Y-axis. Our purpose is to find phase
conditions, which can rotate two initial states to the opposite (and hence orthogonal) poles of
the Bloch sphere exclusively, yet using the same phase conditions. Forexample, if w = wry (w2}
and the method motates hﬂr,r., _(;.J'I{ yﬂr,,.l_uj'l}l to [r sy, the same method should rotate |1,!r,,._\_nj'|{|1£r,r., (J'I}
to |5} In the mmibal step, the two itial states |1.£‘|r-. _“:l and |1:£rll"1.“:| ane {sin i, . 0, —cos ﬁu-,}j

and {sm {JT — B }I 0, —cos {JT — B }}j = {sinﬁ.r., L0, cos ||‘:|’,r.|}|Jl , respectively. In the first
step, the two initial states are rotated o (A} and | B)) states, respectively, by the common
rotation operator Ky, (7). In the second step, these states are rotated to the states [ Az} and
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Figure 2. Last two Grover opemtions for the general algorithm: The circle and diamond denote
the states |y, b and [y, o) espectively.

| B2}, respectively, by the common rotation operator Ry, (8 ). Here, [A} should be rotated
to | Aa}, which comesponds to the crossing point between the line Al and the line f. The line
S 1sa path, where the point [A}} can be rotated by the rotation operator B, (8 ). Using the
same rule, the same otation operator rotates | By} to | B:}, where | B:} oceurs at the crossing
point between the line 81 and the Ime 1 — . For the third step, the operator R, (7 ) is used.
In the final step, the two states are rotated to the opposite poles using the same rotation angle
&, Finally, if we measure the final state and the measured value ¥ is one of the solutions
(non-solutions), we can decide exactly that w = ws (wy ). In our approach, the key point is
to find two crossing points, denoted by the states |As ) and [ B2}, with the required number of
operations.

432 Correctness.  In the proposed method, we have to change two phases only for the
last two operations, not for any other operations becaose until the (8 — 2)th operation, there
is no crossing point such as |Aa) and |82} in figure 2. Therefore, in order to prove the
correctness of our approach, we need to show that until the (£ — 2)th operation, there is no
such crossing point, but that at the (& — 1)th operation, there are two such crossing points. To
provide a stmightl'{}rﬁ.i.arﬂ explanation, we consider the case only when £ 1% odd, w = w and
%JT < By & ,HI_Tr The other case may be proven in a similar manner.

(1) Ne crossing point until the (K — 2)th gperation. Figure 3a) shows the state [, -2}
after k — 2 operations of By, ) (7) R, (7 ) have been applied. Note that when £ 1s odd,
the state [y, g2} should be located in the upper-right part, e, in the {(—X, +Z) area.
Meanwhile, the line A1, which is perpendicular to the axis of |1.£r,r.!_“:| and meets the south
pole, 1 given by £ = —X tan f,, — 1. The value of x at the crossing point between the
line Al and the circle 15 x)y. = —sin2f,, . and the value of x for the state [ 2}, namely
gz, 18 sin(2{k — 2) + 1), . Therefore, to show that there s no crossing point until the
(k — 2)th operation, we need to prove that xy,e 15 always larger than x; ;. The following
fact, the proof of which is given in appendix AL 1, shows the correctness of this argument.
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Figure 3. Comectness of the modification of the last two Grover operations. (@) Mo crossing until
the (k — 2)th operation. () First crossing at the (& — 1)th operation.

Fact L. —sin2f,, = sin(2{k —2) + 1)f,, , where %n’ < f, = ﬁﬂ'.

(1t} First Crossing Point at the (K — 1)th Operation. Figure 3(5) shows why the first crossing
point between the two lines Al and f oceurs in the (& — 1thoperation. To prove this, we
need to show that the value of x, x);,.. of the crossing point between the line Al and the
circle is abways greater than or equal w the value of x of the state |1,|'.'r.r., _k_|J'I, namely xg_;.
Note that the value of xy,. 15 sin 28, . and the value of x;_) 1ssin(2(k — 1)+ 1)4,, . The
following fact, proven in appendix A2, shows the correcmess of this argument.

Fact 2 sin2p,, > sin(2(k — 1) + 1)By,, where 57 < fu, € 757,

433, Phase conditions.  Figures Ha) and (&) show the evolution of quantum states for the
last two operations when £ is even and odd, respectively. Note that we consider Boolean
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Figure 4. Evolution of the states for the last two Grover opemtions. {a) Even &and (h) Odd &,

functions with only the smaller weight case w = wy = ws becanse the phase conditions are
the same for the larger weight wa. Finally, we find the following phase conditions for 8; and
&, as shown in appendix B:

(—1)* cos B, — cos2B,, cos(2k — 2)B,,
sin 28, sin(2k — 2)8,,

(—1)*sin 28, (ysinéy — (—1)* sin B,,,)
cos fo, cos2f8,, — (=1 cos(2k — )8,

cos ) =

(12)

cos fh =

(13)
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5. Perfor mance comparison

5.4, Classical versus guanium

Let us first consider the complexity of our approach. If wy and w» are sin® {}ﬁi’-} and
u{}sl{yi—l%}, respectively, our algorithm can decide an exact weight w with Q&) (in fact,
exactly &) Grover operations as shown in algorithm 1 or 2,

Now we consider the complexity of any classical approach.  Sinee the function f is
available m the form of an omacle, a classical probabilistic algonthm would work as follows,
For k iterations it can present random inputs to the oracle and guess that the functon is of
weight wry (ws ) if the output zero {one) appears more frequently. The approach simply decides
based on the majornity of outcomes, and the analysis of the majority has been made in [27].
Based on this analysis, we know that the query complexity of such a classical probabilistic
algorithm is £2(k?). Finally, then we can see that our approach achieves at least a quadratic

speedup.

52, Comparison with the guantum counting algorithm

To argue for the efficiency of our algonthm, let us refer to the existing work on gquantum
counting that exploits the period information of the repeated Grover iterations [24, 28, 29].
From this period information, one can guess the number of solutions. Hence, like Shor’s
factoring algorithm, this task is achieved vsing the gquantum Fourier transform.

Because we propose here an algorthm to decide exactly the weight among two given
weights, it is meanmgful to compare the query complexity between our approach and a
method based on quantum counting with the same promise.

521, Quanmm connting. The counting problem is the task of finding the number of
solutions of a given Boolean function. Now repeated Grover operations show (guasi) perodic
patterns with the iteraion numbers.  Hence we can count the number of solutions using
the quantum Fourier tmnsform as shown o algonthm 3 [24, 28, 29]. In the algorithm,
GJ.- = QiW, f. —1, —1) denotes the Grover operator with the notation of [4, 5], where W
denotes the Walsh-Hadamard transform on n qubits that maps |0} to 2792 Zf":;rl i}, s
the given Boolean function, the first and second —1 denote @ = 7 and ¢ = 7, respectively.
Meanwhile, an imteger P determines the time taken by the algonthm, and consequently, the
precision of the estimation.

Algorithm 3 Quantum counting [24, 28, 29]
Let Cp:lx} @0} = |x) @ (G [P}
Let fp: |k} — w,TI?"E"P;'I e HIP|1)
| Vot = W @ WO}
W} = C;"'I"u}
|} = [y bafer the second register 1s measured (optional)
W) =Fp @ 1))
¥ = measured value of [W5)
(if> P/2thenf = (P — X))
6. output: N sin®{ix/ P){and 1 if needed)

o e =
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522 Comparison of query complexiry.  Now let us analyse the quantum counting method
for the weight-decision problem.  First, we must understand the relation between P oand
I, and the given weight.  If we are asked o check whether or not the given weight is
correct, we should know the exact value of P and the expected value of . For example,
if the given weight is sin” (kx/(4k + 2)), then we can confirm the given weight by using
P = {4k + 2) and by checking whether or not £ s £ Likewise, if the given weight is
E{}Sji.k.ﬂ';r{4k + 2 = sin"{{.k + 1w /(4k + 2)), then we can venfy the given weight by using
P = (4k+2) and by checking whether ornot 3 is & + 1. Therefore, for our problem such as the
limited weight-decision problem, the quantum counting method can be exploited by assuming
P = {4k + 2) and by checking £. More explicitly, after P queries, if £ 15 £, we can conclude
that the exact weight is uny and if & s &k + 1, the exact weight 15 ws. In summary, when we try
to use quantum counting for the weight-decision problem, it takes around (44 +2) queries, but
our method requires only £ quenes, and hence our method requires four tmes fewer gquenes
than the quantum counting me thod.

As an aside we note that the gquantum counting method 15 based on the quantum Fourier
trans form, which might be difficult to implement depending on what kind of quantum computer
is being used.

In summary, compared with the gquantum counting method, our method requires four
times fewer queries, and does not need the quantum Fourier tansform.

6. Conclusion and open problems

We mnvestigated an application of the Grover operator for the weight analysis problem of a
Boolean function, specifically the weight-decision problem, which aims to find a comrect weight
from the two weights satsfying wy + w2 = 1. First, we showed what weight can be decided
exactly after & Grover operators. Unfortunately, this algorithm, the Imited weight-decision
algorithm, 1s not a sure-success one for the general weight-decision problem. To overcome
this problem, we modified the imited weight-decision algorithm by using a certain number of
standard Grover operators from the 1st to the (k — 2)th steps, followed by two phase-modified
Grover operators for the final two steps. We nole that our proposed quantum algorithm, the
general weight-decision algonthm, achieves at least a quadratic speedup compared to the best
classical algorithm. As well, the proposed algorithm requires four times fewer queries than
the quantum counting algorithm.

In this work, we considered only a restricted type of weight-decision problem with a
condition w € {wy, w20 < wy < wa < 1, wy + wy = 1} becawse it is significanty easier
compared o a more general condition. Hence we might hope to extend our approach to a
maore general case such as when the sum of two weights s not unity. Unfortunately, at present,
we have no idea how to generalize our proposed algorithm for this more general case. When
w4 = 1, there is asymme try between the two quantum states associated with the larger and
the smaller weights, It is precisely for this reason that we need only solve phase conditions for
the final two modified Grover operations. However, for a more general case, there would be no
such symmetry, and hence finding of an exact algorithm would be more difficult. Meanwhile, as
an intermediate step towards this more general case, we could consider a shightly generalized

. gk 3 .
problem for deciding w £ {u:.,u:_:,l{]' = W l,—!, < Um = 1,—!, < Wy W = ';}; for

example, un = '; and urn = } Finally, more generally, we might hope to find an algorithm to
; : 1 1
decide w € {wy, |0 <= wy) < wy < 1,0 < wy +un < 2}; forexample, wy = jand un = I

In any case, even without such an efficient algorithm one could always rely on the method of
quantum counting o determine the weights in these cases for a modest overhead.
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Appendix A. Prool of correciness

Al No crossing point until the (k — 2)th operation

Proof of fact 1 is as follows.

Proof. From the value of f#,,, we can get the value of —sin2§,, as —sin {ﬁ} <
—sin2f,, < —sin {ﬁ} Meanwhile, (k — 2)7 + 575 < (2k—3)B,, = (k—2)w + _,i:l
Further, because & is odd in this case we have sin [{.k -+ 1%] = sin(2k — 3)f,, =

sin[(k — 2)m + 557 | Finally, —sin(5%) > sin(2k — 3)f,, = —sin (5%). Therefore,
—sin2f,, = sin(2k — 314, . O

A.2. First crossing point at the (k — 1 )th operation

Proof of fact 2 is as follows.

Prool. From fact 1, we can bound the value of sin 2fi,, as sin { ,k"’_l } = sin2f,, = sin {ﬁ}

Meanwhile, (k — l)mr =< (2t — 1), = (k— l)x + }ﬁ Further, because £ is odd

in this case we have sin(k — 1)r < sin2k — 1)8,, < sin[(k — Dx + 5% ] Finally,
0 < sin(2k — 1)B,, < sin(si). Therefore, sin2f,, = sin(2k — 1)f,, . O
Appendix B. Phase conditions

AL first, to rotate v, -2t to the first crossing point [A}, 8 should satisty

cos(2k — 2, —(—1)* cos B,

—sin(2k — 3)f,, 2sim f,,
Ri“-,._l “}{ﬁh}l 0 = ¥ . (B.1)
—cos(2k — 38, —cos(2k — 23, — (—D¥eos g,
' 2 cos Bu, :

As aresult, 8 should sansty

S (—1)* c{}s_ﬁ.,.l =R 2P, COS(2k — 2)Bu, (B.2)
sin 2/, sin(2k — 238,

Further, the value of y for the state [A) issind) sin{ 2k — 2) 8, . A similar approach allows us
to find the phase condition for £ as



M

5 L Braunstein er af

—cos(2k — 2 f, +(—1eos f,,

2sin fi,, 0
Rflﬁ--. "}{ﬁ'g} —¥ = L] . (B.3)
—cos{2k — 238, —(=1)* cos f,, —(—1*
2eos fy,

Fmally, then we can see that 2 satisfies the following equation

{—1)* sin 28, {_1; sinfy — (—1)* sin B :I

; (B.4)
cos f, cos2f, — (—1)* cos(2k — 2)8,,,

cosfy =
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