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In this article we introduce a new likelihood based method, called the kel ifood
integrated method, which i distinet from the well-fnown integrated kel ifood
method. We nse the likelibood infegrated 1o propose o simple explovatory graphical
arterlyvais for the change point problem in the confext of directional data. The method
ix applied fo analysis of twe real life data sefx The results obtained by appdication of
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effectiveness of this procedure in indicating presence of change point.
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1. Introduction

The problem of detection of a chanpge in distribution in a given finite sequence of
independent observations is commonly referred to as the change point problem. This
problem was introduced in the statistical literature by Page (1953) in the context of
detection of abrupt change in process parameters which leads to poor quality products.
The now well-known Cusum chart is one of the earliest techniques suggested to deal
with this problem. The change point problem has received considerable attention
in the linear case and a large number of articles has been written on it. The two
main streams of work pertain to the parametric set-up with normal distribution
as the underlying distribution and the nonparametric set-up see, e.g., Chernoff and
Zacks (1964), Hinkley (1970), Sen and Srivastava (1973, 1975a.b), Chen and Gupta
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{(2000), etc. In the context of directional data, the change-point problem arises in
many apphcations like detection of time of change of wind direction, direction of
movements of icebergs, propagation of cracks, etc. In the circular case, not much
work has been done on this problem. Lombard (1986) initiated work in the context
of directional data in the nonparametric frame work while Laha (2001) discusses
the change point problem in the parametric framework with the circular normal
distribution as the underlying distribution of the data.

In this article, we discuss the change point problem for angular variables
by using a new approach which we call the “likelihood integrated™ approach to
distinguish it from the well-known integrated likelihood approach (Berger et al,
19949). In the usual integrated likelihood approach, the likelihood based on all the
observations is integrated with respect to the conditional (joint) prior distribution
of the nuisance parameter(s) given the parameter(s) of interest. The (joint) prior
distribution is assumed to be absolutely continuous with respect to the Lebesgue
measure and hence is assumed to have a density. The integration is carried out over
all possible values of the nuisance parameter(s). This process eliminates the nuisance
parameter(s) and the resultant quantity is called the integrated likelihood which can
be used for inference on the parameters of interest. Berger et al. (1999) gave an
excellent discussion of the integrated likelihood approach.

In our approach, which assume that the observations are mutually independent.
We first obtain the integrated likelihood for one observation by integrating
the likelihood for one observation with respect to the conditional (joint) prior
distribution of the nuisance parameter(s) given the parameter(s) of interest over all
possible values of the nuisance parameter(s). Thus, the resulting expression does not
involve the nuisance parameter(s). The “likelihood integrated™ is then formed by
taking the product of the integrated likelihood for each observation. It is evident
that the likelihood integrated method is less general than the integrated likelihood
method since it assumes that the observations are independent. However, this is not
a wvery serious restriction as the independence of observations is a widely prevalent
assumption in statistics. We illustrate the method for two circular distributions—the
circular normal (also called von Mises) distribution and the Papakonstantinou's
distribution.

The circular normal distribution is the most popular distribution for directional
data. It is a symmetric unimodal distribution having probability density function

(pdf)
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where [;(x) is the modified Bessel function of order (0. If the angular random
variable @ follows the circular normal distribution with parameters p and «x,
then we write ® ~ CA{u, x). The parameter p is called the mean direction (also
modal direction) and the parameter x is called the concentration parameter.
For more details on the circular normal distribution the reader may look into
Jammalamadaka and SenGupta (2001).

The Papakonstantinou’s distribution is a skew circular distribution having the

pdf.
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If the angular random variable @ follows the Papakonsiantinou’s distribution with
parameters v and &, then we write ©® ~ P(v, k). It may be noted that for k=10
this distribution reduces to the circular uniform distribution (which incidentally, is
a symmetric distribution) and for & # (0 we obtain a skewed circular distribution.
Further details about this distribution can be found in Batschelet (1981).

We apply the likelihood integrated method for analysis of two real life data
sets—ilare data (Lombard, 1986) and wind data (Weijers et al., 1995). We discuss
a simple graphical method for exploratory analysis of data sets having at most
one change point. A method for identifying the change point is also discussed.
The results obtained from these analyses do indicate the potential of this approach
for exploratory analysis of directional data suspected to have a change point.

A small simulation study is conducted to assess the effectiveness of this new
exploratory graphical procedure in indicating the presence of a change point in a
data set. The results obtained from this study are quite encouragng.

2. Likelihood Integrated Method for Change Point Problem

Let ©,0,, ..., 0, be independent anpular observations. Suppose the pdf of @, is
SO0 ape, ) where @, 18 the vector of the parameters of interest and n is the vector of

nuisance parameters. Let min| ¢,) be the conditional joint prior density of n given
@,. Then the integrated likelihood corresponding to the observation @, is

L(“P, | uj) = j;.-ﬂ:ﬂj: "'pj" Iﬂ R{“l "'pjjld“'

The joint likelihood for the n observations is then formed as the product of the n
integrated likelihoods for single observations, that is,

L("'p] """ "'p.u [H'I """ ﬂ.u) = ]_[ L("'pjl' E"Jl]'

i=]

We refer to the above L as “likelihood integrated™. In what follows, we use the
likelihood integrated to draw inferences about the location of change point in a
ziven set of angular data.

In the classical change point problem set-up, we are interested to test the null
hypothesis

Hy:p=¢,=--=9,
against the alternative that
H :Thereexist r, 1=r=n—1 suwchthatg, =---=¢ #£op_,=---¢.

The estimate of the change point is derived as a by-product of the testing procedure.
Mote that in the above we are testing for the presence of at most one change point.
When the change point is at r, then the likelihood integrated has the form

r

L{r'lp]'lp.lll'ﬂ'l""'u.ul]=]_['['{{p]lujj ]_[ L{"'p.ul'ﬂj:]' IErE"
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where we define T, ., L(p, | ;) = 1. It may be noted that when no change point is
present in the data set we have r = n. It may be noted that if ={n|gp,) is a proper
prior, then Lig | ) = f“j[ﬂ,: , imin | is a proper density when viewed as a
function of 0. Hence, it is simple to construct the generalized likelihood ratio (GLR)
test for this problem using the likelihood integrated. The GLR test for testing H,
against A, using likelihood integrated is

i Supw L{ﬂ', {p] ] "'p.uj
gI'tl:|'| . L(r' "-P] ] "'p.u.J

where ¢ is chosen depending on the level of significance of the test. In this article,
instead of the formal testing approach discussed above we focus on exploratory
eraphical analysis of the data with a possible change point.

It is easy to see that the change point problem can be viewed as a model
selection problem. It can be thought of as a problem of choice among n models
M., 1= r=nwhere M, is the model with change point at rfor | = r=<=n—1 and
M, is the model with no change point. The model selection may now be done
on the basis of the likelihood integrated for the models M. Instead of a formal
method, we suggest a graphical analysis useful for exploratory analysis. We find for
each model M, the value L*(r) =sup, . L(r,9,,9,). The values of L*(r) are then
plotted against r. It is seen that the plot of L*(r) shows a sharp downward trend
beyond a point. This point can be thought of as rough estimate of the change point.
This method of graphical examination is explained in more detail with the help of
real life data sets later in the article.

As a first illustration of the above approach, we discuss the change point
problem for the mean direction of the circular normal distribution. This problem
has been studied in detail from a frequentist perspective in Laha (2001). The models
M forl =r=n—1are

L G, are iid CN{p, ) and &, ..., G, are iid. CN(p,, k), &, # 5,

and the model M, is
6,60, ..., @, are iid. CN{py, %),

We write g, = pr, + d (mod 2a) where 0 < § < 2a. The parameters p,, 6, x, and r are
assumed to be all unknown. The parameters of interest are (r, d) and the nuisance
parameters are (g, k). Henceforth, we write g, as p Let p(p, &) be a proper joint
density. The integrated likelihood for single observation is

i o0 2n 1 )
L{d; |0) = f f e¥es =8 iy w)dp dic
i 0

2aly(x)
where d, =91 577 . Then the likelihood integrated for the n observations
is L(r,8[0,,..., @) =TT LO[ O[T, L] 0). We can then obtain L*(r) =

sup; L{r, 8]0, ..., {1} and use the plot of (r, L*(r)) for indication about possible
presence of change point.

As a second illustration, we look at the change point problem for the parameter
v of Papakonstantinou’s P{v, k) distribution. We will assume that the initial value
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of v is known and with no loss of generality, take it to be 0. Thus the models M,
for l<r=<n—1are

G, ..., @, areiid PO k) and B, ..., 6, are iid Plv,, k), v, £0

and the model M, is @, 8,, ..., ® areiid PO, k). Let p(k) be a prior for &
Then the integrated likelihood for one observation is

E (k)

2n

Liv; ) = i + sin{t); + v; sin })

n
where v, = § §f 1517..,. It may be observed that L(v;; ), when viewed as a function
of 0, is the density of P(v;, E.{£)). The likelihood integrated for the n observations
is Lir,v|0,....0) =] L'{{}}Dj) Mg L(v | 0.). We can then proceed as before
to obtain L*(r) = sup, L{r,v|0, ..., 1,1 and then use the plot of (r, L*(r)) for
indication about possible location of change point.

3. Example

In this section, we apply the above methodology for exploratory analysis of two
real life data sets—wind data set (Weijers et al., 1993) and flare data set (Lombard,
1986).

We first discuss the exploratory analysis for the data set of wind directions given
by Weijers et al. (1993). They investigated the horizontal perturbation wind field
within thermal structures encountered in the atmospheric surface layer boundary.
We are interested to study the possible existence of change point in the direction of
the horizontal wind field. The Changeogram (Laha, 2001) is given in Fig. 1 below.
The changeogram indicates the presence of two change points. Since the method
discussed in this article is for detection of at most one change point we consider
only the first 22 observations for further analysis using the likelihood integrated
method. We take the joint prior (g, k) = ﬁ which arises as the product of two
independent priors—a circular uniform prior on g and a Uniform{0, 6) prior on
#. The computations are done using the R software package. The plot of log L*(r)
against r is given in Fig. 2 below

We find from the plot of log L*(r) against r given in Fig. 2 that log L*(r)
declines very sharply after observation 17 which is the point of change as seen from
the Fig. 1. The above dataset has been analyzed from a frequentist viewpoint in
Laha (2001). It is reported therein that the NRTT, a parametric test derived under
the assumption of circular normality in Laha (2001}, when applied to this dataset
indicates the presence of a change point (at 5% level of significance) and identifies
the 17th observation as the change point. When the Lombard’s nonparametric test
{Lombard, 1986) for single change point s applied to this dataset it also indicates
the presence of a change point (at 5% level of significance) but identifies 13 as the
change point.

hnhmnﬁhhh%\‘n‘\'\‘\"-'\,,—#-—! N e e TR W T m oy

....5.,..1E|..,.15....2‘]....25....30..

Figure 1. Changeogram of wind data.
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Figure 2. The plot of log L*(r) against » for wind data.

As a second example, we analyze the flare data of Lombard (1986). The
Changeogram is this data set is given in Fig. 3 below. The data set has been
previously analyzed using a nonparametric framework in Lombard (1986) and using
the NRTT in Laha (2001). Both these analyses indicated presence of more than one
change points in this data set. Based on the findings of the above-mentioned studies,
we consider two subsets of the full data set each consisting of at most one change
point. These subsets are chosen as: (1) consisting of observation numbers 1-42; and
(2) consisting of observation numbers 13-60. We use the same joint prior for (g, «)
as in the case of wind data. The plots of log L*(r) against r for the two subsets are
given in Figs. 4 and 3, respectively.

From Fig. 4 it is seen that there is a sharp decline in the values of log L*{r) afier
observation number 25, A careful examination of Fig 3, for this portion of the data
set, indicates the presence of a possible change point at 25, However, frequentist
analyses presented in Lombard (1986) and Laha (2001) did not indicate the presence
of change point at 25 and instead pointed to the observation number 12 as the
change point.

II A

L - I\_'\lj\-"‘"I"l\"-f".","gj‘\x'/nl
| RUTES | JRMPNE | MEORENR, - UV |

b T f\ b N Ml W 2 -._\'—.-.1_1- It -1 II.L.I'\. .
L35 ., . &0, . ., 45, ., .80, .. 55 ..}

Figure 3. Changeogram of flare data.
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Figure 4. The plot of log L*(r) against » for flare data (Obs. 1-42).
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In Fig. 5, we see a sharp decline in the log L*(r) values after the 26th observation
in the data set 13-60, that is, after the 38th observation in the original data set.
In this connection it may be noted that different tests applied to this data set
had indicated different change points in the neighborhood of the 38th observation.

[likr

Figure 5. The plot of logL*(r) against ¢ for flare data (Obs. 13-60).
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Table 1
Perfomance of the exploratory graphical procedure in indicating
presence of change point

Whether presence

It d of change point
5L no. {in degrees) K (in degrees) indicated in plot?
1 0 1 20 Yes
2 0 1 40 Mot clear
3 0 1 (1] Yes
4 0 1 &0 Yes
5 0 1 100 Yes
[ 0 1 120 Mot clear
7 0 1 140 Yes
8 0 1 160 Mot clear
9 0 1 180 Mot clear
10 0 2 20 Yes
11 0 2 40 Yes
12 0 2 &) Yes
13 0 2 &0 Yes
14 0 2 100 Mot clear
15 0 2 120 Yes
16 0 2 140 Yes
17 0 2 160 Yes
18 0 2 180 Yes

Lombard’s two change point test (Lombard, 1986) indicated a presence of change
point at 36th observation while Lombard’s single change point test and the NRTT
{Laha, 2001) applied in the adaptive manner, as in this article, indicated 42 as the
change point.

4. Simulation Study

In order to understand the effectiveness of this exploratory graphical procedure a
small simulation study is conducted. In this study, different sets of 60 observations
were generated in which the first 30 observations were generated from CN{0, &)
and the remaining 30 observations were generated from CN{S, k). We varied
8 = 200207180 (in degrees) and x = 1 or 2. The same joint prior for (g, ) as in the
case of wind data is used. Table 1 below gives the summary of the findings.

It is seen from Table 1 that the new method performs quite encouragingly in
identifying presence of change point.
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