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Abstract

A practical problem of estimating the total area under cultivation in In-
dian districts is addressed by two-stage sampling with unequal selection-
probabilities. To assess the accuracy in estimation bootstrap technique is
employed in constructing confidence intervals and simulation-based perfor-
mance criteria are evaluated from live-data as are shown for competitive pro-
cedures. Rao-Hartley-Cochran’s (RHC, 1962) scheme is employed in both
stages of sampling. Sitter’s mirrormatch bootstrap procedure is employed
suitably modifying it to cover the two-stages.
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1 Introduction

In large-scale surveys a population is usually split up into a number of
non-overlapping strata. From each stratum sampling is then implemented in
practice mostly in two stages. In estimating a population total one is then
interested to assess the accuracy by evaluating the coefficient of variation
of an estimator, the standard error of the latter and also the length of a
confidence interval around the point estimator. A handy way to construct
a confidence interval (CI) with a pre-assigned confidence coefficient (CC)
for it is to regard the pivotal, which is the ‘estimator minus the popula-
tion total’ divided by the ‘estimated standard error’ as a standard normal
deviate. An alternative course, bypassing this normality assumption, is to
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employ the bootstrap technique which involves repeated sampling from the
realized sample itself in a suitable manner so as to visualize the sampling
distribution of the original statistic taken as the initial point estimator. Us-
ing the repeatedly drawn samples called bootstrap samples it is possible to
evaluate standard error and confidence intervals with pre-assigned CC’s even
starting with a nonlinear initial point estimator for a total. We illustrate
here mainly with Cassel, Särndal and Wretman’s (CSW, 1976) generalized
regression (greg) estimator in what follows. In Section 2 below, we present
details of sampling, estimation and bootstrap methods employed here. In
Section 3, simulation-based performance characteristics evaluated are shown
to indicate competitive estimation procedures. In Section 4, we present our
concluding remarks. In our presentation we shall skip the stratification step
because each stratum may be treated as a population avoiding complexities
in illustration.

Sitter’s (1992) mirror-match technique is useful to construct bootstrap
samples from an initial sample chosen by Rao-Hartley-Cochran’s (RHC,
1962) scheme. We slightly extend it here to RHC scheme applied in two
stages. In Indian National Sample Surveys (NSS) the first stage units are
chosen by circular systematic sampling (CSS) with probabilities proportional
to sizes (PPS) but the second stage sampling is by “equal probability CSS”-
scheme. So there is a curiosity on how RHC scheme in two stages may
fare in NSS. The Indian Statistical Institute (ISI) employs RHC schemes
in two stages in many relatively moderate surveys. A latest example from
ISI surveys (ISI, 2003) employed a five-stage sampling with RHC sampling
in the first stage followed by simple random sampling without replacement
(SRSWOR) in the later four stages.

2 Sampling, Bootstrapping and Estimation

Let U = (1, . . . , i, . . . , N) denote a finite population of N first stage units
(fsu), with the ith fsu in its turn composed of Mi second stage units (ssu).
Let the jth ssu in the ith fsu have the value yij on a real variable of interest
y with yi =

∑
2 yij as the total of y for the ith fsu, denoting by

∑
2 the

sum over the second subscript j of y over its range from 1 to Mi. Also, let∑
1 =

∑
denote the sum over the first subscript of y over the range of i

from 1 to N . Then, letting Y =
∑

1

∑
2 yij =

∑
1 yi our problem addressed

here is to estimate Y .
We suppose that pi(0 < pi < 1,

∑
pi = 1) are the normed size-measures

known for the fsu’s i = 1, . . . , N. In order to choose a sample of n fsu’s from
U by Rao, Hartley and Cochran’s (RHC, 1962) scheme first certain positive
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integers Ni are to be specified subject to
∑

nNi = N, writing
∑

n as the sum
over n non-overlapping groups into which U is randomly divided taking Ni

fsu’s in the ith group, i = 1, . . . , n. Writing Qi as the sum of the pi-values
for the Ni units falling in the ith group one unit is chosen from the ith group
with a probability equal to its pi-value divided by Qi. Writing pi, yi as the
normed size-measure and the y-value for the unit chosen from the ith group
Y is unbiasedly estimated by the RHC estimator

tr =
∑

n
yi

Qi

pi

if yi’s were ascertainable.
Here we assume that yi’s are not ascertainable. So, from the Mi ssu’s

in the ith fsu, if sampled, we decide to take a sample of mi ssu’s again
employing the RHC scheme assuming that normed size-measures

pij

0 < pij < 1, j = 1, . . . ,Mi,

Mi∑
j=1

pij = 1


are known for i, j(j = 1, . . . ,Mi, i = 1, . . . , N). Then

∑
mi

,Mij , yij , Qij , pij ’s
are the notations to be used paralleling respectively

∑
n, Ni, yi, Qi, Pi. Then

following RHC and Chaudhuri, Adhikary and Dihidar (2000) we may employ
the unbiased estimator

eR =
∑

n

Qi

pi

∑
mi

Qij

pij
yij

for which the variance is

V (eR) = A

[(∑ y2
i

pi
− Y 2

)
+
∑ Vi

pi

]
+ (1−A)

∑
Vi

where

A =
∑

nN2
i −N

N(N − 1)
, Vi =

∑
mi

M2
ij −Mi

Mi(Mi − 1)

Mi∑
j=1

y2
ij

pij
− y2

i


and an unbiased estimator for V (eR) is

v(eR) = B
∑

n
Qi

(
ŷi

pi
− eR

)2

+
∑

n

Qi

pi
vi
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writing

B =
(∑

n
N2

i −N
)

/
(
N2 −

∑
n
N2

i

)
,

ŷi =
∑

mi

Qij

pij
yij

and vi =

(∑
mi

M2
ij −Mi

M2
i −

∑
mi

M2
ij

)∑
mi

Qij

(
yij

pij
− ŷi

)2

.

Suppose there is an auxiliary variable x well-correlated with y and its values
xij are known for every j = 1, . . . ,Mi and for each i = 1, . . . , N. In such a
case to estimate Y following CSW (1976) it is suitable to employ the method
of generalized regression estimation. In the present case it seems reasonable
to estimate yi by

ŷgi =
∑

mi

Qij

pij
yij + bRi

(
xi −

∑
mi

Qij

pij
xij

)

taking bRi =
∑

mi
yijxijRij∑

mi
x2

ijRij
and hence ŷgi as ŷgi =

∑
mi

Qij

pij
yijgij with

gij = 1 +

(
xi −

∑
mi

Qij

pij
xij

)
xijRij

pij

Qij∑
mi

x2
ij

pij

Qij

with a suitable choice of positive constants Rij , e.g.,

Rij =
1

xij
,

1
pij

Qij
xij

and
1− pij

Qij

pij

Qij
xij

.

These are similar to 1
xi

, 1
πixi

, 1−πi
πixi

in CSW’s (1976) original greg estimator.
Then, finally Y may be estimated by the generalized regression (greg) esti-
mator

egR =
∑

n

Qij

pij
ŷgi + bR

(
X −

∑
n

Qi

pi
xi

)
; writing bR =

∑
nŷgixiRi∑

nx2
i Ri

with Ri as a suitably chosen positive constant. We shall take Ri as one of

1
xi

,
1

pi

Qi
xi

,
1− pi

Qi
pi

Qi
xi

,

these too as in the use of CSW’s (1976) greg estimator.
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Since ŷgi and egR are non-linear functions involving yij ,s we consider
it proper to assess the accuracy of egR as an estimator for Y on applying
bootstrap technique of repeated sampling from the initially realized two-
stage sample. For this we first note the following:

(i) ŷgi is a non-linear function of RHC estimators of the fsu-totals of the four
variable quantities namely

Mi∑
1

yij ,

Mi∑
1

xij ,

Mi∑
1

xijRij
pij

Qij
and

Mi∑
1

x2
ijRij

pij

Qij
;

so we may denote ŷgi by fi

(
y, x, xR p

Q , x2R p
Q

)
. Likewise,

(ii) egR is a non-linear function of the RHC estimators of the population
totals of the four quantities namely

N∑
1

yi,
N∑
1

xi,
N∑
1

ŷgixiRi
pj

Qj
and

N∑
1

x2
i Ri

pj

Qj
.

So we may write

egR = f

(
y, x, ŷgxR

p

Q
, x2R

p

Q

)
=

∑
n

Qi

pi
ŷgigi,

gi = 1 +
(

X −
∑

n

Qi

pi
xi

)
xiRi

pi

Qi∑
nx2

i Ri
pi

Qi

.

In view of (i) and (ii) if appropriate bootstrap samples may be drawn,
then it is easy to find (a) bootstrap standard error for egR, (b) bootstrap
confidence interval for Y with a pre-assigned confidence coefficient (CC)
by the well-known percentile method and associated measures of relative
accuracies for the alternative choices of the greg estimators through various
Rij ’s and Ri’s.

An extension of Sitter’s mirror-match bootstrap procedure to cover sam-
pling by RHC technique in the two stages seems to be appropriate here to
be employed in the following way.

First consider the already chosen sample in the second stage from the ith
fsu already selected in the first stage-both by the RHC scheme in manners
explained above. From the mi ssu’s selected, let a sample of size m∗

i (1 ≤
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m∗
i ≤ mi) be selected again by the RHC scheme with Qij ’s (j = 1, . . . ,mi)

as the normed size-measures recalling that
∑

mi
Qij =1 for every i ∈ U . In

drawing m∗
i ssu’s by RHC scheme out of mi ssu’s sampled from the Mi ssu’s

in the ith fsu suppose mij ssu’s are randomly assigned to the jth group
(j = 1, . . . ,m∗

i ), p
∗
ij denoting the normed size-measures (now, one of the

Qij ’s) of the single ssu selected from the jth group with Q∗
ij denoting the

sum of these over the mij units falling in the jth group.

Then,
∑

m∗
i

Q∗
ij

p∗ij

(
Qij

pij
yij

)
is an unbiased estimator for

∑
Mi

Qij

pij
yij = ŷi

for this sampling. Such a sampling is a bootstrap sampling. Let this be
independently repeated a number of times, say, `i, i ∈ U. Also, let E∗

2 , V ∗
2

denote the operators for expectation and variance respectively, with respect
to this bootstrap sampling. Then,

E∗
2

 1
`i

`i∑
1

∑
m∗

i

Q∗
ij

p∗ij

(
Qij

pij
yij

) = ŷi

and

V ∗
2

[
1
`i

`i∑
1

(∑
m∗

i

Q∗
ij

p∗ij

(
Qij

pij
yij

))]
= 1

`i
V ∗

2

[∑∗
mi

Q∗
ij

p∗ij
wij

]
, writing wij = Qij

pij
yij

= 1
`i

[{∑∗
mi

m2
ij−mi

mi(mi−1)

}(∑
mi

w2
ij

Qij
−
(∑

mi
wij

)2)]
= 1

`i

[{∑∗
mi

m2
ij−mi

mi(mi−1)

}(∑
mi

Qij
y2

ij

p2
ij
− ŷ2

i

)]
(2.1)

Recalling that

vi =

(∑
mi

M2
ij −Mi

M2
i −

∑
mi

M2
ij

)(∑
mi

Qij

y2
ij

p2
ij

− ŷ2
i

)
(2.2)

is an unbiased estimator of the variance of ŷi Sitter (1992) recommends
choosing `i such that the variance in (2.1) may equal vi in (2.2) provided
our concern was only about sampling in the second stage. But such a choice
of `i is to be modified as follows to take account of sampling in two stages.

From the original sample of n fsu’s already selected by the RHC scheme
let a sample of n∗(2 ≤ n∗ < n) fsu’s be selected again employing an RHC
scheme in the following way. Noting that

∑
nQi = 1, let Qi’s be now treated

as the normed size-measures for the n fsu’s already chosen. Let ni’s be
positive integers chosen subject to

∑
n∗ ni = n so that ni fus’s are assigned
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to the ith group when the sample of n fsu’s is split up randomly into n∗

groups. Now let Q∗
i denote the sum of the ni values of Qi falling in the ith

group thus formed. Also let p∗i denote the Qi-value of the unit chosen in a
sample of size one drawn from this ith group with a probability equal to its
Qi-value divided by Q∗

i . When this is independently repeated for all the n∗

groups we have a bootstrap sample from the initial sample of n fsu’s. Let
this bootstrap sampling be independently repeated k times; k is a positive
integer to be fixed up in a manner described below. Let E∗

1 , V ∗
1 denote

the operators for expectation and variance respectively, with respect to this
bootstrap sampling. Then, we have, for any variable quantity ui for i ∈ U,

E∗
1

[
1
k

k∑
1

(∑
n∗

Q∗
i

p∗i
ui

)]
=

∑
n

Qi

pi
ui and

V ∗
1

(
1
k

k∑
1

(∑
n∗

Q∗
i

p∗i
ui

))
=

1
k

(∑
n∗i

n2
i − n

n(n− 1)

)∑
n

u2
i

Qi
−

(
N∑
1

uj

)2
 .

If we implement the bootstrap sampling in the above manners in the two
stages such that the second stage units are selected from the respective fsu’s
selected, then if we take

e∗ =
1
k

k∑
1

[∑
n∗

Q∗
i

p∗i

Qi

pi

(
1
`i

`l∑
1

(∑
m∗

i

Q∗
ij

p∗ij

(
Qij

pij
yij

)))]

we have E∗(e∗) = E∗
1E∗

2(e∗) =
∑

n
Qi

pi

∑
mi

Qij

pij
yij = eR, on taking E∗ =

E∗
1E∗

2 = E∗
2E∗

1 . If following Chaudhuri, Adhikary and Dihidar (2000) we
write V ∗ = E∗

1V ∗
2 + V ∗

1 E∗
2 = E∗

2V ∗
1 + V ∗

2 E∗
1 then following them we can

check easily that

V ∗(e∗) =
1
k

[∑
n∗ n2

i − n

n(n− 1)

(∑
n
Qi

(
ŷi

pi

)2

− e2
R

)
+

1
`i

{∑
n∗ n2

i − n

n(n− 1)

∑
n

ai

pi
+
(

1−
∑

n∗ n2
i − n

n(n− 1)

)∑
n
ai

}]
,

writing

ai =

(∑
m∗ m2

ij −mj

mi(mi − 1)

)(∑
mi

Qij

(
yij

Pij

)2

− (ŷi)2
)

Q2
i

p2
i

.
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Taking the cue from Sitter (1992) let us choose k and `i such that V ∗(e∗)
may equal v(eR). This equation yields

k =
∑

n∗ n2
i − n

n(n− 1)
·
N2 −

∑
nN2

i∑
nN2

i −N
and

`i =
1
k

{∑
n∗ n2

i − n

n(n− 1)
1
pi

+
(

1−
∑

n∗ n2
i − n

n(n− 1)

)}
·
∑

m∗
i
m2

ij −mi

mi(mi − 1)
·
M2

i −
∑

mi
M2

ij∑
mi

M2
ij −Mi

pi

Qi
.

In practice k and `i are to be replaced by integers nearest to them. Thus
this finally specified bootstrap sampling procedure may be announced as
the version of Sitter’s (1992) mirror-match bootstrap sampling in two-stages
starting with an RHC scheme in the first stage followed by one also in the
second stage.

Now e∗ is a bootstrap estimator for Y =
∑N

1

∑Mi
i yij . This bootstrap

sampling is to be repeated usually a large number B of times. Suppose for
the bth (b = 1, . . . , B) bootstrap sample this e∗ be denoted as e∗b . Then,
e∗(.) = 1

B

∑B
b=1 e∗b is the bootstrap average version of e∗ and

v(e∗) =
1

B − 1

B∑
b=1

(e∗b − e∗(.))2

is taken as the bootstrap variance estimator for the original estimator eR.

Since e∗ is an estimator for
∑N

1

∑Mi
i yij . we may denote it as e∗(y),

the bootstrap version of eR. So we may write e∗(y, x, ŷgxRp/Q, x2Rp/Q)
and e∗i (y, x, xRp/Q, x2Rp/Q) as the bootstrap versions of f(y, x, ŷgxRp/Q,
x2Rp/Q) and fi(y, x, xRp/Q, x2Rp/Q) respectively. So, for the bth (b =
1, . . . , B) bootstrap we evaluate e∗b(y, x, ŷgxRp/Q, x2Rp/Q) on evaluating
earlier e∗ib(y, x, xRp/Q, x2Rp/Q) on rightly choosing (Rij , Ri). Then boot-
strap variance estimators for the greg estimators are easily derived employ-
ing

v

(
e∗b

(
y, x, ŷgxR

p

Q
, x2R

p

Q

)
=

1
B − 1

B∑
b=1

(e∗b(., ., ., ., )− e∗(.)

)2

.

Incidentally writing the finite population correlation coefficient between y
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and x as

RN =

N∑
1

Mi

N∑
1

Mi∑
i

yijxij −

(
N∑
1

Mi∑
i

yij

)(
N∑
1

Mi∑
i

xij

)
√√√√ N∑

1

Mi

N∑
1

Mi∑
1

y2
ij−

(
N∑
1

Mi∑
1

yij

)2
√√√√ N∑

1

Mi

N∑
1

Mi∑
1

x2
ij−

(
N∑
1

Mi∑
1

xij

)2

and the coefficient of regression of y on x as

BN =

N∑
1

Mi

N∑
1

Mi∑
i

yijxij −

(
N∑
1

Mi∑
i

yij

)(
N∑
1

Mi∑
i

xij

)
N∑
1

Mi

N∑
1

Mi∑
1

x2
ij −

(
N∑
1

Mi∑
1

xij

)2

we may estimate them respectively by

r =

(∑
n
Qi

pi
Mi

)(∑
n
Qi

pi

∑
n
Qij

pij
yijxij

)
−
(∑

n
Qi

pi

∑
mi

Qij

pij
yij

)(∑
n
Qi

pi

∑
mi

Qij

pij
xij

)
√(∑

n
Qi

pi
Mi

)(∑
n
Qi

pi

∑
mi

Qij

pij
y2

ij

)
−
(∑

n
Qi

pi

∑
mi

Qij

pij
yij

)2

× 1√(∑
n

Qi

pi
Mi

)(∑
n

Qi

pi

∑
mi

Qij

pij
x2

ij

)
−
(∑

n
Qi

pi

∑
mi

Qij

pij
xij

)2

and

b =

(∑
n
Qi

pi
Mi

)(∑
n
Qi

pi

∑
n
Qij

pij
yijxij

)
−
(∑

n
Qi

pi

∑
mi

Qij

pij
yij

)(∑
n
Qi

pi

∑
mi

Qij

pij
xij

)
(∑

n
Qi

pi
Mi

)(∑
n

Qi

pi

∑
mi

Qij

pij
y2

ij

)
−
(∑

n
Qi

pi

∑
mi

Qij

pij
yij

)2

Both r and b are non-linear estimators of totals of (1, yx, y, x, y2 and x2) and
of (1, yx, y, x, and x2). So, to assess their accuracies bootstrap sampling as
above is useful in deriving bootstrap versions of r and b, denoted respectively
by r∗ and b∗ and their bootstrap variance estimators denoted by v(r∗), v(b∗),
say, to assess accuracies in estimation respectively of RN and BN .

3 Numerical Illustration of Relative Efficacies

We consider estimation of total area under cultivation (y) in a particular
district composed of 34 blocks as fsu’s with numbers of villages (ssu’s) re-
spectively therein as 36, 22, 28, 69, 72, 23, 38, 31, 18, 43, 43, 35, 22, 30, 32,
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39, 19, 18, 26, 42, 34, 23, 36, 75, 41, 46, 60, 50, 38, 44, 53, 55, 48 and 35. We
consider surveying n = 14 blocks and 1/3rd of the villages (rounded below
to integers) within the sampled blocks. A size-measure of a block is taken
as its total population counted in the 1991 census and that of a village as its
area (in hectares) also determined by 1991 census. As auxiliary variable x
we take the area under irrigation, which is already, ascertained each village-
wise. Bootstrap block sample-size is taken as n∗=7 and the village bootstrap
sample-size is taken as m∗

i equal to half of mi rounded downward to an inte-
ger. For a greg estimator we consider 3 alternative choices of (Rij , Ri) equal
to

(i)
(

1
xij

,
1
xi

)
, (ii)

(
1

pij

Qij
xij

,
1

pi

Qi
xi

)
and (iii)

(
1− pij

Qij

pij

Qij
xij

,
1− pi

Qi
pi

Qi
xi

)
.

The respective greg estimators are denoted as eg1, eg2, eg3 and their bootstrap
versions as e∗g1, e

∗
g2, e

∗
g3, which we shall refer to as bootstrap estimators.

For the live data at hand we have Y = 123639.03 (hectare), X = 983175.67
(hectare), RN = 0.7019 and BN = 0.0822.

We take 100×
√

v(e∗)/e∗ as a coefficient of variation (CV) as a measure
of accuracy of e∗ taken generically as any bootstrap estimator. Using the
calculated values of e∗b for b = 1, . . . , B (taken as 200) from their histogram
95% confidence interval for the parameter θ of which e is a point-estimator
is found on working out eL and eU the lower and upper 2.5% points of the
histogram, along with its length equal to eU − eL. Repeating this entire
exercise a large number of times T taken as equal to 1000 we calculate (1)
ACV, the average over the T replicates of the values of CV, (2) ACP, the
percent of T replicates for which the CI namely eL, eU ) covers θ and (3) AL,
the average length (eU−eL.) of the CI over the T replicates for the respective
initial estimators – to be treated as criteria for comparative performances of
several estimators.

Table 1. Showing the comparative performances of estimators

Bootstrap Estimated values of the For the bootstrap estimator e∗

estimators bootstrap estimators ACV (in %) ACP (in %) AL

e∗R 125185.07 8.61 86.10 20920.26
e∗gl 127796.47 7.99 91.20 24182.61
e∗g2 127858.89 7.53 93.00 24443.98
e∗g3 127916.33 7.08 95.10 24631.83
r∗ 0.6975 10.87 92.15 0.2103
b∗ 0.0874 10.35 93.12 0.0287

Following the recommendations of a referee, for the above-mentioned
bootstrap estimators we calculate the relative bias, say, R.B. defined as
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R.B. =
∣∣ 1
T

∑
T e∗(.)− θ

∣∣ /θ, writing E(θ̂) = 1
T

∑
T e∗(.) where

∑
T denotes

the sum over T replicates. Taking T = 100, we illustrate these relative biases
in Table 2 below.

Table 2. Showing percent relative biases of the bootstrap estimators

Estimator Average of T = 100 % relative
bootstrap estimates bias

e∗R 124885.69 1.0
e∗gl 126873.89 2.6
e∗g2 126902.89 2.6
e∗g3 127001.33 2.7
r∗ 0.6925 1.3
b∗ 0.0848 3.2

4 Concluding Remarks

In inferring about a survey population parameter like a total or mean,
correlation coefficient, regression coefficient etc., estimators that are non-
linear functions of sample-based random variables often have to be employed
for the sake of efficiency. For efficiency comparisons bootstrap procedures
may be helpful especially when the estimand parameter is unknown. In the
present case if Y were unknown we could not evaluate ACP but ACV and
AL values may be regarded as good enough criteria. Even if by alterna-
tive procedures measures of errors of the point estimates illustrated above
could be evaluated and comparative study could be made in terms of the
values of CV and AL for a realized sample better summary measures may be
recognized as ACV and AL obtained through a bootstrap procedure. An al-
ternative to a bootstrap demands assumption of normality in obtaining CI’s
and their assessments by ACP’s. In the present case, however, our findings
vindicate the use of a greg estimator as a better performer than the original
RHC estimator for a population total.
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