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SUMMARY. We prove a strong consistency result for minimum contrast estimators for
general regression problems with independent errors using technically transparent proofs.
This unifies the study of strong consistency of least squares estimators in nonlinear re-
gression models and maximum likelihood estimators in generalized linear models. We give
new examples from nonlinear regression and generalized linear models where strong con-
sistency can be established from our result. We also demonstrate that in many situations
our result is significantly close to the best existing results.

1. Introduction

Let {Y; : j > 1} be an independent sequence where Y; ~ Fj(y,6p), 60y
belongs to interior of © which is a compact, conver subset of IRP. Let
pj IR x© —= IR, j>1beasequence of measurable maps. A sequence of
minimum contrast estimators (MCE) is any measurable sequence of estima-
tors {6,} which minimizes

Qn(g) = Z pj(Yjvg)' (1'1)
j=1

The study of MCE and related M-estimators originated in Huber (1964,
1967) while studying robust estimation. An excellent account of related
literature can be found in Hampel et. al. (1986). For the purpose of the
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current article we assume p;’s are absolutely continuous with Lipschitz con-
tinuous Radon-Nikodym derivatives with respect to 6. Barring few special
instances like regression quantiles, which fail to have continuous Radon-
Nikodym derivatives, most of the standard contrast functions satisfy this
property.

Two important examples of minimum contrast estimators are the least
squares estimators in nonlinear regression models and the maximum likeli-
hood estimators in generalized regression models. There has been a volume
of research to answer the question of strong consistency in these two models.

In the nonlinear regression model,

where {€;, j > 1} is an independent sequence of mean zero random variables.
Often f(j,0) = f(z;,0) to incorporate regressor variables. The least squares
estimator (LSE) 6, is any § which minimizes

n

Qn(0) = _(Y; — £(,0))*. (1.3)

j=1
In the generalized linear model with natural link function,
Y; has density f(y|z’0), (1.4)

where f(- | §) is assumed to belong to some exponential family and mean
of Y; equals x;ﬂ. The maximum likelihood estimator (MLE) 6,, , is any 0
which minimizes Qy(0) = 37—, —log f(Yj|z}0).

With reference to (1.2), Pfanzagl (1969) studied strong consistency of
the MLE of a location parameter when the scales are varying. For proper
nonlinear regression problems we refer to works of Lai, Robbins and Wei
(1978, 1979), Christopeit and Helmes (1980), Wu (1981), Lai and Wei (1982,
1987), Chen and Wu (1988) and Lai (1994) among others. In these works
several aspects of the problem have been studied such as dependent error
structures and stochastic regressors.

For generalized regression models of the form (1.4), fairly comprehensive
answers related to strong consistency of the MLE can be found in Fahrmeir
and Kaufmann (1985) and Chen, Hu and Ying (1999).

The main goal of the current paper is to unify the study of strong con-
sistency in (1.2) and (1.4) when the observations are independent and the
regressors are nonstochastic. Under this framework we derive strong con-
sistency of MCE with minimal growth/decay restrictions on the regressor
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sequence, {z;} and model variances, {Var(Y;)}. Besides, the proof of the
main theorem also identifies some necessary logical steps which must be ver-
ified to establish any strong consistency result in an abstract sense. The
apparent structural simplicity of the proof suggests that our technique could
be useful for strong consistency problems in more general situations.

It is quite understandable that a very abstract generalization is not ex-
pected to produce the best result in a specific application since it cannot
afford to use problem specific information. Nevertheless, we are able to show
that in a variety of applications, our technique produces nearly the best ex-
isting answer. Below we give a few examples of such situations and also
of instances where our results appear to be nontrivial addition to existing
strong consistency results.

Our first example is that of the linear regression models with independent
errors. Consider the model Y; = x}ﬁ + €;, where {¢;} are independent,
Eej = 0, Ee; < oo for all j and {z;} are p x 1 vectors. The best strong
consistency result for these models is due to Lai, Robbins and Wei (1979)
(LRW).

Let the minimum and the maximum eigenvalues of any matrix A be
denoted by A(A) and A(A) respectively. Also, let ', = >i=1 mjx;-, which
we assume to be non-singular for large n. Under the two conditions given
below, the LSE is strongly consistent.

LRW 1 {¢;} is such that ) c;e; < oo almost surely for all {¢;} such that
S e? < oo.

LRW 2 I';!—o.

Note that the first condition is satisfied if {¢;} are independent and
sup; Ee? < 00. Let

D, = Dia'g(rn,lla ‘e aFn,pp) and  p, = A(Dgl/QFanl/Q),

where 'y, j;’s denote diagonal elements of I'y,.
To keep matters simple, let us assume that the design matrices {I';,} are
well conditioned in the sense that

lin}}nfﬂn > 0. (1.5)
Let also for some o > 1,
L(z) = (log(x)) (log log(x))"
Then, our result implies strong consistency of the LSE if

ATy) = o
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and
ChL(max(Cp, A(n)) )
A(ly)

— 0, (1.6)

where C,% = maxi<j<n Ee?.

Since A 1(T',) = O(maxi<j<p %), where I'¥/’s are diagonal elements of
[, it may be noted that (1.6) allows for a trade-off between the magnitude
of the error moments and the design variables. This is a relatively mild ad-
ditional assumption compared to the condition of LRW. In many important
applications of regression analysis, heteroscedastic models with unbounded
regressors are encountered and we hope our result is a nontrivial addition to
the available strong consistency results in such scenarios.

It may be noted that (1.6) is also a condition similar to Lai and Wei
(1982). They have shown that for linear regressions with stochastic regres-
sors, strong consistency holds if sup; Ee? < 00, A(T',) — oo almost surely,
and for some o > 1 _

(log A(T'n) )

ST 0. (1.7)

Our next example is on nonlinear regressions. A very general result
obtained in this area is that of Wu (1981). As we will see later, the central
idea behind our method is based on Wu (1981). As a specific example where
Wu (1981) does not apply but our results do, consider the model (1.2) with
f(4,0) = aexp(Bz;). With an appropriate parameter space and a decay
condition on {z;}, the least squares estimator is strongly consistent but
Wu'’s conditions are not satisfied. We compare our results with his in detail
while discussing Example 2.2.

In a related work, Bai and Wu (1997) obtained a very general result for
weak consistency of MCE with convex {p;}-functions in (1.2). It has been
demonstrated that for weak consistency, the rate conditions can be relaxed
significantly. When specialised to the linear regression case, it reduces to
I';! — 0. However, more assumptions are necessary for strong consistency
in general.

Our final example is from generalized linear models. Fahrmeir and
Kaufmann (1985) (FK) proved results for the strong consistency of the
MLE in generalized linear models by techniques suggested by Wu (1981).
As a specific case, consider the Poisson regression model, P(Y; = y) =
exp(Bjy — exp(B;))/y!, and B; = w;ﬂ. Let I'n(0) = X7 exp(x;ﬂ)xjw;-.
Suppose that 0y is the true parameter value and ||6 — || < ¢ for 8 € © for
some § > 0 (|| - || denotes the Euclidean norm). For the sake of simplicity,
suppose that {I';,(0g)} is well conditioned so that (1.5) holds.
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The results of FK implies that the MLE in this model is strongly consis-
tent if A(T'y,(0p)) = O(A(T,(6p))¢) for some ¢ < 2. On the other hand, our
result implies strong consistency if for every 6 # 6y € ©, we can find n > 0,
such that

exp{n|z|n} L(A(T'n(60)))
max{A(I'n(0)), A(T'n(fo))}
Here |z|, = maxi<j<y, |z;].
In a closely related work, Chen, Hu and Ying (1999) have extended the
methods of LRW to generalized linear models with natural link function
where {z;} may be adaptive. The estimator 3, of 3 is obtained by solving

— 0. (1.8)

Zﬁcz’[yz' — p(ziB)] = 0.

They prove that if LRW 1 and LRW 2 hold and sup,, |z|, < oo, then f, is
strongly consistent.

In Section 2 we give the basic idea, the main results and some examples.
In Section 3 we provide the proofs along with a discussion on the basic ideas
behind the proofs. An auxiliary result (Lemma 2 in Section 3) on the lower
bound of the infimum of a linear plus a quadratic form is a key tool and may
be of independent interest.

2. Main results and Examples

Throughout, || - || denotes the Euclidean norm. For given sequences
{an} and {b,} of positive real numbers write, a, =~ b, if ca, < b, < Cay,
for two positive constants ¢ and C for sufficiently large n.

We shall assume that the parameter space is compact and convex. If it
is not compact, one proves the existence of a sequence of local minimizers
of @,(0), which converges to ) almost surely. Under this convention, we
can restrict the original parameter space to an arbitrarily small (but fixed
a priori) neighbourhood of 6. We shall adopt this convention whenever
necessary, without loss of generality.

From (1.1) let us write

Qn(g) - Qn(90)
= {(Qu(0) — EQn(0)) — (Qn(00) — EQn(60))} + {EQn(0) — EQn(o)}.
In order to establish strong consistency, one shows that outside any neigh-

bourhood of 6y, the left side of the above equation is strictly positive. Often,
a necessary condition for strong consistency is that the second term must be
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large positive whenever 6 # 6. See for example Theorem 3 of Wu (1981).
Then it is necessary to show that the first term on the right side is dominated
by the second term of the right side uniformly in @ belonging to the comple-
ment of any neighborhood of #y. As a consequence, a suitable assumption
on the behavior of E(Q,(0) — Q,(0y)) is crucial. We distinguish between
three different types of behavior of this quantity.

(i) We say that (1.1) has a parameter independent uniform rate if for some
Yn — 00 and a suitable distance measure d(-, -),

E(Qn(0) — Qn(0o)) = vn d(bo, 0).

This encompasses the traditional set up for strong consistency results such
as those of Drygas(1976).

(ii) We say that (1.1) has a parameter independent non-uniform rate if for
a sequence of positive definite matrices I'), such that A(T',) — oo,

E(Qu(6) = Qu(60)) ~ (6 = 0)) T (6 — 6).

(iii) We say that (1.1) has parameter dependent rate if E(Qn(6) — Qn(60))
cannot be approximated by a fixed quadratic form unlike as in (ii) above.

Even though it is possible to state one general result which covers all the
three cases, for the sake of technical transparency, results for Case (ii) and
Case (iii) are stated separately. Section 2.1 deals with Case (ii) where the
main result is Theorem 2.1. This result when specialised to nonlinear regres-
sion models takes the form of Theorem 2.2. Examples 2.1 and 2.2 discuss
in details respectively, the general linear regression model and a specific
nonlinear regression model. The general consistency result for Case (iii) is
Theorem 2.3 in Section 2.2 and when specialised to generalised linear models
it takes the form given in Theorem 2.4. Example 2.2 is continued in Section
2.2 to show how Case (iii) arises. The proofs are given in Section 3 where
we also comment on our method of proof. An auxiliary result on a lower
bound of a function which is the sum of a linear and a quadratic form may
be of general interest.

2.1 Models with parameter independent non-uniform rate. Let us first
state the five basic assumptions that we will use in this case.



446 ARUP BOSE AND DEBAPRIYA SENGUPTA

Assumption Al. There exists ¥; = (¢1,...,%jp) : IR x © — IRP such
that Ey,|U;(Y;,0)> < co and, for each y€RR, 0,02€0, 0, = af+(1—a)bs,

, rl
1000 = p1(3.02) = 01 —02) [ 05(0,6) do

where 0, = af; + (1 — a)f;. Define ¥;(y,0) = fgl Wj(y, 00 + (6 — 0p)) dow =
(i1, %)y bik(0) = Egotjk(Y,0), and let B;j(6) = (bj1(6), ..., bjp(0))-

Assumption A2. For each j, k there exists square integrable random variable
M, such that for some o > 0, and for every 0,60' € ©, almost surely,

{5k (Y, 0) =By (15 (Y5, 0)) } =i (Y5, 0') = By (15 (Y5, 0) )} < Mg [|0 0|

Assumption A3. For each n, there exists a p X p nonnegative definite matrix
I';, such that uniformly in 6 € © for sufficiently large n,

> {Bu(pi(Y5,0) — pj(Y5,00))} > (6—6p) T (6 —6p).  (2.1)

J=1

Next define for large n and 1 < k < p,

n
d%bk = Z max { EHOMJZI@? Va'rl%(i/)jk(yrja 00) ) } , Dp= Dia’g(d?ﬂa s ’d12’1,p)'
j=1
(2.2)
_ _ ~1/2 —1/2 i
Also let, v, = A(Ty), pn =A(Dn ""TpDyp 7). Assume the following

Assumption A4. v, = A([,) — oo as n — 0.
Assumption Ab. dik —o0asn—ooforl <k<p, and

wn = lrgggpL(dik)/un% — 0,

where L(z) = log z{loglog z}* for some o > 1.

REMARK ON THE ASSUMPTIONS. In Al we impose restriction on {p;}
that they must be absolutely continuous but they need not be too smooth.
In particular, {p;} need not be twice differentiable. In the context of robust
estimation it is not uncommon to have contrast functions that are not twice
differentiable. For example, one common choice of p comes from Huber’s 1,
namely, (3/90)p(y,0) = (y—0) for |y — 6| < c and = ¢ sign(y — 6) otherwise.

The condition A2 guarantees that we are in a suitable Banach space
equipped with L, norm where a strong law for independent summands is
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available. See Lemma 1. This restriction unfortunately eliminates the scope
for direct application of our result to regression quantiles. Nevertheless, L-
regression can be handled by using our approach in the following way. The
contrast function (the modulus function) does not satisfy either Al and A2.
But note that for fixed y # 0, (Jy —t| — |y|) /t is a continuous function in
t satisfying A2 with square integrable Mj;’s. One can use this property to
successfully study strong consistency properties of Li-regression estimators.
This will be reported elsewhere.

A3 captures standard unbiasedness assumption (namely, EV;(Y;,0y) =
0). It also serves to define the key quantity needed for the identifiability
condition in A4. This condition is quite straightforward to verify in standard
applications. Note that {b;}, being expectations, may happen to be smooth
even when the {p;} are not so. This would ensure the existence of the
sequence {I',}, which acts like the design matriz if we adopt regression
terminology. In a linear regression set-up we can choose I';, = Y xzx;

The last two assumptions are regarding eigenvalues of essential constructs
for this problem, namely, {I',} and {D,}. A4 is a standard identifiability
condition stated in terms of I',,. For non-linear regression models, A4 is
equivalent to 37 (f(5,0) — f(5,00))®> — oo for 6 # ;. Under additional
mild restriction on {¢;}, it is a necessary condition for strong consistency
of MCE (see Wu, 1981). A5 is the most crucial condition which imposes
restrictions on the growth of the eigenvalues of {I';,} and elements of {D,, }.

Computation of the essential rate constants {v,} and {p,}. The com-
putation/estimates of these constants is crucial to verify A5. This can
be simplified as follows. For a sequence of p x p positive definite matri-
ces {A,}, we know from the theory of quadratic forms (¢f. Rao, 1974)
that A\(A4,) =~ maxi<i<p Anii and 1/A(A,) = maxi<i<p A¥ where Apii
and A¥ are diagonal elements of A, and A, ' respectively. Using these,
one can check that 1/, ~ maxi<i<, Ff{ Similarly, it can be shown that
1/;1% ~ maxi<;<p d?zz F:LZ

Note that in view of this, A5 is implied by

L(lrg%od’%i) <1r£11a§)§) Fﬁf) <1r£1§1§)§)d,%i Ff{) — 0. (2.3)
Hence we can replace A5 by imposing (2.3). This also establishes a close
connection between A5 and conditions obtained by LRW and Chen, Hu and
Ying (1999).
We now state our general theorem on the consistency of MCE for the
parameter independent nonuniform case. The parameter dependent case is
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dealt in Theorem 2.3. The proof of this and all other results are given in
Section 3.

THEOREM 2.1. Under A1-A5, 6, — 0y = O(w}/2) almost surely.

Let us now show how our results apply to specific models such as non-
linear regression models and generalized linear models.

Application to linear and nonlinear regression models. Consider Model
(1.2). We show how our general conditions translate directly into conditions
on the functions f(j,0) and offer a step-by-step verification of our assump-
tions in this class of models.

First observe that p;(Y;,0) = (Y; — f(5,0))%. If f(j,-) is once differen-
tiable we can verify Al and obtain

U;(0) = =2(Y; — f(5,0)) vf(4,0), (2.4)
where 7f(4,0) = (f1(4,0),..., fp(4,0))’, denotes the first derivative of f. In

view of (2.4) we make the following assumption.

Assumption S1. f(j,0) is continuously differentiable in 6. Moreover, for each
J, k, there exists a positive constant 7;; > 0, such that for some o > 0 and
for every 6,0 € ©,

11103 0) = fu(G, 0)] < mell0 —6'||°.

In view of (2.4), a simple algebra shows that A2 will be satisfied in this case
with
Mj i, = 2|ej|Tjk.

Next we observe that by Taylor’s theorem on the line segment joining 6y and
= (0 —6) (fol vf (4,64) da) (f01 vf (7, 0a) da) (0 — 6p). Let us define

ru(0) =Z ([ wrG.onaa) ([ vf(j,%)da>’- (2.5

To obtain a parameter independent I'y,, assume that

Assumption S2.. There exists a sequence of positive definite matrices G,, and
for each 6, there exists positive definite H(#) such that, as n — oo,
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G'?T,(0)G; /2 — H() uniformly in 6.

Note that I',(#) is continuous by S1. Thus, H(#) is also continuous
because of uniform convergence. Define T'y, = infy A\(H(0)G,,). Also, let for
each k,

2, =4 max (f]?(jaoﬂ)aT]?k) E(e5).
7=1

Theorem 2.1 translates into the following theorem for nonlinear regression
models. We omit its proof.

THEOREM 2.2 (Nonlinear regression). Under S1, S2, A4 and A5, the
least squares estimator 6,,; converges to ¢y almost surely.

We now discuss how this result compares with existing results on non-
linear regression models.

REMARK 2.1. (Partial comparison with the results of Wu (1981)). The
best strong consistency result in this class of models with independent errors
appears to be Wu (1981) who proves the strong consistency of the LSE under
the following assumptions and also under weaker local versions of these.

Assumption W. (i) For any ¢ > 0, for some ¢ > 0,

S SuD|g_go 55l(£ (G, 0) — £(4,00))2] 1+

limsu s . . < 00.
wosel 2y inflgg2s(£(5,0) = (3. 60)?
(i1)  f(4,0) are Lipschitz functions on 6 and
L 0,) — £(j.0 . .
sup TGOV ZTUBI ]y | (5.0) — 1,00

01705 | 01 — 02 | 0—00|>6

for some § > 0 and for all j, where M is independent of j.
(i) 371 (£ (4, 0) — (4,00))* — o0 and sup; E(€f) < oo.

There are two main points to be noted. First, this result requires
sup; E(e?) < 00. Our condition A5 incorporates possible unbounded nature
of the variance sequence. Secondly, Wu’s condition attempts to incorporate
regression functions that are not even differentiable. We assume in S1 that
f(4,0)’s are continuously differentiable. The trade-off shows in the rate con-
dition. While Wu’s assumption W(i) requires A\(T',) = O(A(T',)¢) for some
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¢ < 2, we can relax it to a great extent; to get an idea compare the above
conditions with (1.5) and (1.6) in the linear regression case. We now discuss
the linear regression model and a specific nonlinear regression model.

EXAMPLE 2.1 (Linear models). Consider the model Y; = m;-9+6j, where
{z;} is a fixed regressor sequence and {e;} is an independent mean zero
sequence with finite variances. Because we are dealing with the linear model,
S1is automatically satisfied with 7;, = 0 for all j, k. Moreover, we can choose
Lp =30 ; x'] Therefore, v, = A(3 7= 7; x;), which we need to assume
diverges to infinity from A4. Next we can choose,

n
j=1

From the above facts and some elementary matrix computation it can
be shown that u, ~ C;2A(F,) where C? = max;<;<p Ee? and Fp 5 =
|y (Fn,kkfn,u)_l/z. From the standard theory of linear models (see, Rao,
1974) it follows that for well conditioned design matrix (see (1.5)),

A(Fy) = {rr%n(l - Ri,k_];)}a

where Ri .. 1s the multiple correlation of the k-th regressor variable on the

rest based on the first n observations. Therefore, u, ~ C, 2. Hence, Ab is

equivalent to
C2 (G2 {max T })

fmin(l— 72, )TAT,)

— 0.

In conclusion, for linear models with independent errors and well conditioned
design matrix (see (1.5)) if the error variances grow at a rate slightly less than
the minimum eigenvalue of the design matrix, the LSE is strongly consistent.

EXAMPLE 2.2 (A specific nonlinear regression model). Consider the ex-
ponential regression model

Y; = aexp(Bz;) + €j,

where the €; are independent with mean zero and variance 0']2- (say). This
model has applications in areas such as systems analysis. We will impose
restrictions on the model so that we are in the parameter independent rate

situation. This example will be continued in Section 2.3 where we will see
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that when {z;} is unbounded, we may obtain the parameter dependent rate
situation.

The parameter space for § = («, () is given by © = [a, A] x [b, B] C
(0, 00) x (=00, 0). The true values of the parameters are denoted by ag
and ,60.

We first assume that {z;} are nonnegative and converges to zero as j —
co. Also assume that, >, m? and 52 = = (T — T,)? both diverge to
oo as n — oo. Moreover, r, = (327 z;)/(n Y] m?)l/g, is assumed to be
bounded away from 1. Sequences like z; = 77" will satisfy this property.

Simple calculations show that as 7 — oo,

f1(5,0) = exp(Bz;) and fa(j,0) = az; exp(Bz ).

Also, for a suitable constant C' > 0,
[£103,0) = f13,6)] < C || 10—6'|] and [£2(5,0)~ f2(3,6)] < C |a;] |06

Therefore, S1 is satisfied with 7;1 = 7j5 = C'z;. Some algebra yields that
in (2.5)

n(1+o(1)) {(a+a0)/2} (37 ) (1 +o(1))
{(a+a0)/2} (T w)) (L+0(1)  {(o+0)/2} (X7 27)

r(0) =~

(2.6)
Moreover, the o(1) terms appearing in each cell of the above matrix are
so uniformly in 6 because © is compact. However, we need a parameter
independent T',. To obtain it, define G, = Diag(n, .7 7). Consider the
matrix Gﬁl/2Fn(0)Gﬁl/2 and recall that r, = (37 z;)/(n 27 x?)l/Q. It is
not difficult to check that

1 {(a+aog)/2}rm
{(atao)/2}rn {(at+an)/2}?

Thus (2.1) is satisfied with I';, = nG,. Also, A4 is satisfied as v, =

T x? — 00, by supposition. Next, since z; — 0, we can choose d?, ~
n 2y, 2 v 2 2 N2 2 :

Yie1 max(l,x5)o; = 3Ly of and dpy ~ 371 zj05. Also, as in Example

2.1, we can claim, u, > C2, with C,, as before.

Finally, A5 is satisfied if

C2L(Y " 0?)/ (Z x§> S0,
1 1

n—oo @

lim inf inf \ (

.. )
)211nn_1)&1f0(1 ri)>n>0.
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By choosing z; = j~* for some u > 0 we see that n = O([3_7 m?]c) for some
c < 2 iff u > 1/4. In our case, for the above choice, s2 = [(1 — 2u)u?/
(1—wu)?] 30 x? Therefore, Theorem 2.2 is applicable for any 0 < u < 1/2.
For u = 1/2, it can be separately verified that s2 ~ ’fx? ~ logn. Hence
strong consistency holds in this case if sup, C? < oo and 2= 032- = o(n).
Whether strong consistency holds with Z?Zl 0]2- ~ n cannot be settled by
Theorem 2.2.

REMARK 2.2. (Random regressors). A very relevant issue is to what
extent is it possible to relax the assumption that the regressors are non-
random. The nonlinear regression model results of Lai (1994) allows some
dependent structure and proves strong consistency under conditions simi-
lar to Wu (1981) with appropriate changes. Unfortunately, our method of
proof relies heavily on a strong law of large numbers and it requires the
independence of the {¢;}. It is not at all trivial to extend this lemma to the
dependence case. The problem is that the underlying function space needs
to be sufficiently smooth for such a dependent strong law to be valid. Lai
(1994) works with a set of conditions so that this space is an appropriate
Hilbert space on which a martingale strong law is available. It will be of
interest to see if our method can be combined with his, to extend both our
and Lai’s results to an appropriate dependent set up. It may be noted that
when {¢;} is a martingale difference sequence with respect to the o-fields
Gj, with sup; E(| €; |" | Gp-1) < 00, Lai and Wei (1982, 1987) have shown
that strong consistency holds for the stochastic linear regression (then x; is
G j—1 measurable) if A(3°7 ;) — oo and (1.7) holds.

2.2 Models with Parameter Dependent Rate. Models with parameter
dependent rate arise naturally. Consider the model given in Example 2.2
where a(= 1) is known, f € [b,B] C (0,00) and z; = j. Using some
calculus, one can show that T (8) ~ 37 exp(2580){1 — exp((8 — Bo)j)}>.
Thus, v, ~ 3.7 exp(256){1 —exp(—(Bo —b)7)}? =~ exp(2nfy). On the other
hand, by definition d? ~ 37 j? exp(2Bj) ~ n?exp(2Bn). It is now obvious
that w, =~ nexp(2n(B —2pp)). Therefore, A5 cannot hold unless we assume
B < 2b. This is an unnatural restriction on the parameter space. To avoid
this unnatural restriction, we will work with suitable local versions of the
earlier assumptions.

Assumption Al remains the same. We modify the remaining assumptions
as follows. Let B,(0) = {6 €©:(|§' —0||<n} forn>0and g cO.

Assumption X2. For each § € © there exists n > 0 and square integrable
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random variables M, (@) such that for some o > 0, and any 0 B, (#) and
forallj >1and 1 <k <p,

{4 (¥5, 0) = B0 (Y5, 0) } b (Y5, 0)—E (0 (Y5, 0)}| < My ()16 011",

Assumption X3. For each 6 € © there exists n > 0 and a p X p nonnegative
definite matrix I';, (#) such that uniformly in 6, € B, (0), for sufficiently large
n,

> {BE(p;(Y5,00) — p;i(¥;,00))} > (61 — 00) Tn(6) (61 — 6p). (2.7)
i=1
Next define for large n,

dop(0) ~ Y max(EMZ,(0), Var(y;i(Y;,0))),
j=1

Dy (0) = Diag(dy,(8),...,d.,(8)). (2.8)
Also let, 7 (8) = A(T4(9)), 1a(8) = A(Dn*(0)T4(6) D' (6)).

Note that the above choices may be influenced by the choice of 1. To
keep matters simple, this dependence is not explicitly shown in the notations.
Also, it can be readily seen that the same I'),(#) in X3 works for any n <.
Next, suppose there is a choice of {I'; ()} such that

Assumption X4. ~,(0) = A(T',,(0)) — oo as n — oo, for every 6 € ©, and

Assumption X5. For every 6 # 6y € ©, we can find n > 0, such that with
this choice, d2,(8) — oo as n — oo for 1 < k < p, and

wn (0) = lrél]?%(pL(dik(9))/un(9)%(9) — 0.

As mentioned earlier, X2-X5 are implied by A2-A5. As a consequence
the next theorem is more general than Theorem 2.1.

THEOREM 2.3. Under Al and X2-X5, 6, — 0y — 0 almost surely.

REMARK 2.3. As in Theorem 2.1, it is possible to derive a (local) rate
for almost sure convergence in Theorem 2.3 as well. For any § > 0, let
Wn,s = Supycp, wn(f), where B; = B§(fp) N ©. Then one can show that

0, — 6y = O(w}l/ 52 ) almost surely, for any fixed § > 0. We will not give a
proof of this fact. As pointed out earlier, Wu (1981) states a result using a



454 ARUP BOSE AND DEBAPRIYA SENGUPTA

local version of his conditions W(i) etc. However, his and our results are not
quite comparable here.

EXAMPLE 2.2 (Continued). We now continue our discussion of Exam-
ple 2.2. We restrict to the scenario described in the beginning of the sec-
tion to positive regressors {x;} increasing to co. Assume that {07} and
{z;} are such that the approximations below are valid. We can verify that
for fixed B € [b,B] and for some 1 < (1/4)b, |exp(8'z) — exp(Bz)| <
Cz exp((B +n)z)|f — B| for any B —n < 8 < B+, for any £ > 0
Therefore we can choose M;(B) = |z;|exp((8 + n)z;). Thus, d2(B)

1 max{ z3 exp(26z;), 27 exp(2(8 + n)z; }oi ~ LT 3 exp(2(8 + n)z;))
r2exp(2(8 + n)zn). In a similar vein, 7,(8) ~ XV x? exp(26z;)
{(exp((B—n)aj)=1)/(B — m)z;}* = ST exp(2(8 — n)a;) = exp(2(8 — n)an).
From these estimates it follows that

2
% ~ {121?5)% ;1> exp(=2(8 — 3n)zn),

and due to the restriction on 7, this tends to 0 for every 5 € [b, B].
Consider now this model with z; = logj and the parameter space as
[a, A] x [=1/2, 0]. This model was considered by Wu (1981, Example 4).
If By = —1/2, the issue of strong consistency of its LSE could not be settled
by his results.
It can be checked that for any g > —1/2,

~
~
~
~

pn =n~"/(logn)®, and ¥, (B) = 0?71/ (logn)!

where 7 is sufficiently small. These relations are established by using calcu-
lations similar to those given earlier and the integral approximation [’ 28
(logz) Pds ~ (1—28) 1 nl=2%/(logn) {1+ p/(1-28) (logn)~* + (p(p+
1))/(1 —28) (logn)™2 +O((logn)=3)} for p > 0.

Using the above estimates, the conditions of Theorem 2.3 can be verified
and thus, the LSE of /3 is strongly consistent when 5y = —1/2.

Application to Generalized linear models. These models were introduced
by Nelder and Wedderburn (1972). We shall now see how the parameter
dependent rates arise in these models. Suppose that the observations {Y} :
j > 1} are independent with density f(y,B;), j > 1 respectively. Also
assume that the density is from an ezponential family and the link function is
linear, that is, forall j > 1, 8; = x'jH. But we emphasize that in our approach,
the exponentiality and differentiability of the density or the linearity of the
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link function are not essential. For simplicity we will also assume further
that for some twice continuously differentiable function u,

Y; has density exp{z0 — u(z}0)},

with respect to some sigma-finite measure v. We further assume that ,u” (s) >
0 over the natural parameter space. We first identify some of the key quan-
tities.
pi(y;:0) = —(y; (z50) — n(z’0)),
Pik(0) = —(yj — ' (250)) ..
From above, we conclude M, = 0. Moreover, Al and A2 are automatically
satisfied. Note that for 6, € B, (),

Ap(61) = X {E(p(Y;,01) — pj (Y, 60))}
= (01— 00)' {Zii(fy on” (#010)d @) ] } (61 — bo),

where 01, = 60y + (01 — ). Let

Note that c¢(u) is a decreasing function of u. To estimate the integral above,
we first split it into two integrals on [0, €] and [1 — €, 1] respectively. In the
next step depending on whether p"(26p) > pu"(2}61) or not, we consider
either [0,¢] or [1 — ¢,1] and ignore the other one. As a result we obtain
a lower bound of A, because p is convex. Also, we use some standard
inequalities to show that for some constant M,

An(gl)

7=1

> (1/2)€% e(Mn)z|,) (61—60)' {Z max{u" (270), p" (€600} zx } (01—00)
uniformly in 6, € B,(0). Here, |z|, = max <j<, |2|. Define,

n(0) = e(Mnl|z|,) Z max{u" (z0), p"(x;00)} z;z]
j=1

Then X3 will hold with the above choice. Also, we may define

M (0) = c¢(Mn|x|,) max{r,(0), 7, (00)}
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where
n
™(0) = A ZMI,($99)$j$;- .
j=1
Note that here again the dependence on 7 is implied. By defining fi,, =
A( ;1/2(90)Fn(90) ;1/2(90)) it can be readily seen that

pin(0) > c(Mn|z|n) fin-
Putting all these together we have,

THEOREM 2.4 (Generalized Linear Models). Assume that the parameter
space O is compact. Suppose further that

(1) Yn(0) — oo for every 6 € © and,
(ii) For every 0 # 6y € ©,

L (A(Tn(0)))
c?(Mn|zl|n) fin max{7,(0), 7(00)}

— 0.

Then 6, ,, — 0y almost surely.

REMARK 2.4. Fahrmeir and Kaufmann (1985) have proved the strong
consistency of the maximum likelihood estimator in generalized linear model.
Their main assumption is an eigenvalue assumption and is very similar to
condition W(i) of Wu (1981) mentioned earlier. We have already discussed
and compared this condition vis a vis our conditions in the context of non-
linear regression. Similar comparison holds here too. Moreover, the results
of Fahrmeir and Kaufmann (1985) tackle essentially parameter independent
cases. The strong consistency results of Chen, Hu and Ying (1999) are in
the spirit of LRW. However, they assume bounded regressors.

3. Proofs

As already mentioned, the main goal of this work has been to unify
major results on strong consistency in two different contexts, namely, (1.2)
and (1.4), under the minimum contrast estimation umbrella. If we carefully
go through the basic arguments of LRW, Wu (1981) and FK we identify two
common logical steps in their proofs. The first step finds out an appropriate
upper bound of a centered random process defined on ©. This is the linear
term in the Taylor expansion of @, (). In the second step a lower bound of
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the deterministic bias/quadratic term is obtained. Finally, it is shown that
the quadratic term dominates the random term of the first step.

In our method of proof we retain the first step of Wu (1981), i.e, we use
essentially the same strong law for Banach space valued random elements.
FK also use a similar strong law for generalized linear models case. On the
other hand, Chen, Hu and Ying (1999) chose an indirect form of the strong
law which was originally stated in LRW. The choice of the Banach space
depends on the smoothness assumptions of the underlying model.

The novelty of our approach lies in the handling of the deterministic
bias term in a unified manner. Firstly, we are able to classify different
scenarios in terms of parameter independent/dependent rates. Usefulness of
this classification is demonstrated by our success in settling the critical case
in Example 2.2, which was left out in Wu (1981) as undecided. Moreover,
we are able to incorporate two important situations, namely the unbounded
regressors case in generalized linear models and the case of unbounded error
variances in nonlinear least squares problems.

A couple of technical aspects of our method of proof are perhaps worth
mentioning. Firstly in Lemma 2 below, an accurate lower bound is derived
for the sum of a linear and a quadratic function. This lemma enables us
to automatically obtain a rate of convergence for strong consistency (which
is not usually the case) and lies at the heart of the argument for our main
theorem. Secondly, the Taylor series approximation has been applied in the
proof of Theorem 2.1 in a slightly modified form than we usually find.

Next we state two Lemmas needed in the proof of Theorem 2.1. We shall
skip the proofs of Theorem 2.2 and 2.4 (as they easily follow from Theorem
2.1 and Theorem 2.3) and give only a brief outline of the proof of Theorem
2.3.

Let {Z;(t) : i > 1,¢t € T} be independent mean zero random processes on
T which is a compact metric space. Suppose that there exists a o > 0 and
nonnegative random variables M; such that |Z;(t) — Z;(s)| < M|t — s]|°.
Let 72 = max[E[Z;(ty))?, E(M?)] and d? = Y"1 | 72.

LEMMA 3.1. Suppose that d2 — oo and f : [0,00) — [0,00) is a strictly
increasing function. If [°u™'f~?(u)du < oo, we have

n
Zi(t) = 0in || - ||oc norm almost surely.

1
dn f (d7) ;

PRrROOF. Note that T is compact with the metric d(s,t) = ||t — s||?. Let
N(e,d,T) be the minimum number of d - balls of radius at most e that covers
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T. Then N (e,d, T):O(e_p/") as € — 0. Hence f01+[logN(e, d, T)]1/2d6<oo.
Consider the Banach space Lip(d)={r € C(T) : L(x)=sup;, %<oo}
equipped with the norm ||z||q = |z(t9)| + L(z). By our assumptions, the
identity map 7 : Lip(d) — C(S) is Type 2. Hence, for any sequence of
independent, mean zero Lip(d) valued random elements (Y;), E||Y; +--- +
Yulll < AT, E||Y;||3 for some universal constant A. The remaining part
of the proof follows the same way as in Wu (1981). We omit the details.

The next Lemma is on the minimum of a function which is the sum of a
linear and a quadratic form.

LEMMA 3.2. Let a = (aq ... ap)' be a p-vector and B be a p X p positive
definite matrix.
(i) Ifp=1, |rr‘1iri [au + bu?] > min(b — a,b + a).
ul=

(ii) If p > 1, suppose for some 0 < n < 1,

a B la< wA(B)'
p
Then,

S 1 B! la'B~!
min [a u + u Bu] > A(B) | U)I/Z _ZGA(B)G]'

[ull=1 p ( pA(B)

REMARK 3.1. In applications to follow we apply Lemma 3.2 on a se-
quence {ay,, B, }, where a!, B, 'a, / A(B,) — 0. Thus, the condition in (ii) is
trivially satisfied. The extra precision over the usual upper bound for o’ B~'a
(namely, ||a||?> /A(B)) is necessary in the proof of Theorem 2.1. This fact
also translates into an improved rate conditions for the theorem.

PROOF OF LEMMA 3.2. The case for p = 1 is trivial. For (ii) define
Q(u) = a'u + v Bu.

First assume that B = Diag(bi,...,b,) is a diagonal matrix. Consider the
Lagrangian {a u+u Bu+(u u—1)} where X is the undetermined multiplier.
Since {||u|| = 1} is compact and does not have any boundary point the global
minimum must be a local minimum as well. Thus, if the global minimum is
attained at some u then (i) ||u|| = 1 and (ii) u satisfies the condition of a
stationary point for the Lagrangian, namely,

a; + 2(b; + N)u; = 0 for all 4. (3.1)
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Let I ={i:b;+ X =0}. Note that for any 7 € I, a; = 0. Now consider three
cases:

CASE 1. Y, u? = 1. In this case, Q(u) = u' Bu > A(B) and the
Lemma is trivially true since B is positive definite.

CASE 2. Zielu% = t, where l/p S t<1.

In this case noting that a; = 0 for all ¢ € I and using equation (3.1), for
any extremum u,

azbi
=> b >l i :
i + i 2(b; +>\) +4(bz~+>\)2]

el iele

Using the facts that b; > A(B), and Y_;c; u? =t in the above expression, we
get

1 aZ(bi +2X),
BB % 07

Q(u) > A(B)[t — R(u), say. (3.2)

Since t > 1/p and (b+ 2X)/(b+ A\)? < 1/b for any ), the right side (3.2)
is at least as large as

11 af, _ 1 _1aBla
MB) = 3055 2 50 =2 13 )

iele

establishing the Lemma in Case 2.

CASE 3. Y ;e u? =t, where t < 1/p.

Fix e > 0 sufficiently small. Note that 7¢ must be nonempty and the cardi-
nality of ¢ < p). Hence, using (3.1) and the fact that > ;cpeu? =1—1¢ >
(p —1)/p, we can find j € I¢ such that

a? S Ad-9—t)

=4
(b; + A)2 = P S

It now follows that
b; 4+ 2X < 267t a,| —b; <0. (3.3)
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The first inequality above follows trivially from the previous step. To obtain
the last inequality above, first use the condition of the Lemma to obtain the
upper bound aQ/b2 < a2/(b AB)) <aBl'a/AB) < (p—1)(1—n)/p
implied by the condltlon of the Lemma. On the other hand, 4/6% = p/{(1 —
)1 —1)} < p?/{(p — 1)(1 — €)} in Case 3. Hence, (4/(52)( ?/b?) < (1-
n)/(1 —e€) < 1, if € is chosen sufficiently small.
Therefore, by using (3.2) and (3.3) and the above estimates we get

1aj(bj — 20" as) 1 a?(b; + 2X)

R(u) > A(B)t + - — -y st
4 0242 4=y BN
> —6%(1 — — - - :

Since 6> — (1 —t) as e — 0, ¢ + (1/4)8*(1 — 267" (a' B~ 'a/A(B))"/?)
= 4+ {(1 = )/p}(1 — {p/(1 — O}/ B a/AB)Y) = 1/p — {(1 -
t)/p}'/?(a’ B~'a/A(B))"/?). The Lemma follows in Case 3.

For the general case when B is not necessarily diagonal, let P be an
orthonormal matrix such that PBP' = Diag(\;...),) = By. The Lemma
then follows from the observations that
A(B1) = A(B), d'u+uBu = (Pa) Pu+ (Pu) Bi(Pu) and o B 'a =
(Pa) B, (Pa). -

PrOOF OF THEOREM 2.1. Recall the notations appearing in Assump-
tions A1-A5. We present here the proof in the case when p > 1. When
p = 1, steps are exactly the same but much simpler. First, notice that it
suffices to verify

liminf inf [Qn(0) — Qn(fo)] > 0 almost surely.

n—=00 |—fy|>wn

Let  Zuk(8) = 51 [k (Y5,0) = bj(0)], Zu(0) = (Zn1(9),... Znp(6))', and
Zik(0) = 1, (Y;,0) — b (). By A2 and A4, Lemma 3.1 applies and hence
for every k

kL || Z 0)||so — 0 almost surely. (3.4)
n

By Al and A3,

Qn(0) — Qn (o) Z{p] Pj(Yjago)}
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= (0-00) Y {5}, 0)-B;(0)}+ Y Blo;(¥;.0)—p; (V. 00)}
1 j=1

> (0 —00) Za(8) + (68— 6) T, (68— 6p),

M=

~ .
Il

(using Fubini’s theorem it can be readily seen from Al that E{p;(Y},0) —
pi(¥j,00)} = (0 —0o) B;(0) ).
It now follows that

\9j4]9aof|25[Q”(0) — Qn(bo] > Hilfé%lgjgtf‘zé[(e—go) Zn(01) + (0 —0o) L'y, (0—60)].
(3.5)

The second infimum on the right side of the above inequality can be re-
expressed as

. . ! 2 7
glgni‘r‘{l[lu Zn(6h) +17u Tpul. (3.6)

In the next step of our argument we apply Lemma 3.2(ii) to obtain an
effective lower bound of (3.6). In order to do so we first verify that

v Z (0D Z (6 — 0

almost surely uniformly in ;. Writing V,=DY/*L(D,), F,=D;"/*T,D;'/*
and R, (01) = V,71Z,(01), we get, for every 6; € O,

'YEIZ;(OI)FﬁIZn(QI) < '71;1 R’n (L(Dn)FEIL(Dn)) R,
< Y P AML(DR)F L(Dy)) (| Rall% (3.7)
< wTLHRano?

after some elementary matrix algebra (here, |[(fi(¢),...,[p(t)]loc =
>F, ||fz||go)1/2) Now, by A5 and (3.4) both w, and ||R;||~ tend to zero
in respective senses. Thus, the above claim is verified.

In view of the above claim the condition of Lemma 3.2 is easily satisfied
with any n € (0,1) for the inner infimum in (3.6), almost surely as n — oo,
uniformly in 6;,60,. As a consequence, we can conclude that (3.6) is at least
as large as

P [1 1 (Z;wl)rnl znwl))” 1 (Z;(el)rnl zn(01>>] (3.8)

p 0 PVn 462 Yn

almost surely as n — oo.
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Therefore, from (3.5)-(3.8) it follows that for any 6,602 € 6,

o Il 1O = 00) Zn(61) + (6 = 60) T (6 — )]

1/2
> %[5 = stmen |1 Balloe — ghrwallBallZ] -

Hence, we conclude

inf  [Qn(0) — Qn(fo)] > 0 almost surely eventually. 0
10—60|>wy?

PrROOF OF THEOREM 2.3. We give only a brief outline of the proof of
the convergence, but do not verify the rate of convergence claim in Remark
2.3. Fix any 6 > 0 and 6 satisfying ||@ —6y|| > J. In view of the assumptions
X2-X5 and following the steps of the previous proof we can show that

eeBir(lg)ﬂe[Qn(o) — Qn(6o)] > 0 almost surely eventually,

provided 7 is chosen so small that 6y ¢ B,(f). Now, using the fact that ©
is compact we can cover {# € © : ||§ — 6y|| > 20} by finitely many neigh-
borhoods By, (61), ..., By, (0,) such that Bs(6y) N By, (6;) = ¢ for 1 <i <.
Hence the theorem follows. The claimed rate of almost sure convergence in

Remark 2.3 can be established by extending the argument given in the proof
of Theorem 2.1. O
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