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Abstract

Generalizations of the second Borel–Cantelli lemma are obtained under very weak dependence conditions, subsuming

several earlier results as special cases.
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1. Introduction

In a recent note, Petrov (2004) proved using clever arguments an interesting extension of the (second)
Borel–Cantelli lemma; the theorem in Section 2 of Petrov (2004) contains several earlier extensions of the
Borel–Cantelli lemma as special cases. This note extends Petrov’s result further (see Theorems 1 and 10); it is
expected that the present version will be more widely applicable. A related result is also included in the final
section.

To motivate the extension, we state the following results. If there are non-negative reals c1, c2, c3 and an
integer NX1 such that

PðAi \ AjÞpðc1PðAiÞ þ c2PðAjÞÞPðAj�iÞ þ c3PðAiÞPðAjÞ (1)

whenever Npioj, and

X1
n¼1

PðAnÞ ¼ 1, (2)

then cX1 and

Pðlim sup AnÞX
1

c
, (3)

where

c :¼ c3 þ 2ðc1 þ c2Þ. (4)
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The result of Petrov (2002) is a special case where c1 ¼ c2 ¼ 0. For a simple proof, see Chandra (1999).
Regarding condition (1), see Kochen and Stone (1964, Example 2) and Lamperti (1963, p. 62). On the other
hand, the extended Rényi–Lamperti lemma states that if

lim inf
n!1

P
1pj;kpnPðAj \ AkÞ

ð
P

1pjpnPðAjÞÞ
2
¼ c (5)

and (2) holds, then cX1 and (3) holds. (The Rényi–Lamperti lemma states that

Pðlim sup AnÞX2� c;

see Billingsley, 1979, p. 76.) For a simple proof, see Spitzer (1964, p. 319). Erdös and Rényi (1959) considers
the special case where (5) holds with c ¼ 1, and contains the case where (1) holds with c1 ¼ c2 ¼ 0 and c3 ¼ 1
and (2) obtains; in particular, the second Borel–Cantelli lemma holds if the independence of fAng is replaced
by pairwise independence or pairwise negative quadrant dependence of fAng (this fact can also be obtained
from the result that (1) and (2) together imply (3)). In his paper, Petrov (2004) combined conditions (1), with
c1 ¼ c2 ¼ 0; and (5) in a clever manner and obtained a common generalization of Petrov (2002) and the
extended Rényi–Lamperti lemma; see, also, Ortega and Wschebor (1983). He used the following inequality of
Chung and Erdös (1952):

P
[n
k¼1

Ak

 !
X
ð
Pn

k¼1PðAkÞÞ
2Pn

j;k¼1PðAj \ AkÞ
, (6)

which is, in turn, a special case of Spitzer’s inequality (see Spitzer, 1964, p 319): If EðX Þ40 and 0p�o1, then

PðX4�EðX ÞÞXð1� �Þ2
ðEðX ÞÞ2

EðX 2Þ
. (7)

(Take � ¼ 0 and X ¼
Pn

k¼1IAk
.) We shall prove the following extension of Petrov (2004) using suitable

modifications of his arguments.

Theorem 1. Let fAngnX1 satisfy (2) and assume that

lim inf
n!1

P
1pjokpnðPðAj \ AkÞ � ajkÞ

ð
P

1pkpnPðAkÞÞ
2

¼ L,

where aij ¼ ðc1PðAiÞ þ c2PðAjÞÞPðAj�iÞ þ c3PðAiÞPðAjÞ for 1pioj, c1X0, c2X0, c3 being constants (L may

depend on c1, c2 and c3). Assume that L is finite. Then cþ 2LX1 and

Pðlim sup AnÞX
1

ðcþ 2LÞ
,

where c is given by (4).

Petrov’s result follows when c1 ¼ c2 ¼ 0. Furthermore, it follows that (1) and (2) imply (3), since then Lp0
and so ðcþ 2LÞ�1Xc�1:

The proof of Theorem 1 shows that the following more general result is also true; the details are omitted.

Theorem 10. Let fAngnX1 satisfy (2) and

lim inf
n!1

P
1pjokpnðPðAj \ AkÞ � ajkÞ

ð
P

1pkpnPðAkÞÞ
2

¼ L,

where the ajk satisfy

X
1pjompkpn

jajkj ¼ o
X

mpkpn

PðAkÞ

 !2
0
@

1
A 8mX1
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and

lim inf
m!1

lim sup
n!1

P
mpjokpnajk

ð
P

mpkpnPðAkÞÞ
2
pd.

Assume that L and d are finite. Then d þ LX 1
2

and Pðlim sup AnÞXð2d þ 2LÞ�1:

2. Proof of Theorem 1

We need the following lemma.

Lemma 1. Let (2) hold and aij be as in Theorem 1. Put

bm ¼ lim inf
n!1

P
mpjokpnðPðAj \ AkÞ � ajkÞ

ð
Pn

k¼mPðAkÞÞ
2

; mX1.

Then b1 ¼ bm, 8mX1.

Proof. Fix an integer m41. As (2) holds, we have

b1 ¼ lim inf
n!1

P
1pjokpnðPðAj \ AkÞ � ajkÞ

ð
Pn

k¼mPðAkÞÞ
2

¼ lim inf
n!1

ðI1;n þ I2;n þ I3;nÞ,

where, for nXm,

sm;n ¼
Xn

k¼m

PðAkÞ; bj;k ¼ PðAj \ AkÞ � ajk,

I1;n ¼

P
1pjokpmbj;k

s2m;n
; I2;n ¼

P
mpjokpnbj;k

s2m;n
,

I3;n ¼

P
1pjompkpnbj;k

s2m;n
.

Condition (2) implies that I1;n ! 0 as n!1. Also

jI3;njp

P
1pjompkpnðPðAj \ AkÞ þ jajkjÞ

s2m;n

p
mð1þ jc1j þ jc2j þ jc3jÞ

sm;n
þ

ms1;mjc1j

s2m;n

so that I3;n ! 0 as n!1. Therefore,

b1 ¼ bm þ lim I1;n þ lim I3;n ¼ bm: &

We next prove Theorem 1. Let mX1 be an integer; let NXm be such that
PN

k¼mPðAkÞ40. Then, by (6),

P
[1

k¼m

Ak

 !
X
ð
Pn

k¼mPðAkÞÞ
2Pn

j;k¼mPðAj \ AkÞ
8nXN.

Now,

Xn

j;k¼m

PðAj \ AkÞ ¼ sm;n þ T1 þ T2,
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where the sm;n are as in the proof of Lemma 1 and

T1 ¼ 2
X

mpjokpn

ðPðAj \ AkÞ � ajkÞ,

T2 ¼ 2
X

mpjokpn

ajk,

where the ajk are as in the statement of Theorem 1. As

T2p2
c3

2
þ c1 þ c2

� �
s2m;n þ ðc1 þ c2Þs1;msm;n � c3

Xn

j¼m

ðPðAjÞÞ
2,

one has

lim sup
n!1

T2

s2m;n
pc,

where c is given by (4). Therefore, condition (2) implies that

P
[1

k¼m

Ak

 !
X lim inf

n!1

T1

s2m;n
þ lim sup

n!1

T2

s2m;n

( )�1

Xf2Lþ cg�1 by Lemma 1.
3. An alternative approach

In this section we derive another version of the second Borel–Cantelli lemma under a suitable dependence
condition using the Chebyshev Inequality.

Lemma 2. Let fX ng be a sequence of non-negative random variables with finite EðX 2
nÞ and put Sn ¼

Pn
i¼1X i,

nX1. Assume that EðSnÞ ! 1 as n!1, and

VarðSnÞpcnEðSnÞ 8nX1; lim inf
n!1

cn

EðSnÞ

� �
¼ 0. (8)

Then

P
X1
n¼1

X n ¼ 1

 !
¼ 1. (9)

Proof. Note that

P
X1
n¼1

X no1

 !
¼ lim

n!1
P
X1
n¼1

X np
1

2
EðSnÞ

 !

p lim inf
n!1

P Snp
1

2
EðSnÞ

� �

p lim inf
n!1

4cn

EðSnÞ

� �
¼ 0: &

Theorem 2. Let fX ng be a sequence of non-negative random variables with finite EðX 2
nÞ and put Sn ¼

Pn
i¼1X i,

nX1. Assume that EðSnÞ ! 1 as n!1.
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(a) Assume that

Xn

i¼1

VarðX iÞpknEðSnÞ 8nX1, (10)

Xn

j¼2

Xj�1
i¼1

CovðX i;X jÞpcnEðSnÞ 8nX2 (11)

and

lim inf
n!1

ððkn þ 2cnÞ=EðSnÞÞ ¼ 0. (12)

Then (9) holds. If 0pX npkn 8nX1 where fkng is nondecreasing, then (10) holds.
(b) If 0pX npkn 8nX1 wherefkng is nondecreasing, and fqðmÞg, famg and fbmg are non-negative sequences

and a, b are non-negative constants such that

CovðX i;X jÞpqðji � jjÞðai þ bjÞ 8iaj, (13)

Xn�1
i¼1

aipaEðSnÞ;
Xn

j¼2

bjpbEðSnÞ 8nX2 (14)

and

lim inf
n!1

Pn�1
m¼1qðmÞ

EðSnÞ

 !
¼ 0; lim

n!1
ðkn=EðSnÞÞ ¼ 0, (15)

then (9) holds.

Proof. (a) follows from Lemma 2.
(b) follows from Part (a) and the following observation:

Xn

j¼2

Xj�1
i¼1

CovðX i;X jÞp
Xn

j¼2

Xj�1
i¼1

qðj � iÞðai þ bjÞ

¼
Xn

j¼2

Xj�1
m¼1

qðmÞðaj�m þ bjÞ

¼
Xn�1
m¼1

qðmÞ
Xn

j¼mþ1

ðaj�m þ bjÞ

pðaþ bÞ
Xn�1
m¼1

qðmÞ

 !
EðSnÞ: &

We remark that one choice of the am and bm so that (14) holds with appropriate a and b is

am ¼ EðX mÞ þ EðX mþ1Þ; bm ¼ EðX mÞ þ EðX m�1Þ.

Remark 1. If in the above theorem, we put X n ¼ IAn
, kn ¼ 1 8nX1 so that lim sup An ¼ ½

P1
n¼1X n ¼ 1�

where fAng is a given sequence of events satisfying
P1

n¼1PðAnÞ ¼ 1, we get another set of sufficient conditions
for Pðlim sup AnÞ ¼ 1. Thus, we have: If (2) holds, and for each ioj,

PðAi \ AjÞ � PðAiÞPðAjÞpqðji � jjÞ½PðAiÞ þ PðAiþ1Þ þ PðAjÞ þ PðAj�1Þ�,

lim inf
n!1

Pn�1
m¼1qðmÞPn

m¼1PðAmÞ

 !
¼ 0 a fortiori

X1
m¼1

qðmÞo1

 !
,
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then Pðlim sup AnÞ ¼ 1: In particular, if there exists an integer mX0 such that

PðAi \ AjÞpPðAiÞPðAjÞ whenever ji � jj4m (16)

and (2) holds, then Pðlim sup AnÞ ¼ 1. The last inequality definitely holds if IAi
and IAj

are pairwise
m-dependent (a fortiori, pairwise independent).

Remark 2. Let fX ng be as in Theorem 2(b). Suppose that the conditions of Theorem 2(b) hold with kn ¼ 1,
8nX1, except that (13) and (15) are strengthened to

CovðX i;X jÞpqðjj � ijÞEðX jÞ 8ioj, (17)

X1
n¼1

ðqðnÞ=EðSnÞÞo1. (18)

Then (9) can be strengthened to ‘Sn=EðSnÞ ! 1 a.s.’ which gives an indication of the rate of growth of
Sn in (9). For a proof, see Chandra and Ghosal (1998). Note that if (16) holds for some mX0, then (17)
and (18) hold with an appropriate q.

It is an interesting problem to derive the best possible result in the setup of either of the two remarks.
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