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Abstract

Generalizations of the second Borel-Cantelli lemma are obtained under very weak dependence conditions, subsuming
several earlier results as special cases.
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1. Introduction

In a recent note, Petrov (2004) proved using clever arguments an interesting extension of the (second)
Borel-Cantelli lemma; the theorem in Section 2 of Petrov (2004) contains several earlier extensions of the
Borel-Cantelli lemma as special cases. This note extends Petrov’s result further (see Theorems 1 and 1'); it is
expected that the present version will be more widely applicable. A related result is also included in the final
section.

To motivate the extension, we state the following results. If there are non-negative reals ¢, ¢;, ¢3 and an
integer N >1 such that

P(A4; N A)<(c1P(A;) + 2 P(A4)P(A;—) + c3 P(A;)P(A4;)) (1)

whenever N <i<j, and

> P(4,) = oo, )
n=1
then ¢>1 and
1
P(lim sup 4,)> pe (3)
where
c:=c3+ 2 + ). 4)
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The result of Petrov (2002) is a special case where ¢; = ¢, = 0. For a simple proof, see Chandra (1999).
Regarding condition (1), see Kochen and Stone (1964, Example 2) and Lamperti (1963, p. 62). On the other
hand, the extended Rényi—Lamperti lemma states that if
. . le/,kSHP(Aj n Ak)
lim inf : s—=¢
oo (Zl<j<nP(A./))

and (2) holds, then ¢>1 and (3) holds. (The Rényi—Lamperti lemma states that

)

P(lim sup 4,)=2 —c;

see Billingsley, 1979, p. 76.) For a simple proof, see Spitzer (1964, p. 319). Erdés and Rényi (1959) considers
the special case where (5) holds with ¢ = 1, and contains the case where (1) holds with ¢; = ¢; =0 and ¢3 =1
and (2) obtains; in particular, the second Borel-Cantelli lemma holds if the independence of {4,} is replaced
by pairwise independence or pairwise negative quadrant dependence of {A4,} (this fact can also be obtained
from the result that (1) and (2) together imply (3)). In his paper, Petrov (2004) combined conditions (1), with
¢y =¢; =0, and (5) in a clever manner and obtained a common generalization of Petrov (2002) and the
extended Rényi—Lamperti lemma; see, also, Ortega and Wschebor (1983). He used the following inequality of
Chung and Erdés (1952):

! i P(Ap)
Ar | > == , 6
P(H ") > S P4, 0 Ay ®)

which is, in turn, a special case of Spitzer’s inequality (see Spitzer, 1964, p 319): If E(X)>0 and 0<e<1, then

2 (E(X)Y?

E(X?
(Take ¢ =0 and X =) _}_,14,.) We shall prove the following extension of Petrov (2004) using suitable
modifications of his arguments.

P(X>eE(X))=(1 —¢) (7)

Theorem 1. Let {A4,},> satisfy (2) and assume that
, P(A; N Ag) — a;
lim inf21<j<k§n( ( J k)2 Jk)=L
oo Q1 <k<nP(AR))

where a; = (c1P(4;) + c2P(A4)))P(A;-i) + c3P(A4;)P(A)) for 1<i<j, c1=0, 220, c3 being constants (L may
depend on ¢y, ¢y and c3). Assume that L is finite. Then ¢ +2L>1 and

b}

. 1
2 S AT~ 2
P(lim sup A4,) ©1 20

where ¢ is given by (4).

Petrov’s result follows when ¢; = ¢; = 0. Furthermore, it follows that (1) and (2) imply (3), since then L<0
and so (c+2L)"'=¢71.
The proof of Theorem 1 shows that the following more general result is also true; the details are omitted.

Theorem 1'. Let {A,},>, satisfy (2) and

i f21<j<k§n(P(A] NAp) —a)
im in 3 =
=00 (ZlgkgnP(Ak))

where the aj, satisfy

2
> > P(Ak)> Vm>=1

laj| = o
I<j<m<k<n m<k<n

>
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and

.. . Zm<j<k<najk
lim inf lim sup 5 <d.
m=00 n—00 (ngkénP(Ak))
Assume that L and d are finite. Then d + L> % and P(lim sup A,)>2d +2L)"".

2. Proof of Theorem 1

We need the following lemma.
Lemma 1. Let (2) hold and a;; be as in Theorem 1. Put

ﬁ — lim inf Zm<j<k<n(P(Aj N Ak) - ajk)
" oo (ke P(AR)
Then ﬁl = ﬂm’ Vm= 1.

v

>

Proof. Fix an integer m>1. As (2) holds, we have

. Zl<j<k<n(P(Aj N Ax) — aj)
pi1 = lim inf - 3
n— 00 (Zkzmp(Ak))
= lim inf(]l,,, + I2,n + 13,;1)7
n—oo

where, for n>m,

Sma =Y P(AR),  bjx = P(4; N Ar) — a.,

k=m

Zm <j<k<11bj,k
2
Sm,n

Zl<j<k<mbj,k
Iy, =SSkt oy <
sm,n

b

13 n —
» 2
Sm,n

Condition (2) implies that 1,, — 0 as n — oo. Also

El<j<m§k<n(P(Aj N Ak) + |afk|)
S%?,n

< m(l + |er] + [ea] + |e3l) +msl,m|61|

|I3,n| <

S s,zn,n
so that /3, — 0 as n — oo. Therefore,
pr=p,+liml,,+1limls, =p,. O
We next prove Theorem 1. Let m>1 be an integer; let N >m be such that Z,Icvsz(Ak)>0. Then, by (6),

> O P(AR))
P Ay | = =gh=m Vn=N.
< U A) > ke P(A; N A)

k=m

Now,

n
D PN A = s+ T1 + T,

Jik=m
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where the s,,, are as in the proof of Lemma 1 and

Ti=2 Y (P(4;NA) - ay),

m<j<k<n
TZ =2 Z ajk)
m<j<k<n
where the aj are as in the statement of Theorem 1. As
T2<2(2 + ¢ +6’2) mn+(‘l +C2)Slm~smn C3 Z(P(A ))
Jj=m

one has

T,
lim sup— <,
n— 00 Smn

where ¢ is given by (4). Therefore, condition (2) implies that

00 T -1
P U A | =< lim mf— + lim sup —— 2
k=m e Sm,n n—0o0 Sm n

>{2L+¢}”! by Lemma 1.

3. An alternative approach

In this section we derive another version of the second Borel-Cantelli lemma under a suitable dependence
condition using the Chebyshev Inequality.

Lemma 2. Let {X,} be a sequence of non-negative random variables with finite E(X ) and put S, =% i X,
n=1. Assume that E(S,) — oo as n — o0, and

Cn
Var(S,)<c,E(S,) Vn=1, ll£n inf (E(S,,)) =0. (8)

Then

P<§:X,,:oo> =1. )
n=1

Proof. Note that
o0 o0
P(Z X, <oo> — lim P(Z X, <z E(S,,)>
”:1 n— 00 1

< lim inf P(Sn < EE(Sn))

n—oo
.. 4c,
<111’gl£f<E(S”)> 0. O

Theorem 2. Let {X,} be a sequence of non-negative random variables with finite E(X,%) and put S, =Y X,
n=1. Assume that E(S,) — o0 as n — oQ.
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(a) Assume that

> Var(X)<k,E(S,) Vn=1, (10)
i=1
n j—1
D) Cov(Xi, X)) <euE(Sy) Vn=2 (11)
j=2 i=
and
lim inf((k, + 2¢,)/E(S,)) = 0. (12)

Then (9) holds. If 0< X, <k, Yn=1 where {k,} is nondecreasing, then (10) holds.
(b) If 0< X, <k, Vn=1 wherelk,} is nondecreasing, and {q(m)}, {a,,} and {b,,} are non-negative sequences
and o, B are non-negative constants such that

Cov(X;, X)) <q(li — jI)(a; + bj) Vi#], (13)
n—1 n
D ai<aE(S,). > bi<BES, Vn=2 (14)
i=1 j=2

and
(e am) , _
ll%£f< E(Sn) - 0’ nli{lgo(kn/E(S”)) - 0’ (15)

then (9) holds.

Proof. (a) follows from Lemma 2.
(b) follows from Part (a) and the following observation:

1

ZZCOV(X,,X)< Z]Zq(;—z)(al+b)
j=2 i= Jj=2 i=l1
n j—1

=1

=Zq(m) Z(a, m+ by)

m=1 J=m+1

<@+p) (Z q(m)) ES,). O

m=1

= Z q(m)(a/ -m+ b)
j=2m
—1

We remark that one choice of the @, and b,, so that (14) holds with appropriate o and f is
am = E(Xm)+E(XI11+1)7 bm = E(Xm)+E(Xm—l)'
Remark 1. If in the above theorem, we put X, =14, k, =1 Vn>=1 so that lim sup 4, = [ZZ‘;]Xn = 00]

where {4,} is a given sequence of events satisfying > >, P(4,) = oo, we get another set of sufficient conditions
for P(lim sup 4,) = 1. Thus, we have: If (2) holds, and for each i<},

P(4; " Aj) — P(A)P(4)) <q(li — jDIP(A) + P(Aiv1) + P(4)) + P(4;-1)],

lim inf M =0 | a fortiori i q(m)<oo
n—00 224:11)(14;11) ’

m=1



T.K. Chandra | Statistics & Probability Letters 78 (2008) 390-395 395

then P(lim sup A,) = l. In particular, if there exists an integer m >0 such that
P(A4; N 4;)<P(A;)P(4;) whenever |i —j|>m (16)

and (2) holds, then P(lim sup 4,) = 1. The last inequality definitely holds if 74 and I, are pairwise
m-dependent (a fortiori, pairwise independent).

Remark 2. Let {X,} be as in Theorem 2(b). Suppose that the conditions of Theorem 2(b) hold with k, = 1,
Vn>=1, except that (13) and (15) are strengthened to

Cov(Xy, X)) <q(lj — iDEX)) Vi<], (17)
> (q(n)/E(Sy)) <00 (18)
n=1

Then (9) can be strengthened to °S,/E(S,) — | a.s.” which gives an indication of the rate of growth of
S, in (9). For a proof, see Chandra and Ghosal (1998). Note that if (16) holds for some m >0, then (17)
and (18) hold with an appropriate g.

It is an interesting problem to derive the best possible result in the setup of either of the two remarks.
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