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Ahbstract

The weighted version of the broadeast range assignment problem in ad hoc wireless network is studied. Efficient algorithms are
presented for the wbourided and bound ed-hop broadcast problems for the linear radio network, where radio stations are placed on
astraight line. For the unbounded case of the problem, the proposed algorithm runs in O(n” ) time and using O(n ) space, where n is
the number of radio stations in the network. For the k-hop broadeast problem, the time and space complexities of our algorithm are
O log i) and O fn ), respectively. This improves time complexity of the existing results for the same two problems by a factor
of i and n” / log n, respectively [C. Ambuhl, A.EF. Clementi, M.D. lanni, G. Rossi, A. Monti, K. Silvestri, The range assignment
problem in non-homogeneous static ad hoc networks, in: Proc. 18th Int. Parallel and Distributed Precessing Symposium, 2004,
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1. Introduction

In ad hoc wireless network, the range assignment
problem is sdied extensively in the context of infor-
mation broadeast, accumulation and all-to-all commu-
nication [11]. Here, a set of radio stations § = {5, 52,
<., 5y} is assumed to be placed in BY, d = 1. If a radio
station 5; 15 assigned a range o, itcan communicate with
any other radio station(s) located in the hyper-sphere
of radius p centered at 55, The cost (power consump-
tion) of assigning a range p; W0 a radio station s is
wi ,c.rf, where 18 a fixed constant, and is called the

distance power gradient; w; 18 also a constant attached
with s, and is referred o as the positional parameter of
5. Though g can take any value from 1 to 6, for all prac-
tical applications g is assumed 1o be 2. In the broadeast
problem, & source radio station 5% £ § is specified, and
we need to assign mnges 1o the mdio stations in § such
that s* can broadeast message 1o all other radio stations
in & using at most o hops (1 < h = » — 1). Here, the ob-
Jective 15 0 minimize the wotal cost Z:-;l u:,-,crj-l of the
entire network. If the restriction on the number of hops
f1s not mentioned (Le., i =n — 1 in the worst case),
then it is referred o as the unbounded version of the
problem.

Most of the existing literatures sudy the unweighted
version of the broadeast range assignment problem, i.e.,
wy=1fori=1,2,..., . It is shown that the broad-
cast range assignment problem (with i = 2) in BY is
NP-hard even for d =2 and in the unweighted case [3].
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A dynamic programming based O(n”) time algorithm
is proposed in [2] for the unweighted 2-hop broadeast
range assignment in B2, Approximation algorithms are
available for the wnbounded version of that problem,
with approximation factor 6 [1]. For the linear radio
network, an O(hn”) time algorithm is proposed for the
unweighted fi-hop broadeast range assignment problem
[7]. Later, the time complexity of this problem is im-
proved Lo (J{nl} [8]. For a detailed survey on the broad-
casl range assignment problem, see [6,10].

Though there is a long history of the wnweighted
broadeast range assignment problem, the weighted ver-
sion is studied very litle. The first work on this problem
appeared in [3]. For the unbounded case, the proposed
algorithm runs in O(r') time and O{n”) space. For
fi-hop broadeast, the time and space complexities are
(}{hn"}l and (}{hnl}l, respectively. Several other varia-
tions of s problem are studied i [3].

We will use graph-theoretic formulation o design
algorithms for the weighted version of the broadeast
problem in hinear radio network. Our algorithms for the
unbounded and bounded-hop broadeast range assign-
ment problems run in O(n 1}l and (}{hnllng i) oumes,
respectvely. Thus our proposed algonthms improve the
existing results on the time complexity of the same two
problems by factors of n and n”/ logn, respectively. The
space complexity for both the problems are also im-
proved by a factor of n.

In spite of the fact that the model considered for the
broadeast problem is simple, it is very much useful in
studying road traffic information system where the ve-
hicles follow roads and messages are broadeasted along
lanes. Typically, the curvature of the road is small in
comparison Lo the transmission range, and thus we may
consider that the moad 1s a stright line [4]. Linear radio
networks have been observed o be important i several
recent studies [4,7.9].

2. Preliminaries

Let § = {sy,52,..., 3, be the set of n radio stations
on a straight line from lefl to right. An weight w; = 0
is assigned with each 5, i = 1,2, .. n. Let s* = 5
£ § be the source radio station where from the message
needs to be broadeast. Let R={pis), pls2). ..., Pt
be a mnge assignment, where p(s;) 15 the range as-
signed o ;. The directed graph G =(V, E)with V=%
and E = {{s;, a‘_,-},:!{:.',-, .1.'_|,-]| = pis; 0} ois refemed o as the
communication graph for the range assignment 7.

Fig. 1 demonstrates an instance of the unbounded
welghted broadeast mange assignment problem with
five radio stations, along with the optimum solution.
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Fig. 2. Proof of Lemma 2.

Here, dis).s2) = 8, dix2,51) = 2, dix1,5) =1 and
dixyg, 55) = 4. The weight of the radio stations 5y, 53,
o.o85 are 10, 1, 10000, 100 and 0.01, respectively,
source is 52 (= 5%), and the cost of the opimum range
assignment 15 10,951.25 units.

Lemma 1. (See [8].) For anv given integer h, if
R = {pils), pisa), ..., o) denotes the minimim
cost range assignment of {51,852, .., 5.} for the h-hop
weighted bmadcast, then pls;) € {dis.5;) | j = 1.2,
el foralli=1.2,...,n

Definition 1. A directed edge e = (57, 57 ) is said o be

Junctional in the communication graph & comespond-

ing to & fi-hop broadcast range assignment R, i the
removal of the edge ¢ from G indicates that there ex-
1sts a radio station s € & which 15 not reachable from
5% (source) using a h-hop path in G,

Consider a path T = {55 = 5, .55, ... 5, = &}
from the source s* = s to a radio station 57 (j = #)
in the broadeast communication graph G comesponding
o a range assignment B, An edge (5,5, ) is said to
be a right back edge il i, < iy and iz2) = i,. Simi-
larly, on a path from s to a radio station s; (f <=#)a
lefi badk edge can be defined.

Lemma 2. If 8 =1 (resp., 8 = n), then in the minimum
cost hi-hop weighted bmoadeast range assignment, there
iv no functional right (resp., left) back edge.

Prool. Let # = 1. Suppose there exists a functional
nght back edge (5. 5;) on the path {7 in the communi-
cation graph & corresponding to the optimum broadeast
mnge assignment (see the dashed edge in Fig. 2(a)).
Note that, j = i, and there are paths from s 1o both
s and 5; withoul using that back edge. There also exisis
path from s; W s forall & = . Thus, broadeast is still
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Fig. 3. Hustrmtions of (a) Lemma 3 and {h) Lemma 4.

possible from 55 to all the members in § if we remove
the edge (57, 55) from graph & by setting p{s;) = 0 (see
Fig. 2(b}). Thus, we have a contradiction as the total cost
gets redoced. O

Deefinition 2. In a h-hop broadeast range assignment R,
a right-bridge i;5; corresponds to a pair of radio sta-
tons (5,. 550 such that s, 15 o the lell of 5%, 55 15 ©
the right of s*, and s; can reach s, in 1 hop due 1o its
assigned range, but it cannot reach s, in 1 hop.

A rght-bridge 3755 (if exisis) is said to be funcional,
if the directed edge (sp, 5,) in the communication graph
(7 1s functional.

Similarly, one can define a left-bridee ;55 and a
Junctional left-bridge in a ii-hop broadceast range assign-
ment, where s, and s are, respectively, in the kil and
right sides of 5*.

Lemma 3. If i3, and 3755 are two functional right-
bridges present in a h-hop weighted broadcast range

assignment W, then (1) b £ K, (il) a # o', and (1) if

b=V, thena' < a.

Proof. (i) If b = &' then wivially one of these two
bridges will not remain functional. Same argument
holds for part (i) also.

(iii) On the contrary, let a” = a. Now any path from
source sy o sp implies that there is also a path from sy
W sp as b’ = b = 8. 8ince a’ = a, all the radio stations s,
(@' = k = #&) are reachable using the rght-bridge 555,
Thus, the right-bridge 5755 will no longer remain func-
tonal (see Fig. 3(a)). O

Lemmad. Let ¥3;, be a functional feft-bridge and 3,55
be a functional right-bridge in a fi-hop weighted broad-

cast range assignment T Now, (1)if a < o' then b < b,
and (i) ifa = a’ then b = b.

Proof. (i) On the contrary, let b" = b. Now, the path
from the source sy 10 5, can use the rght-bridge 355
or not. If that path uses the nght-brndge 575, then

Fig. 4. MNustration of Lemma 5.

obviously lefi-bridge 3735 will not be functional (see
Fig. 3(b)). Again, if the path does not use right-bridge
iywg . then obviously it is not functional.

(1) Proof of this part is similar o part (i). 0

Lemma 5. Let 5;55 be a lefi-bridge and 375y be a
right-bridge such thata’ = a <= 8 <= b < b. Now, if both
the bridges 3,5, and 375y ave functional in a h-hop
weighted broadeast range assignment, then (1) there is
no functional right-bridge 555 such that p < a’ and
g = b (see Fig. 4a)) and (ii) there is no functional
lefi-bridge ¥,% such that p’' < a' and q" = b (see
Fig. 4ib))

Prool. (i) On the contrary, let §55; be a functional
rght-bridge. Assume that there is no functional lefi-
bridge 5,37 such that p <e < a’ and b < f < g; oth-
erwise it contradicts the part (i) of this lemma. Note
that, both ¢ = p and f = g are not possible since 3,5
and 557 are both functional.

Since there is no 1 hop path from any radio sta-
bon in {S§pe).8pe2..... 8} W0 any radio staton in
18pe1 8622, ..o 8,1, there exists a path from s Lo 5y
without using the bridge i755. Again, a radio station,
which is covered by the bridege 375, is also covered by
ipig. Thus, both the left-bridges §75y and §55; cannot
be functional. Thus, we have a contradicion.

(ii) By similar argument, if 5,75 is a functional left-
bridge, then 7,35 is not functional. [

The optimum f-hop weighted broadeast range as-
signment may consist of many kfi-bridges andfor many
rght-bridges (see Fig. 1). Feasible configurations of
overlapping bodges are shown in Fig. 5. We now intmo-
duce the concept of right-most functional right-bridge
and feft-most functional lefi-bridee as follows. These
help us n designing our algonthms.

Definition 3. A functional dght-bridge 355+ in a range
assignment is said 1o be right-most functional right-
bridge if there exists no other functional right-bridges
ia%p in that range assignment satisfying b = b,
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Fig. 5. INustration of left-most functional left-bridge and right-most
functional night-hridge.

Lemma 3 says that, of more than one nght-bndges
exist in a range assignment, and i35 is the rght-
most functional right-bridge, then for all other func-
tional right-bridge 3755, @ = a®.

Similarly, one can define a left-most finctional left-
bridge. In Fig. 5(a) and (b), 57357 is the left-most func-
tional left-bridge; in Fig. 5(c), i35+ is the right-most
functional right-bridge; in Fig. 5(d), 555+ and i35
are lefi-most and right-most functional bridges, respec-
tiviely.

We now use Lemmas 4 and 5 1o desenbe our strategy
for computing the optimal solution for the unbounded
and h-hop broadeast range assignment with no func-
tional bridge and a right-most functional fdght-bridge.
The method of handling the case with a left-most func-
tional lefi-bridge is similar

3. Unbounded weighted broadeast problem

In this section, we consider unbounded version (h =
n — 1) of the weighted broadceast problem. In the pre-
processing phase, we use dynamic programming Lo cre-
ate three arrays M, N and P, each of size n. Each entry
of these array is a tuple (x, ) as described below.

MIil.x stores the cost of the opuimum broadeast
{rom a5 w all the radio stations in the set ’:-J"' = {%, 5ig1,
coos s boand M(i]y stores the index of the farthest ra-
dio station to the right of s which can be reached from
5 10 1 hop due 1o the assigned range of 5.

Nlil.x contains the cost of optimum broadeast
range assignment from s; to all the nodes in 8§ =

thest radio station o the left of 5 which can be reached
from s in | hop due to the assigned range of 5;.

In order to explain the fields attached the wray P, let
us consider a complete digraph & with the vertices cor-
responding to the radio stations in §, and the weight of a
directed edge (5,.55) 15 wy = {d{s,,.,:.'h}l}l. Pli].y con-
wmins the cost of the shortest path from s to s; in the
graph 7, and P[i].y contains the index of the predeces-
sor of & in the shortest path from sy 10 55,

I 1. Prepmcessing

We will describe an algorithm for computing the ar-
rmys M and P. The aray N can be computed using the
lechnque for computing M.

Lemma 6. [f i < n then M[i]l.x = minj_(w; x
{d{:.';,:.‘g}l}ll + Mk x ), and if minimum is obtained for
k= k*, then M[i|.y =k*.Ifi =n then M[i]|.} = 0 and
Mlil.y =n.

Proofl. The case for { = n s trivial. So, we consider the
case where § <= n. It is clear that, if there is a path from
5 0 5y in the communication graph cormesponding o
arange assignment, then that range assignment is fea-
sible for the broadeast from s; to all the members in
5. By Lemma 2, in the optimum range assignment for
broadcasting from s; to the members in 57, there is no
functional back edge. Thus, there exists some 5; € Sj._',
where s first reaches s; in 1 hop, and then reaches
g from sp i oa mimmum cost path. This proves the
emma. [0

Thus, Lemma 6 gives a dynamic programming based
algorithm for computing M and N that muns in O{n~)
Lmd.

In order o compute the entries of the amray P, we
may use Dijkstra’s single source shortest path algonthm
o compule the cost of the shortest path from sy 1o each
radio station s = 5. This needs (}{n:}l tirme. Mote that,
the weight of an edge in & can be computed from the
positional information and weight attached to its end-
vertices. Thus, P can be computed without explicitly
constructing the graph .

By Lemma 2, M[1].x and N[1].x give the cost of
range assignment for the weighted unbounded broadeast
when 8 = 1 and & = n, respectively. We now consider
the case where s* = sp, and # #£ | or n. The above
discussions say that the optimum unbounded weighted
broadeast rmange assignment will either be (1) bndge-
free or (i) there is a left-most functional lefi-bridge or
(i) there 15 a right-most functonal rnight-bndge. We
compute the optimum solution m each case separately.
Finally, the one having minimum cost s reported.
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3.2 Bridge-free solution

The algorithm for the optimal solution with no func-
tional bridge uses two variables opr_cost and opt_range,
where opt_cost stores the cost of optimum range as-
signment, and opt_range stores the index o such that
g ) = dise .5, ) In the range assignment correspond-
ing to opt_cost. The stepwise description of the algo-
rithim is as follows:

Step 1: opr_cost =00,
Step 2: Consider each element 5; € §° {55} in order of
therr distances from sg.
Compute the optimum range assignment with g{sg)
= (55, 57 ) as follows:
Let 5, and s be, respectively, the left-most and
right-most radio-station satisfying d{sg. 5. ) < plsg),
and disq. 5g) = plsg ).
If i =a,then
C = Nlal.x+ws x (plse)> +min’_ | M[j].x.
and if i = #, then
C=min’_} N[jl.x +ws x (p(sa))* + M[B.x.
If the value of C is less than opt_cost, then update
opt_cost and opt_range.
Step 3: (* Range assignment *)
Set pisg) = disg, 5g+). where o 15 stored in
opt_range . The range of the other radio stations are
computed as follows:
Let o* < #. We assign o = a*. Let sz (f = #) be
the right-most radio station such that sy can reach
sgin 1 hop.
We identify an index & such that
Mklx =min®_ | M[j].x.
MNexl, we assign
M8 ) = d 5y, Sy[e)y ) and plsg) = disg, sppe)9 ).
We proceed further in both left and rght direction
separately. At each move towards left (resp., right)
we update o = Nar |y (resp., £ = M[E].y), and as-
sign the range of s, (resp., s ) as mentioned above,
until @ = 1 (resp., k = n) is reached. Range of the
other radio stations are assigned Lo zero.
The case, where o (= opt_range) > 8 is similarly
handled.

3.3 Selwtion having right-maost fuinctional right-bridge

In this subsection, we describe the algorithm for
computing the optimal solution having right-most func-
tonal right-bndge. It considers each possible nght-
bridge as a right-most functional right-bridee and com-
putes the cost of the comresponding range assignment.
Finally, we choose the one having minimum cost.

Let p5; denote the right-most functional right-
bridge that produces optimum cost. We compute the
optimum cost rmnge assignment for reaching s, from s
using the aray P. Let s be the night-most radio sta-
bon where s; can reach i 1 hop due to s assigned
range. Thus, all the radio stations Spp = {5p. 5p41.
ceiu8g S0, oo 8 }are reached from g5 . Now, we need
o consider the path for reaching 5 1o the left and 5, 1o
the right.

For reaching s;, we will only consider ¥ p. and com-
pute the minimum cost path. The reasons are stated be-
bow.

(i) If we choose some element 5; € Spy. § < & then
the cost of reaching &) can further be reduced by
choosing the badge 375, which we have sepa-
rately consudered.

(ii) If we choose some element s; € Spy, = 6
then such a pair of overdapping functional right-
bridges cannot exist in the optimum solution {see
Lemma 4).

(iii) If we choose some element s, f = g. for reaching
s1 and it hops at sp then p" = p (by Lemma 4).
In this situation, the right-bridge 3575 is another
right-bridge, which will be separately considered
as the right-most functional right-bridge.

But, one may choose any radio-station s, (p <t < r)
for reaching s, due to the weight consiraint. Here it
needs o be mentioned that, if we choose a radio sta-
tion s, ¢ = p for reaching s, , then the optimum path
from s, to 5, will take its first hop at a node 5+, where
¥’ = g (by Lemma 4). But, this situation results the same
cost while considering 575, as the left-most functional
lefi-bridge. Thus, such a choice of sy (#' = p) is not re-
quired.

We maintain opt_cost 1o store the oplimum cost. We
also maintain atuple of 3 integer vaables (p,g.r 1, f);
p.g,rand ¢ are as explained eadier, and § is a flag bit.
The arrays M and N are used for computing the range
assignments for reaching s, from s,, and s from s, re-
spectively. The stepwise algorithm 1s stated below.

Step 1: Initialize opt_cost = 0o,

Step 2: (* Compute the cost of optimum solution with
a right-most functional right-bridge *)
Consuder each radio-station s, 8 =< b < n.
We mamtan four vanables £, £, & and &',
While considering a bridge 375, (i) s denotes
the nght-most radio station such that d(sp, 5¢) =
disp, 520, () the index & 15 such that Mk]l.x =
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rl'lin_':.:“,_LI M)y, and (ii) ¢ and &' are used as
Lemporary vanables.

Step 2.0: Initialize £ = b and the index & is such that
M[k].x =minf;.=& Mjlx.

Consider each dght-bridge 755, a =8 — 1,8 —
2, ... Lin order, and execute Steps 2.1-2.5.

Step 2.1: Sel pisp) = dis,,5p), and &' = ¢,
Repeatedly increment £ by 1 unul disp. 50) =
disg,5p). Finally decrement £ by 1.

Step 2.2: Compute & such that
MK .x = min:.=F._;_| Ml[jilx.

Finally set & by comparing M[&"].x, M[k].x and
Mla 4+ 1].x. and choosing the minimum one.

Step 2.3: Thus the optimum cost for considering the
rght-bridge i35 a5 the dght-most functional rght-
brndge 15

C=Plbl.y +uwy x {d(.s-,,...s-;,]-}l + Nlal.x + M[k].x.

Step 2.4: If C = opt_cost, then sel opt_cost = C, and
set (p.g.rt, fil=la. b £k 0).

Step 2.5: If disp, 50210 = dis,—.55) then pisg) =
g, 5p21) also serves the role of right-brdge 335,
and we compute the optimum cost for this assign-
ment of p(sg). If the corresponding cost is less than
opt_cost, then store it in opt_cost, set [ =1, and
the set the other fields of the 5-tuple appropriately.

Step 3: Finally, the range assignment with right-bridge
Fpig.where (p.g. r.t, f) is the 5-tuple correspond-
ing to the optimum solution, is done as follows:

Assign play ) = disp.55) or disy. 5 ) depending on
whether f bit is 00 or 1. The range assignment of all
the radio stations on the path from sy to 5y are oblamed
from the aray P. The range assignment from s, to 5
are obtained from the array N and the range of the radio
stations from s; 1o 5, are obtained from the aray M as
described in Section 3.2,

I.4. Covreciness and complexity

The comrectness of the algorithm for computing op-
timum solution without any functional bridge follows
from the fact that we have considered all possible range
of the source sy. For each choice of the range 55, we
have computed the optimum range assignment of the
other radio stations for reaching s and s, Lemmas 3,
4 and 5 justifies the correctness of the algorithm for
computing the optimum mange assignment with a nght-
most functional right-bridge. Exactly same method as
in Section 3.3 works for computing the opimum range
assignment with a kefi-most functional lefi-bridge. The

following theorem says the time and space complexity
results of our algorithm.

Theorem 1. The worst case time and space complexities
of computing the weighted unbounded broadcast range
assignment are O(n 1}l and (M), respectively.

Prool. The space complexity follows from the size of
the arrays M, N and P. The time required for com-
puting these arays 1s Ofn?). After computing M and
N, the time required for computing the optimum solu-
tion with no functional bridge is O(r) time. In Step 2
of the algorithm, we fix a radio station b and consider
the right-bridges i3, foralla =8 — 1,8 =2, ... lin
order. Note that, the computation of £ and & in each it-
eration of Steps 2.1-2.5 (i.e., for a particular index a) is
incremental. Step 2.5 may also need some incremental
cost, and this reduces the time requirement of the next
iteration. Thus, for a particular radio station sp, b = &,
the total number of distance computations in Step 2.1
and finding minimum value in the M array in Step 2.2
15 Oin). This imdicates that the total time complexity of
Step 2 is Ofn?). The range assignment in Step 3 needs
Oin) time. [0

4. Weighted h-hop broadeast problem

If the number of hops is restricted 0 a specified in-
leger o (1 = = n — 1), the gmph-theoretic approach,
described above, does not work. We apply dynamic pro-
gramming based approach for solving this problem. We
first compute three n x i matrices, namely A, Band C,
whose cach entry 15 a tuple (x. ) as mentoned below.

ia) Ali, j].x = minimum cost for sending message
from s to the mdio stations i 57 | = {541, 542,
.y &y} using at most § hops; Al jl.p = index k,
such that in the minimum cost j-hop path from s
Lo 5y, the first hop takes place at s;.

ib) Bli,jly = minimum cost for sending message
from s Lo the radio stations in S_ =188 ...,
si—1} using at most § hops; Bli, jl.y = index &,
such that in the minimum cost j-hop path from s
to &1, the first hop takes place at sg.

ic) Cli, jl.x = minimum cost of sending message
from sg (source) Lo & using al most j hops;
Cli, jl.y = index &, such that in the minimum cost
J-hop path from 55 to s;, the last hop takes place
from s o 5.

We explain the computation of matrices A and C.
The computation of the matix B is similar 1o that of A.
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The elements of the first column of matnx A are
Aff 1)y = wy x {:I{:.',-,:.'”}I}II and Ali,l].y =n
for i = 1,2, ... n. After computing the (j — 1)th
column, the computation of the jth column is as
follows: Ali, jl.x = ming_;{w; x (s, ) +
Alk, j — 1].%). Iff the minimum is achieved for
k=&, then we set Ali, jl.y =k"

The elements of the first column of marix C ame
Cli,1]. = wp x {.ﬁ'{:.‘.r.-,:.';}l}lI and C[i, 1.y =4,
for i = 1,2, ..., n. After computing the (j — 1)th
column, the computation of the jth column is as
follows: C[i, jl.x = minf_ (C[k, j — 1] + wg %
{dd (5. 5 1070, If the minimum s achieved for k =&,
then we set Cli, jl.y =k

It is clear from the above discussion that the time
required for computing the matrices A, B and C is
O(hn®). In the following two subsections we describe
the method of computing the oplimum range assign-
ment for the h-hop broadeast (i) with no functional
bridege and (i1) with right-most functional rdght-bridge.
The optimum solution with lefi-most functional left-
bridge is similady computed.

4.1 Bridge-free solution

The algorithm for the weighted f-hop broadeast
range assignment problem having no functional bridge
is similar w the algorthm for the unbounded version
of the same problem described in Section 3.2, The only
change 1s that, here we need o replace M[i] and N[i]
by Ali,h — 1] and B[i, i — 1], respectively.

4.2, Solwtion with right-most functional right bridge

We consider each i3 (@ =& < b), and compule
the minimum cost of range assignment with §73; as the
right-most functional right-bridge. Finally, the one hav-
ing the overall minimum cost, is identified.

Here also, we will imtialize opt_cost by o, and will
use the S-tople (p,g.r. t, f) as described in the algo-
rithm of Section 3.3.

For each right-bridge 375, (1 < a <=8 < b < n)and
foreach & (1 < & < h) we perform the following steps.

Step 1: Assign plsp) = dis,, sp). Let £ be the maxi-
miurm index such that & (se, 560 = dis5,. 50).

Step 2: Use the matrix C to compute the mange assign-
ment from s; 1o s, in & hops. Due o this rmange
assignment, the following three sets of vertices are
already reached from sg.

(i) In the k hops path, S‘l.,b = {5j, Sj41s ..., 5p) are

reached from s in fip By, ..., hp hops, re-
spectively, where each h; < k,
(ii) the bridge 55 enables 52 = {sa.8a41. ...,

%i—1} to be reached from sg in k& + 1 hops
(where a = i), and
(iii) due to the assigned range of s, the radio
stations in Sjb = {Spy1. 8642, ..., 8¢} are all
reached from sy ink + 1 hops (where £ = b).
Step 3: Asdescribed in Section 3.2, here also we reach
51 from s; only, and for reaching s,, we need
to choose an appropriate radio stations in 8, for
which the cost 1s minimum.
Compute A* = min(A], A3, A7), where A7 =
min?ﬂ- Al h —h ] (* the cost of reaching 5, from
any one of the vertices in "":.l-.h- ),
A3 =min'_}, Alj. h —k— 1] (* cost of reaching s,
from any one of the vertices in Si,, ), and
i= :11inj-=',5,_:I Alj. h — k— 1] (* cost of reaching
5y from any one of the vertices in S;}h *),
Step 4: Compute

cost=Clb, k| + Bla,h — k— 1]+ A*.

Step 5: If cast = opt_cost then
selopt_cost = cost, and the S-tuple (p,g.r.t. j) =
fa, b, £, j* 0), where j* is the index of the radio
station for which the minimum occurs in the expres-
sion of A*.

Step 6: I aisp, sp21) = sz, 5) then
assign ol sp) = di{sp, 541 ) (F This also serves the
role of right brdge 3755 *)

We repeat Steps 2 o 5 for computing the optimum
cost for assigning this range of pisg). If the observed
cost 15 less than opt_cost, then update opt_cost and the
S-tuple appropriately with the flag bit § setto 1.

The optimal range assignments of the radio stations
can be done using the 5-tuple, and vsing the same Lech-
migue as stated in Section 3.2,

In order w analyze the time complexity of our algo-
rithm, let us consider a nght-bridge 555, and an integer
k(1 = &k < h), where k is the number of hops needed 1o
reach s, from sg. Note that, the minimum cost of reach-
ing from sy 1o 5 using k hops, and from s, 1o 5| using
ifi — &k — 1) hops can be obtained in Q1) time from
Cli.k].x and Ala,h — & — 1].x. espectively. The tme
for computing the minimum cost for reaching s, from
any of the nodes s (a + 1 < i = £) is at most Oin).
Thus, we have the following theorem.
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Theorem 2. The worst case time and space complexities
of the weighted h-hop broadcast problem is O(hn®) and
Oinh), respectively.

Proof. The minimum cost range assignment without
any functional bridge can be computed in O(n) time
using the matices A and B. Iln order 1o compule the
solution with a functional bridge, we may need to con-
sider O(n?) pairs of nodes in § as the possible rnght-
most functional right-bridge (resp., lefi-most functional
lefi-bridge ), and for each such pair, the possible choices
of £ 1s at most i — 1. As mentioned carlier, the time
required for considering each triple (s, 55, &) is Oin)
(where i35 is the bridge, and & is the number of hops
to reach from sg 10 55). Thus, the time complexity result
follows. The space complexity result follows from the
storage requirement of the matrices A, Band C. [

4.3, Further refinement

The tme complexity of Step 3 of the algorithm can
be reduced if we can get the three guantities AT, A%
and A: on demand. In order 1o achieve this, we store
each column (k) of the matrix A in a height balanced
binary tree Tp whose each node is a tuple (s, o). The s
ficlds of the leal nodes contain sy, 52, ..., 5, in left o
right order, and their corresponding ¢ fields contain the
elements of the kth column of matrix A. The discrimi-
nant value stored at each internal node (say v) of Ty is
the average of the s values stored in its inorder prede-
cessor and successor nodes. The comesponding ¢ field
stores the minimum value of the ¢ fields attached 1o all
the nodes rooted at v in T

Let us now fix a node 55, & = 8, and consider the
minimum cost of range assignment with all possible
right bridges 375, where a < 8. Lel s be reached from
57 10k hops. While computing the & hop path from sg
Lo sp, we can gel the sel S:.l-.cn and the number of hops
needed for each node o reach from 55, Thus, we can
also compute A7 in D{”“:LJ&-E}' ime using the matrix A as
mentioned in Step 3 of the algorithm.

Now, assign different ranges 1o s for generating
right bridges i35, for different @ = #. This determines
the set .’:‘ib and "-':.:h MNow we can get A3 and A3 on de-
mand, by searching in the tree T in O{logn) time. Note
that, for a given k and b, A7 does not change. S0, we
can compute the cost of the range assignment for all the

bridges initiated from & in O(r logn) tme. Thus, we
have the following theorem:

Theorem 3. The worst case time and space com-
plexities of the weighted h-hop bwoadeast problem is
(J'{Pm: logn ) and O(nh), respectively.
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