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Abstract

If the variables used for a checkpointing algorithm have data faults, the existing checkpointing and recovery algorithms may fail. In this paper,
self-stabilizing data fault detecting and correcting, checkpointing, and recovery algorithms are proposed in a ring topology. The proposed data fault
detection and correction algorithms can handle data faults; at most one per process, but in any number of processes. The proposed checkpointing
algorithim can deal with concurrent multiple initiations of check pointing and data faults. A process can recover from a fault, using the proposed
recovery algorithm in spite of multiple data faults present in the system. All the proposed al gorithms converge in O{(n ) steps, where n is the number
of ntocesses. The algorithm can be extended to work for general topologies too.

Kevwards: Data fault; Process fault; Checkpointing: Rollback moovery: Self-stabil ization

1. Introduction

Checkpointing 15 a well-known technigue for faull tolerance in distributed computing systems. I gives faolt wlerance without
requiring additional efforts from the programmer. A chedkpoint is a snapshot of the current state of a process. 1t saves enough
information in non-volatike stable storage such that, if the contents of the volatile stomge are lost due o process failure, one can
reeonstruct the process state from the checkpoint saved in the non-volatile stable storage. This stmtegy usoally works well in
uniprocessor systems. The reconstruction of a distributed system with multiple processes is, howewver, not easy. Here, the system has
Lo rollback w a consistent global state. A set of checkpoints, with one checkpomnt for every process, 15 said W be a consistent global
chedipointing state (CGS) if there does not exist any message such that the sender has no record of the sending but the receiver
has the record of the receipt and the receiver has no record of the receiving but the sender has the record of the sending. The first
Lype of message 15 called orphan message and the second type of message 15 called missing message. The missing messages may be
acceptable, if messages are bogged [1.10.17] by sender.

A sell-stabilizmg distributed system ensures recovery from an illegitimate configuration in a finite number of steps. A system
may reach an dlegitimate configuration due to failure or a perturbation in the system. Dijkstra [5] first introduced the notion of
sell-stabilization in distributed systems i 1973, His definition of self-stabilizatnon was “regardless of its iminal state, it 1s guaranteed
to arfive at a legitimate state in a finite number of steps”. Schneider [16] gave it a more formal representation. For a system §,
a global state of the system is the union of the local states of its components, The predicate P oidentifies its comect execution. In
ather words, if the value of P is False, we note that the system is in an illegitimate state, otherwise the system is legitimate. 5 s
self-stabilizing with respect o predicate P, if it satisfies the following two propertics:

Closure— P 1s closed under the exccution of 5. That s, once P is established in 8, it cannot be falsified.

Convergence—>S1anting from an arbitrary global state, § is guaranteed w reach a global state satisfying P within a finite number
of state transiton™ [16].
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In this paper, we propose self-stabilizing checkpointing and recovery algorithms for unreliable ring topology which can detect
and correct data faults. Two types of faults, data fault and process fault, are consdered.

Data fandt: It means that the data of 2 vanable used by the checkpointing algorithm is changed or corrupted due to some unreliability
of the system.

Pirocess fault: It significs process crash. Such a process loses the data stored in volatile storage and has to be rolled back. The
process state s reconstructed from a checkpomnt saved in the non-volatile stable stomge.

Herman [9] compiled an extensive st of works on sell=stabilization. Ghosh and He [8] proposed a scalable time-independent
self-stabilization algonthm to stabileee from any &-faolt configuration in a distributed system consisting of n processes on a lree
opology. The worst case stabilization time and the space complexity of the method are O (k%) and O(A.(Ak + log, r)) per process
(where A s the maximum degree of a node), respectively. Ghosh et al. [7] proposed several ways of measuring the performances
of fault-contwining self-stabilizing algorithms. Several earier works [2-4] on snapshot collection algonthms assume that at any
point of time only one snapshot collection process is active. Koo and Toueg [11], Spezialetti and Keams [ 18], Prakash and Singhal
[15]. Mandal and Mukhopadhyaya [ 12] have proposed methods for handling concurrent initiations of snapshot collection. Logical
checkpoints were introduced by Wang et al. [22,23], Vaidya presented three approaches [20] for taking a logical checkpoint. Vaidya
used asimple approach [ 21 ] where physical checkpoints are arbitranly staggered, but consistency is enforced by logging the messages
during confirmation. Many recovery algorithms on distributed computing system have been proposed in the ilemture [6,14,17,19].
Muanivannan and Singhal [ 14] proposed an asynchronous recovery algorithm in which all processes recover from their last existing
checkpoints.

2. The underlying model

We consider a distributed system consisting of 7 processes on a ring network. Processes are numbered By, Pr. Pa,.o o Pa_
sequentially, in the clockwise direction. While the synchronous checkpointing is in progress, o process sends checkpointing request
{ckpt_reg) along the anti-clockwise direction. However, application messages may travel m oany direction. There s no commaon
clock, shared memaory or central coordinator. Message passing is the only mode of communication between any pair of processes.

A process, initiates checkpointing by taking a temporary logical checipoint [20-23]. It increments is v_ne by one and stores the
new checkpoint in s non-volatile stable storage. We assume that the checkpoints stored in the stable storge cannot be comupted.
We also assume that the checkpointing state (ckpt_state) and checkpointing sequence number/version number (v_no), maintained
in the main memory, might be comupted or changed. If 4 process fails when a data faolt s present (in any process in the system), the
algorithm proposedin [3.12.13] may not give a CG S after rollback. Each process maintains acounter, called v_no. Each process may
store at most two checkpoints, one permanent (ot _state = P)and one temporary (ckpt_state = T ) when checkpointing algorithm
is running or cormmunication-induced [ 13] checkpoint is taken. Otherwise, a process will have o single permanent checkpomt. Two
checkpoints will have two consecutive v_nes and they will belong o two distinet CG S . Interval between checkpoints with v_no = p
and p 4 1 s called pth checkpoint interval. Each process maintains a list of messages sent by L in a message logging table (MLT).
Whenever a process takes a checkpoint, it stores its MLT in stable storage along with the checkpoint, After receiving a message, the
receiver sends an acknowledgement (ack_msg) with the receiving checkpoint interval (receive_interval). receive_intervals of the
corresponding messages are also maintained in the MLTS by the senders. A message is deleted from an MLT only when a penmanent
checkpoint is taken by the receiver after processing the message, e, when the current checkpoint nterval of the sender 1s greater
than or equal W weceive_interval + 2.

Atmostone data fault per processis assumed. That fault may oceurat any tme during the computation. However, several processes
in the system may have data faults at the same time. In the worst case, all processes can have data Caults concurrently. The system can
recover il a process fails even when a data fanll is presentin the system. The proposed scheme can handle data fault and process fault
concurrently. The system is said o be in a legitimate configuration if there 15 no data fault and process fanlt, and there exists a CGS
for the system. If at least one data fault or process fault 1s present in the system then the system reaches an iffegitimare configuration.
When a process detects data fault and process fGalt, it knows that it has reached an illegitimate configuration. In this situation, in
case of data fault the process first tnes o commect the data Gaalt itself. IF the process cannot do so all by itself, it communicates with
other processes and recovers from the data fault, It may be noted that, the communication for comrecting the fault does nol generate
extra messages. The required information is gathered by piggybacking some extra information on application messages or control
messages. In case of process fault, system recovers by molling back to the CG S and resumes computation. For all the above cases in
a finite number of steps, the system reaches a fegitimate configuration from an illegitimate configuration.

3. Motivation

Ifthe vanables used for acheckpomnting algorithm [3.12,13] have data faults, the algonthmmay fail. Forexample, incommunication-
mduced checkpointing [13], if the variable representing the version number of the latest checkpoint in a process, gets changed due
o a fault, a process may not take a checkpoint when it ought o, Similardy, in some other schemes wo, if the version number is
changed, finding a CG§ may not be possible.
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Fig. 1. Anexample showing inconsistency in checkpointing and recovery algorthms due to data fault.

Fig. 1 shows an example how communication-induced checkpointing algonthms and rollback recovery algonthms fail due to a
data fawlt in checkpoint v_no. The order pair [v_no, ckpt_state] in the figure represents two checkpomting vanables corresponding
o a checkpont. Process Fy initiates checkpointing by taking a temporary checkpoint with v_no = 5 and sends ckpi_reg o P AL
this point of tme, the v_no of P gets changed from 5 to 4 due to some unreliability of the system. Then, F; sends an application
message m Lo Py, piggybacking the value of the v_no (= 4) of the latest checkpoint. On receiving m, F; observes that the v_no (= 4)
Lagged with m is not greater than the latest checkpoint v_no = 4 of F;. P; receives dipt_req alfter processing m and takes emporary
checkpoint with v_no = 5. At this point if a process fails and the system recovers by molling back to the latest checkpoints of F; and
P system does not reach a CG S, Message mois an orphan message.

4. Predicates for sell-stabilization

Process, B ¥i € {0, 1, ..., n— 1} maintains the following four variables in their volable storage. Two values of the vanables v_no
and ckpt_state ( P/ T) are associated with a checkpoint:

prev; s v_nao of the previous checkpoint
state_prev; :okpt_state of the previous checkpoint
CHreg s v_ne of the current checkpoint
state_currg : ckpi_state of the current checkpoint

Each process maintains two predicates:

pred sreturns Trie when the values of version numbers (v_no)
of two checkpoints are consecutive

pred, sretums Trie when ckpt_state of the previous checkpoint
is permanent (F)
pred, and pred, are computed as follows:

il (curr; = prev; + 1) then pred| = True else pred| = Falve end il,

il (state_prev; = P)then pred, = True else pred, = False end il

If a process is in a legitimate state, both pred| and pred, should retum values True. If one of the predicates retums value False,
the process is in an illegitimate state. We do not consider the case where a single process may have more than one error.

When a data fault is detected, if possible, the process corrects iself; otherwise it takes help from other processes. A process will
check s predicates whenever it sends an application message, control message or an application message 15 passing through the
process with an undecided information.

5. Data launlt detection and correction

Process, P checks its predicates before sending an application message then logs the message in the MET. If pred ; meturns False,
F; corrects the fault by putting state_ prev; = P Since at most one data faolt in a process s assumed, pred | returning False implies
that the fault is either i curr; or i prevy. I prev; 1s faulty, then the comrect value for prev; would be curry — 1L I cwrr; 15 faulty then
the correct value for curry would be prev; + 1. In such a case, F; cannot decide which one would be correct. Py sends an wndecided
(L7) tag with the application message. If pred | returns Trwe, P osends the application message with tag Do Py sends an application
message o the next process with @ (sender id), & (recewver id), prev;, state_prev;, curr;, state_curr;.

When P; receives a message with tag U, if pred | is True, then Py corrects the fault of sender (F;) of this message. If pred | s
False, and il one of the following condition is True, then P would not be able to correct the fault of F; and its own. Now, P; also



PX. Mandal, K. Mukhopadhvava / J. Parallel Distrib. Compus. 67 {2007) 316 -829 sl9

become undecided.

Condinon | ((prev; = prm-j}l Acnrry = curr p) A (state_curr; = state_curr ;)
Condition 2 ((prev; = prev; + 1y adcurry = curr j + 1) A state_curr; = T') A(state_curr j = P))
Condition 3 ({prev; = prev; + 1y adcwrrj = currp + 1) A (state_curr j = T) Adstate_curr; = P))

If none of the above three conditions s True, P; corrects the fault. Given that pred | 1s False for Py, curr; # prev; + 1. Let .':I‘.' =
{curry — 1. cwrr;), and S'F = (prev;, prev; + 1). The comreet value for the ordered pair (prev,, currg ) 1 cither .':?‘.I or ':?‘1 Similarly, the
correct value for the ordered pair {prwj, curr ), for process Py, 1s either RJ. = {curry — 1, curr ) or Ri = {pmvj,pmrj + 1.

Let (prev, curr;) € & and (prev), curr’;) € R}, where . v € {1, 2} (8], R}) is correct for some i, v € {1, 2} if and only if one
of Conditions 4, 5 or 615 True.

Condition 4 ((prev; = ;W\-'}-i—l}la‘\{f‘ﬂﬁ’} = c'urr:,-+1}A—-{:.'mrf_c'urr‘- = state_curr j)a(state_curr; = T))
Condition 5 fipm-‘} = pmﬁ+1}n{curr:,- = curr;+1)A—(state_curr; = state_ctrr j) Astate_curr; = T))
Condition 6 {{premj = previ) A {c'urr:,- = curr) A (state_curr; = state_currj))

If F; is undecided, it forwards the message o the next process, unchanged. If P is able to correct the Faull it writes the comrected
value in the appropriate variable, changes the message g from L7 to D and then forwards the message o the next process.

When Py receives a message with tag D il it finds that pred | = False then either prevy or currg has a data faolt. Py can comrect
the faunlt according 0 Procedure LocalCorrection(i.k).

Procedure Local Correction(i, k)
begin
il { (state_curry = P) ~ (state_curr; = P)) then
curry <+ curr; and prevy < prev;
else il ((state_curry = P) ~ (state_curr; = T)) then
curry < curr; — 1 and prevy «— prev; — 1
else il ((state_curry = T) ~ (state_curr; = P)) then
curry <—curr; + 1 and prevy «— prev; 41
end if
end if
end

After commecting the data fault, if cowrry < cwrry, Py lakes a wempormary checkpoint with v_ne = curr; and then processes the
message. This case arises if and only if the application message was sent after the sender has taken a new temporary checkpoint with
av_no = cwrry. I currg 2 coryp, Py processes the message without taking a checkpoint. After processing the message Py sends an
acknowledgement message (ack_masg) with state_curr;, curr;, currg © Fy.

If P; receives amessage with tag I and finds that pred, is False, then it corrects the data fault using Procedure LocalCorrection(ij)
and forwands the message Lo the next process.

On receiving an ack_msg from Fy, process F; fimst makes is correction if pred;, = False. Then it deletes the corresponding
message logged in the MLT. When Py receives a message with tag U from Py, of pred | = False and one of Conditions 1,2 or 3 18
True, then Py also becomes undecided. Py keeps the message for future processing. [t passes the message without message data Lo
the next process with 7 as the changed receiver id of the message.

In the worst case, a message with tag I retums back to Py, the originator of the message. If there exists at least one i such that
state_curr; = T, Py will wait for ckpr_reg. After receiving ckpt_reg, P; comrects the data fault. Otherwise, all processes have data
faults and they are unable to rectify these faults. In this case global reset is required. Several processes may receive such messages
with tag [' retwrned w them. Another round of message passing 15 required o elect one process among them (we choose the one
with minimum id). This can be done by passing a4 message round the nng. In total, there will be O(n) messages and will take Oin)
tme. Let By be the elected process. As it is impossible o decide which one {:-I”pn'vm and curry, 15 comect, Py, assumes that prev,,
1§ correct. curry 15 eplaced by prev,, 4+ 10 By sends a cormection message (corvection_msg) with curry, and state_curry, 1o other
Processes.

On receiving correction_msg, FP; corrects isell with Procedure LocalCorrection{m,j). The correction_msg 15 forwarded until
it passes through all the processes and it returns back o F. The message which was held up due 1o U7 tag 1s processed after
TECOVETY.
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Fig. 2. Anexample showing data faults but not requiring glohal reset.
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Fig. 3. An example showing data faults which requires glohal reset,

5.0, Examples

Our scheme is illustrated with the help of two examples. Fig. 2 shows a system consisting of five processes, Py, P, P2, Py and
Fy. The ordered waple (prev;, state_prevy, currg, state_curr; ) represents the foar vanables of £ Py checks s pred | and finds that
pred; = False before sending an application message my W Py Py has a data faolt. It cannot decide which one of (3. F. 4, P)or
(4, P. 5, Phis comect. Py reaches an undecided state. Py sends mo with tag U and (3, P 5, P) o P mentioning that the destination
is P3. Pz observes that my has wg U7, It checks its pred| and finds that pred;, = True. Pz comects the fault using Procedure
LocalCorvection(2,1), and forwards m to Py with tag D and comected tuple (4, B, 5, P). On receiving m, Pz checks its pred | and
finds that pred| = Falve. Py corrects the fault using the same Procedure LocalCorrection(1,3), Comrected tuple of P would be (4,

P, 5, P). F; than processes m without taking any checkpoint since curry = curry . Aller processing m Py sends an ack_masg o P,
On receiving the ack_msg Py rectifies its fault using Procedure LocalCorvectionf 1,1).
Fig. 3 shows an example where global reset is necessary. This situation can happen only when all processes have same type of

data faults, either prev; or curr; has been changed for all § with the same value. In Fg. 3 P is trying to send a message, ma2 o
Py Before sending ma, P finds that pred | = False because curry % prevy + 1. Py sends mz with tag U and (4, P. 7. P) to P;
mentioning that the destination is P3. When mz reaches Pz, P finds that the message has tag U, Pr checks its pred | and finds that
pred) = Falve. Py tries o comect the faults using the order taple (4, P 7, P) camied by mo2 and its own order tuple (4, B7, P). From
those two order tuples P finds two possible fault free order tuples, (4, F, 5, Py and (4, P, 5, Pyor (6, F, 7, Pyand (6, P, 7, P) for P and
its own, respectively, but cannot decide which would be the correct with respect o the global state. Pr also reaches an undecided
state, forwards ma 0 P3. Py also cannot break the deadlock. It keeps the message part of ma in its log and forwards the header o Py
mentioning that the destination 1s Py, With the progress of the message, Py and Fy, reach wndecided state. Finally, m2 retums back
to Py, Py then sends one round of message for global resetter election. P ois elected as a global resetter since it is the only process in
the election in this example. Py resets the wple to (4, B 5, Pifom (4, B, 7, Pland sends correction_masg o all processes. Py corrects
the fault using Procedure LocalCorrection] 1,i). Corrected order tuples for all £ would be (4, P, 5, P).
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6. Daia Fault detection and correction algorithms

Algorithm 6. 1. Application message sender ().

{ A process performs following operation when it sends an application message
with the order wple (prev;, state_prev;, curr;, state_curr;) |

1. begin

2. il(pred, = Tue » pred, = True) then

3, attach tag D with the message and send
4. elseil (piwd, = True) then

5 corrects the faull by putting state_prev; = P
G. attach tag I with the message and send
7. elseil (pred| = True) then

H. sel msg_send_undecided; +— T

9. attach tag U with the message and send
1) end if

11. log the message m MLT

12, end

Algorithm 6.2, Forwand application message by Pj, j # k (message is U tagged).
1. begin
2. il ipred| = True) then | P; has no data fault}

3. correct the tuple using Procedure LocalCorrection( i), change the tag from [
4, o D forward the message to the next process with the corrected wple.

5. else if (pred|, = False) then { P; has a data fault }
6. il Condition | = True v Condition 2 = True v Condition 3 = True) then

&+ { P cannot comect the fault }

8. forward the message 1o the next process as it is.

9. else P; comrects the faull using Condition 4 or 5 or 6

10 changes the tag from U7 w D, forwards the message o

11. the next process with the corrected tuple.

12. end if

13. end if

14, end

Algorithm 6.3, Forwand application message by Pj, j £ k (message is D tagged).
1. begin

2. i (pred, = False) then { P has adata fault }
. F; corrects its own fault using Procedure Local Correction(ij) .

4. end il

5. forward the message to the next process as it is.

6. end

Algorithm 6.4, Receive application message by Py (message is U tagged ).

1. begin
2.0r (pred | = True) then { P has no data fault}

3. comect the tuple using Procedure LocalC orvection( ki),

4, COMPARE(curry. courr);

5. else { Py has o data faalt}
6. i Condition | = True v Condition 2 = True v Condition 3 = True) then

1. { P cannot correct the fault }
5. keep the message in the log as withheld message and forward the header

9. to the next process mfomming that the destination s F;

1. else Py correct the fault of its own and the wple using Conditiond or S or 6

11. COMPARE curry., curr );

12, end if

13. end if

14, end

B2l
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Algorithm 6.5, Receive application message by Py (message is D tagged).

1. begin

2. ir (pred | = False) then { Py has a data fault}
3. Fr corrects its own fault using Procedure Local Correction(1.k)

4, endil

5. COMPARE(curry. curey);

6. end

Algorithm 6.6, COMPARE curry, curr; ).

1. begin {may take checkpoint and sends
2. ilicurry = curr;) then acknowledgement }
3 tuke o checkpomt with state_cuwrr, =T

4 sel v_no < curry and currg <— curry

5. endif

6. process the message, send ack_ms g with comected tuple to Py with corrg.

7. end

Algorithm 6.7, Receive ack_msg / U/ D Message by Py,
1. Acknowledgement (ack_msg):

1.1 begin

1.2 ilipred, = False) then { P; hasa data fault}

| correct 1ts own fault using Procedure LocalC orrection( i)

1.4 il (receive_interval + 2 < curr;) then

1.5 delete the message from MLT

1.6 else receive_interval <— curry {received interval 1s mantained in MLT }

1.7 end il [ for a message }
1.5 end

2. Message has tag D { Pr, message receiver could not correct the fault }

2.1 begin {some other process comected the tuple of the message |

2.2 comrect its own Fault using Procedure LocalCorvection(f,i) and sends the

2.3 message with tag D wwards destinaton Py,

2.4 end

3. Message has tag L« {all process have exactly the same fault as P}

3.1 begin {none of the processes correct the fault |

3.2 ElectLeader.
3.3 (P isthe leader) then

34 sel curry <— prevy; + 1 and send correction_msg

35 to all processes with (prev;, state_prev;, curr;, state_curr).
3.6 endif

3.7 end

Algorithm 6.8. Receive correction_msg by Pj.
1. begin

2. comect the fault using Procedure LocalCorvection(i,j).
3. if(there is any withheld message in log) then

4, COMPARE( curr . curr;);

5. endif

6. Forward the correction_msg until it reaches P;

7. end

7. Checkpointing algorithm

A process, Fy without a temporary checkpoint or any data fault may initiate checkpointing, Duning initiation Fy takes a lemporary
(T checkpoint, sets a flag (initiator_flag; ) equal to True and increments v_no by one. All control messages for the checkpointing
are routed in the anti-clockwise direction. The following checks are camied out during the iniiation.
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Algorithm 7.1. Chedpointing initiated by P;.
1. begin

2. if((pred, = True) A (pred, = Trwe) A (state_curr; = P)) then
.2 Lake o checkpoint

4. sel initigtor_ flag, < True, state_curr; < T,

5 prevy <— currp, curry <— curry + 1, v_no < curr;g,

6. send okt _reg with coorry, §

7. end il

8. end

On receiving a ckpt_reg, ift P; finds, both pred| and pred ; are True then curr is compared with the curr; of the message. I curr;
is nol equal to corr ;o and current checkpoint state, state_curry; = P then Py otakes a new lemporary checkpoint otherwise it do not
ke a new checkpoint. IFf one of the predicates, pred | and pred, s False, it implies that P; has a data Fault. It corects the fault using
the information tagged in the ckpr_reg and takes a checkpoint according to the above condition as follows:

Algorithm 7.2, On receiving dpt_reg by Pj.

1. begin

2. W (pred| = True) » (pred, = True) then

3. i (currj # curry) & (state_cuwrr; = P) then take a checkpoint
4., sel state_currj ~— T, currj +— CHIF], PRV <= CHT j — 1
X U_NG +— CUITj, !-J'!r-fl'-ﬂfr.l?’_ﬁﬂgj «— False

6. else do not take checkpoint

7. end if

8. elseil (pred| = True) v (pred; = True) then

9. if (pred, = False) then state_prev; = P

110, else sel curr; CUITj, Prev; <= Clrj — 1

11. end if

12. it {state_currj = F) then take a checkpoint

13. sel currj < CUIF], PIEV | < CUIT [ — l, v_no < curr;
14, initiqtor_ flag g False, state_curr; — T

15. end if

16. end if

17. end

As concurrent multiple initations of checkpointing are allowed, several ckpe_reg generated by different initiators may be received
by a process. Among them only initiators take decision o forward, discard or generate a commit message (commit_msg) 1o the
next process along the anti-clockwise direction according to the following logic.

Algorithm 7.3, ckpt_req propagation by Pj.

1. begin

2. il (initiator_ _ﬁﬂgl = True) & (J = initiator_id) then discard the message

3. elseil {im'nhmr_ﬁﬂgj = True) » (j = initaror_id) then discard the message,
4. send a commit_masg o the nexl process.

5. elseil {r'm'nhmr_ﬁﬂgj = True) ~(J = initiator_id) then

6. forward the chpit_reg to the next process.

7. end il

5. end

On receiving a commit_msg, P takes the following actons:

Algorithm 7.4, commit_msg propagation by P
1. begin

2. i(j=i)then

£ delete the checkpoint with v_no = prev;, keeping prev; unchanged.
4. sel state_curr; +— P, forward the commit_msg to the next process.
5 endifl

6. end

When the commit_masg retums back toits creator, it stops the message propagation. The checkpointing process 15 terminated and
a OGS, one checkpoint per process with same v_no s established. The checkpointing algorithm would not have been soccessiul if
at least one process was unable o take checkpoint for the checkpointing progress.
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8. Process fauli recovery

If a process, Fy fails due to crash, it loses the data stored in volatile storage. Hence it loses checkpointing variables, prev;,
state_pwev;, curry, state_curr; stored in volatile storage. The process reconstructs the process state from a checkpoint saved in the
non-volatile stable storage. Since, the data in the non-volatle stable storage remain unaffected in case of process fanlt, the system
can resume computation consistently from a OGS A process may fail any time when the distnbuted computation i in progress.
A process may have two checkpoints, one permanent and one temporary, or a single permanent checkpoint stored in the stable
storage. The temporary checkpoint is taken on receiving a ckpi_reg or induced by communication. Recovery algorithm finds out
one checkpoint per process in non-volatile stable storage with same cirry Wi £ {001,201, n— 1} OGS finding and resuming
computation is the task for recovery algonthm. Data fault, if any, in the other processes 1s corrected during the execution of the
recovery algorithm. The faulty process starts recovery process by sending recovery message with v_pe tagged with it This value of
v_nao 15 retrieved from the checkpoint stored in non-volatile stable stomge.

Algorithm 8.1, Recovery initiated by Fy.

1. begin
retrieve latest checkpoint from stable storage
3 sel state_prev; <— P, state_curr; — P
4 curry +— u_na, prev; < curry — 1, recovery_id «i
5. if only one checkpoint is in the stable storage then wcovery_ flag; « True
6. else wcovery_ flag; +— False  [two checkpoints are stored in stable storage}

I

i { the latest checkpoint may or may not belong o the CG 5}
8. endif

9. send recovery message with curr;, recovery_ flag; and recovery_id

10, end

Algorithm 8.2. Recovery message received by Pj.
1. begin

2. il j #ithen

3. il recovery_ flag; = True then

4. il pred | = False v pred; = False then

A sel state_prevy; < P, state_curry — P

6. CUFY | < CHFTj, PrEV < Cuirj — 1

F il two checkpoints are stored in stable storage then

8. delete the latest checkpoint

9. resume computation from the checkpoint swored in stable stomge

10 else {recovery _ flag; = False}
11, il pred | = False then

12, if state_curr; = T then

13. CUFF | < CUTT],PFEV < CUrtj — 1

14, forward the recovery message

15. else | state_curr; = P}
l&. recovery_id «— j {resel recovery imitiator |
17. CUFF | < CUITj — l,pmvj- — currj — 1

18, recovery_ flag; +— True, send recovery message

19. end if

20, else {pred|, = True}
21. il currj = curv; then

22, forward the recovery message

23, else il corrj = curr; then

24, delete the laest checkpoint

25, CHPF | +— CUFY},PFEV; — CHIT| — 1

26. else feurr ;< curr; |
2 recovery_id < § |mesel recovery initiator}

28. recovery_ flag ; = True, send recovery message

29, end if

3. end if

3l. end if

32, else |j=1}

33, P resumes computation from the latest checkpoint

34, stored in stable stomge

35. end il

36, end
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9. Correciness and complexity analysis

A set ol checkpoints is consistent if it does not contain any orphan or missing message. In this section we first show that a set
of checkpoints with the same version number will have no orphan message. Though the system may contain missing messages, but
every such message 1s available in the MLT of the sender.

Lemma 1. There will not be any orphan message in the svstem

Prool. Suppose there is anorphan message (m ) in the system. A message isan orphan message if itissend by its sender B aftertaking
checkpoint o (say) but is received and processed by its receiver Pr, while itis yet wo take checkpoint 2. We need to consider whether
F;. atthe time of sending the message, and Fp, at the time of receiving the message, has any data faolt. The following cases may arise:

Case 1: Suppose neither B onor Py has a data faolt. Last checkpoint version number (curr; = 2) of F; ois tagged with m by
Algorithm 6.1. After receiving m, Py finds that the last checkpoint version number is less than o and the checkpoint version number

m by Algorithm 6.6, steps 2-6. Which contradicts our assumption that the v_ne of Ppois less than 2 at the ume of processing m.

Case 2: Suppose Py has a data fault and but Py has no data fault. F; sends an undecided (D) tag with m (Algonthm 6.1, step 9).
If m oamives at Py with U tag (Algonthm 6.4) it corrects the fault (step 3) and takes decsion for new checkpoint similar to Case 1.
So, again the v_neo of £ 15 2 at the time of processing m.

Case 3: Suppose P; has no data fault but Py has a data fault. In this case, P; sends a D g with m (Algonthm 6.1, step 3) o £
Fy corrects the fault (Algonthm 6.5, step 3) then takes decision for new checkpoint according to Case 1.

Case 4: Suppose there are data faults in both F; and Py, F; sends a U tag with m (Algorithm 6.1, step 9). If m amives at Py with
D g, the arguments of Case 3 hold good. If moaroves with tag U, Fr 1s unable to comect the fault (Algorithm 6.4, step 6). In this
case Py keeps the message in the log as withheld message and forwands the header o next process informing that the destination
15 Fp. I the header with D tag returns back to Py (Algonthm 6.7, step 2) it comects fauls and sends the header with D lag towards
destination P, If the header with I7 tag returns back to Py (Algonthm 6.7, step 3) a leader 15 elected. The leader corrects fault and
sends comection message o all other process (Algorithm 6.7, step 3.4 and 3.5) including P, Then Py corrects the fanlt and takes
decision for new checkpoint and processing the withheld message (Algonthm 6.8) according to Case 1. So once again, al the time
of processing m, Py has v_ne = 2. Contradiction! [

Lemma 2. All missing messages are available in the MLTs of the senders.

Prool. Suppose there is a missing message (m') in the system. A message is 8 missing messape if it is send by its sender Py before
taking checkpoint § (say) but is received and processed by its receiver, By after taking checkpoint §. If neither £ nor Py has a data
fault, on receiving m', Py sends ack_masg to Py with currg (current checkpoint interval). On reeeiving the ack_masg, P; deletes the
message from MLT (Algorithm 6.7 step 1.5) only when a permanent checkpoint has been taken by the receiver after processing the
MEsSige.

Note that by Algorithm 6.7 in steps 1.4 and 1.6, the vanables used are guaranteed o be error-free, even if Py and/or Py has data
faults, If there was a data faalt in Py, oivis corrected inostep 1.3 and if there was a data fault in P, itis comected by Algonthm 6.5 in
step 3. I there are data faults in both Py and Py, faults are comected as per the arguments given in the proof for Lemma 1 in Case
4. 8o, like the faolt-free case, o message 15 deleted only when the sender is sure that the receiver has taken a permanent checkpoint
after processing the message. [

Lemma 3. In case of data faults, the svstem corvects the data faults in O(n) steps (one step is one hop message communication).

Proof. Following the arguments given in the proof for Lemma 1, we can prove that data faults would be corected. In Case 1, neither
F; nor P have data faolts; so it need not be considered. In Case 2, F has a data fault and but Py has no data fawlt. After receiving
the message, Py sends ack_msg with corrected wiple to Py, On receiving the adk_msg, Py corrects the fault ( Algorithm 6.7, step 1.3).
The correction is completed in ({r) steps. In Case 3, F; has no data fault but Py has a data fault. Py receives the message with tag
Iy and comrects the fault (Algorithm 6.5, step 3). The correcton is completed in @{n) steps. In Case 4, if the beader returns o Py
with tag D (Algonthm 6.7, step 2), then the comrection 1s completed in 2 steps. IF it retums with tag U7 (Algorithm 6.7, step 3),
leader election takes an extra n steps. So wotally 3n steps are required. O

Theorem 1. The set of checkpoints generated by the proposed checkpointing algorithm is consistent. The fime and message com-
Plexities af this algorithm are both ().

Prool. Lemmas | and 2 guarantee that the set of checkpoints is consistent.
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Let £ be the process with the minimum id among the concurrent initiators. Py will eventoally send i1s ckpt_reg in anti-clockwise
direction, and since no other imtiator or non-mitiator process can discard the message, the message will retum back to Py, Then F
sends a commit_msg. The ckpt_reg of every other ininator will be discarded when next mitiator of smaller id receives the message in
anti-clockwise direction of the nng. Each initator process will forward at most one message. Almaost n 4 (n — 1) ckpt_reg messages
may be generated for concurrent initiations. Another n messages would be required for the commit_msg 1o return back to F . So the
total number of messages is at most 3n — 1.

It is assumed that 4 message akes one unit of time o travel across one link. We ignore the time for processing a message at a
process. After n time units the ckpt_reg returns back w Fr . Another n units of time are required for the commit_msg 0 return back
to £ In total after 2r units of time, the CGS 15 confirmed. O

Theorem 2. Recovery algorithm ensures that the system remurns 1o g legitimate state in (Nn) steps.

Prool. Incaseof a process failure, the faulty process, on being revived, retieves the latest checkpoint version number from the stable
storage (Algorithm 8. 1) and sends recovery message to all other processes for finding checkpoints with the same version number., IF
the checkpoint exists for all processes (Algorithm 8.2, step 32) then the OGS s established. Otherwise, previous checkpoint version
number exists for all other processes and the OGS s established by Algorithm 8.2, step 15 in case of the receiver have data fault or
Algorithm 8.2, step 26 in case of process do not have data fault. O

1. Probabilistic analysis of the algorithms

In this section, westudy the pedformance of the proposed scheme under a stochastc model. Every process has four variables prev,,
curry, state_prevy, and state_cuwrry . A data fault in a process signifies that one of the variable 15 changed because of the unmeliable
syslem.

Let p be the probability of a fault (data Fault) for a variable. We assume that fauls in different variables are independent of cach
other.

I 1. Robustness of the system

There are a total of 4n variables in the n processes. The probability that all these processes are fault free (and hence the system s
fault free) 15
= P}-hr_
The above term represents the probability of the system being functional, for checkpointing scheme without self-stabilization.
In the proposed scheme, the system is functional if every process has at most one fault. For an arbitrary process, the probability
that it has at most one fault (e, it has O or 1 faalt) s
=(1—p)'+4p—py
= (1 - py*(1 +3p).

The probability that all the r processes have at most one fault each 1s
1 L
=(a-p’a+3pm) .
Incremental robustness (IR) of the system 1s
L
- ({1 = p1+3p) — (1= pytn.

Fig. 4 shows the value of the TR for vanouws values of n and p. The probability of data fault in a variable 15 expected to be low. In
such a case the gain in the robustness of the system can be pretty high.

12, Pobability for global reset
Global reset is required when all processes have data faults of the same type and they are unable to rectify these faulis. In such

a case, forsome s and 1, (5 #& 1+ 1), prev; = ¢ and cuwrr; = 5 % - i such that 0<7 < n — 1. This implies that either prev; or curr;
Wi £ {l.n — 1} has been changed. In this case. a message with tag &7 returns back o ils originatorn
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Fig. 4. Graph showing the incremental robustness of a system for different mumber of processes and under different values of p.

Table 1
Prohability of glohal reset (PGR) for different values of p, e, and &

T 2 B 16 32 i

Jork = 30

n=10 125 = 10725 234 107 1.8l = 10~ 472 = 107F 46w 1078

n=2 271 = 10752 042 x 100 564 = 107 385 = 107 958 x 107

a=3 5.86 » 10779 380 % 1077 1.76 = 105 313 % 1079 123 x 10~97

Jarn = 1

k=40 .71 = 1077 162 x 107 .26 = 10 328 1070 S8 x 1078
=20 .12 = 10727 208 x 107 I 421 % 107 664 = 107

k=30 210 5 10~ 301 » W0~ 3008 s 107 7.01 % 1W0-2 1.25 » 10~%

Probability that Fy has data fault in exactly one of the two variables, cirrg and prevy among the four vanables is
3
=2p(l—p).

For any process Py (11 <n — 1) the probability that F; has exactly the same fault as Py s

I R P
=(l—p) (_{_—_1)1

where £ 18 the maximum v_ne for a checkpoint.
FProbability of global reset (PGR ) 15

The proposed scheme blocks process only when an election algonthm s run; which is the case when global reset 15 required.
Table 1 shows that for all practical purposes, the proposed scheme may be considered non-blocking.

11. Comparison with existing algorithms

Concurrent checkpointing algorithms proposed by Spezialetti and Kearns [ 18], Prakash and Singhal [ 15] are designed for general
network topologies. Their worst case message complexities are O(n’ ). But for the ring topology, this worst case is achieved. The
algorithm proposed by Mandal and Mukhopadhyaya [ 12] can handle concurrent initiations of snapshot collection for unidirectional
and bidirectional rings. The worst case message and time complexities are @{n”) and O {n), respectively. The message and time
complexities of this proposed algorithm are both (3n).
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Tahle 2
Performance of the proposed algorithm and other existing algonithms

[18] [15] [12] Prmoposed algonthm
Metwaork topology tor Gieneml Ceneml Ring Rimg
which applicable
Waorst case message Ont Oty inty in)
complexity in ring
Time complexity in ning ) ) il nl
Control message size for inlk) i) ol o
k concurment imitistions
MNumber af checkpaints U permunent Une permanent Une permanent Umne pemmanent
{each process) stores for one tempomry & temporary one temporary One lemporary

k concurment initiations

Tabke 2 compares of the proposed algorithms with Speziaketti and Kearns [18], Prakash and Singhal [15], Mandal and Mukhopad-
hyaya [12] algonthms.

12. Conclusion

In this paper, self-stabilizing data fault detecting and comecting checkpointing and recovery algorithms have been proposed for an
unreliable distnbuted system on g nng opology. We have considered data Faolts in the vanables used by the checkpointing algonthm.
The proposed algonthms can deal with data faults in multiple processes but at mostone data fault per process. The recovery algorithm
can reconstruct a failed process, maintaining consistency in the system, even in the presence of data faults in other processes. All
the above algorithms converge in O(n) steps. When all processes have data fanlts, but no process is able to cormrect the fault, a global
reset 15 required. Global reset requires election of a leader and hence On ) extra overhead. It has been shown that PGR 15 too small.
As the probability of data fault in a vanable s expected to be low, we have shown that in such a case, the gain i the robustness of
the system can be pretty high.

The proposed data fault detection and comection algonthms can be extended w work for a general network topology. The control
message needs o averse aroute back o the originator and covering all the processes. Similarly, an application message with tag
L5 will traverse a normal path to the destination. IF it stll has tag L7, it will take a path w the onginator covening the rest of the
nodes. IF s tag 1s changed to 0, it can ke a shortest path to originator, without covering the rest. An interesting extension will be
Lo consider multiple data faults per process.
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