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SUMMARY. We consider the clinical trials scenario where patients enter the trial sequentially,
and the experimenter has to adaptively select the better of the two competing treatments for fu-
ture applications. This is particularly important since the subjects are human patients. However
in almost all such techniques currently available, the responses are assumed to be dichotomous
(success or failure). If the responses are continuous, one may consider dichotomizing them by set-
ting an appropriate threshold value. But this may not have any real basis except its mathematical
tractability. In this paper we introduce an adaptive design which uses all the information from
the previous continuous responses for the next allocation without dichotomizing the responses.
The method may be suitably modified to handle problems of lack of robustness (which may occur
when the actual continuous measurements are used), as well as some other possible contingencies

arising in such situations, such as delayed response.

1. Introduction

The problem of comparing two treatments A and B, say, is one of the most
fundamental problems which statisticians have to deal with. It is a particularly
important problem in the clinical trials scenario — for ethical reasons — where the
experimenter has to select one of two competing treatments for future patients (hu-
man beings). These may be control and placebo or two competing treatments or
therapies. Quite often one is the existing treatment and the other is the newly
introduced one. As a real life example we consider the ACTG 076 trial conducted
by the AIDS Clinical Trial Group (ACTG) (see Connor et al., 1995, for details) to
examine whether the drug zidovudine (AZT) can reduce vertical HIV transmission
from the infected mothers to their infants. Out of 476 pregnant women who enrolled
in the trial, a conventional stratified permuted block design assigned 238 women
and their infants to the AZT group and the remaining 238 to the placebo group.
Yao and Wei (1996) showed that instead of the permuted block design a suitable
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randomized play-the-winner (RPW) rule, a particular adaptive design, could have
done the allocation in a 300:176 ratio and 11 newborns could have been saved in the
process of decision making without significant loss of efficiency. As the subjects are
human beings, from an ethical point of view it is important that the rule be such
that it allocates a fewer number of patients to the inferior treatment in course of
decision making. For a sequential chain of patients entering a clinical trial, several
data- dependent adaptive allocation rules are available for this purpose.

Modifying Zelen’s (1969) pioneering concept of play-the-winner (PW) rule, Wei
and Durham (1978) and Wei (1979) introduced randomized play-the-winner (RPW)
rule. Other adaptive designs available in literature include the success driven design
(SDD) (see Li, 1995; Durham, Flournoy and Li, 1998). Almost all such designs are
essentially urn designs where responses are assumed to be dichotomous (success or
failure). Responses obtained in the continuous scale have to be dichotomized by
setting an appropriate threshold value leading to an obvious loss in information (see
Bandyopadhyay and Biswas, 1996, 1997a, 1997b).

Some real life applications of adaptive designs are available in the literature.
Iglewicz (1983) reports one use of data-dependent allocation in an unpublished
application by M. Zelen to a lung cancer trial. The RPW rule, a particular adaptive
design, has been used in at least three major clinical trials: the Michigan ECMO
trial (see Bartlett et al., 1985), and two trials of fluoxetine in depression to treat
out-patients sponsored by Eli Lilly (see Tamura et al., 1994). Ware (1989) and Rout
et al. (1993) report on some other adaptive clinical trials. The number of real life
adaptive designs, however, is not very large over the span of three decades. Main
reasons for this may be (i) the failure of the ECMO trail through an 11:1 allocation,
and (ii) lack of proper bridge between statisticians and clinical trial practitioners.

Faries et al. (1995) rightly feel that the dramatic advances in the computer
technology and data access in the past decade makes the logistics of the adaptive
trials much more feasible. This continuing advancement will force clinical trials
to be more adaptive in all respects and statisticians should actively influence the
design and analysis of such trials.

In the present paper we discuss an entirely new adaptive design (see Bandyopad-
hyay and Biswas, 2001) which uses all the information from the previous continuous
responses for the next allocation. As already mentioned, there may not be any real
basis for dichotomizing the responses, specially when well dispersed quantitative
measurements are easily available. For example, in the fluoxetine trial (see Tamura
et al., 1994) the responses were reduction in H AM D17 score which were measured
in an ordinal scale. In survival analysis it could be more appropriate to use the total
survival time instead of using an indicator setting a threshold. To our knowledge,
adaptive allocation designs based on the actual continuous observations have not
been attempted before except for a few attempts of discretization in nonparamet-
ric formulation using rank scores (Rosenberger, 1993; Bandyopadhyay and Biswas,
1999). Eisele (1994) used a doubly adaptive design for a biased coin type allocation
of subjects to two treatments which took account of the current proportion of sub-
jects assigned to each treatment and the current estimate of the desired allocation
proportion obtained using all the continuous observations. Our present approach is
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not of the biased coin type, and quite different from Eisele.

We introduce a robustness component to our design and decision making. This
is extremely crucial when we use continuous responses for allocation as it will result
in a big loss from an ethical point of view if a few observations (perhaps even a single
one) lead to a large bunch of patients being assigned to a poor treatment when a
better one is available. We use two types of robust estimators in our analysis, one
being the M-estimator based on the well known Huber’s ¢ function; this we have
used for the normal model. The other is a robust weighted likelihood estimator
introduced by Field and Smith (1995) which we have used for the exponential
model. Further we indicate possible extensions of our method to handle the delayed
response case, which is inevitable, for example, in the fluoxetine trial discussed
above.

In Section 2, we illustrate the continuous adaptive design and discuss its prop-
erties. Numerical computations are provided in Sections 3 which illustrates our
present approach through simulations, as well as on a real life data set. Section 4
provides a discussion.

2.  Sampling Scheme and Decision Rules

2.1 Continuous adaptive design. We denote the responses under treatments A
and B by the real valued random variables X and Y, where we assume that the
corresponding distribution functions F} and F5 are continuous distribution functions
(cdf’s) possessing densities with respect to the Lebesgue measure, and that the
expectations p; = [ @dF;(z),i = 1,2, on which we will primarily focus our attention,
exist. To make the problem and the analysis meaningful, we allocate the first
patient to treatment A and the second one to treatment B. Starting from the
third, incoming patients are allocated between treatments according to an adaptive
allocation scheme which uses the information on the continuous responses of the
previously allocated patients that are available till that point. Our allocation design
will utilize the entire information (and not dichotomize it using some arbitrary cut-
off point in the scale) and will be called the Continuous Adaptive Design (CAD).

We denote by X; or Y; the response for the i-th patient depending on whether it
has been allocated to treatment A or B. Let §; be the indicator of assignment which
takes the value 1 (0) if the i-th patient is allocated to treatment A (B) following the
CAD design. (Notice that 9 = 1 and d, = 0.) If we represent the entire sequence
of observations by {W;}, then W; = 6;X; + (1 — 6;)Y;, i = 1,...,n, where n is the
maximum number of patients that may be treated. Our objectives in monitoring
and analyzing the data thus generated are two fold: (i) to allocate the incoming
patients adaptively — using all the information available till that point — to one of
the two competing treatments such that on the long run more patients are assigned
to the better treatment (this is important for ethical reasons); and (ii) to make
inferences comparing the two populations, i.e. to declare that the sample evidence
supports one of the three following hypotheses:

ay:piy = M2, Q21 > Mo, agz: iy < fo. (2.1)
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The decision rule for this hypothesis is presented at the end of this section.

To explain the procedure of the analysis, we define, corresponding to the i-
th incoming patient, the set of variables {d;, W;}, where W; represents the actual
continuous response of the i-th patient, and ¢§; is the indicator variable defined
earlier. The number of patients N4, and Npj treated by treatments A and B
respectively just after the entry of the k-th patient are then given by

k k
Nak =Y 8, Npp=>» (1-0)=k— Na. (2.2)

i=1 =1

Depending on the specific objectives of the experimenter and the nature of the
problem, the final analysis may be performed after all n patients have been observed,
or a provision may be retained for continuous monitoring and analysis with the
possibility of early stopping.

We now describe our basic decision rule. When it is necessary to consider ad-
ditional complications such as problems with outliers (Section 2.2), or, say delayed
response, these have to be appropriately incorporated in the decision rule. The rule
for allocating the (k + 1)-th patient, having observed the responses Wi, ..., Wy, (if
available) and the previous allocations is as follows:

(i) Choose a continuous cumulative distribution function G(-) which is symmetric
about 0, i.e. G(0) =1/2, G(—z) =1 — G(z) (such as the N(0,1) cdf ®(z)).

(ii) Determine the observed sample means for the two populations at this stage
as

N Zf:l 6iWi ~ Zf:l(l - 5i)Wi
PBAk = == = MHBL= """ o .- (2.3)
Zi:l 0i Zi:l(l ),

(iii) Allocate the (k + 1)th patient to treatment A with probability G((fiar —
ipr)/c), and to treatment B with probability (1 — G((fiax — fiBr)/c), where ¢
is some appropriate scaling constant. The allocation procedure should favour the
treatment which has led to larger responses on the average in the past — which this
allocation rule manages to achieve. (See Bandyopadhyay and Biswas (2000, 2001)
for such designs in some other situations like the testing of normal mean and the
presence of covariates, respectively).

An additional refinement that may be possible and sometimes worthwhile is to
choose the cdf G as a function of k, where k is the number of patients observed
previously. The advantage of allowing this is that since big differences in jiax — ftBg
are more meaningful for large k, one can choose G, so that for any positive number
a > 0, Gi(a) is a steadily increasing function of k. Thus the same observed difference
is taken as stronger evidence of the difference of means when k is larger.

Unlike Eisele (1994), no specific target imbalance is set for our design. This is
in the same spirit of the RPW rule. In fact, as in the RPW rule, here also we can
expect some limiting proportion of allocation. Intuitively, we expect the limiting
proportion of allocation to A to be G((ua — pp)/c). This has been proved to be
true, in some special cases, by Bandyopadhyay and Biswas (2001), and currently
more elaborate research is going on.
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Under this scheme, therefore,
P(Ok+1 =1) = E(G(fiar, — fir)/c) = [ G(z)dHj (), (2.4)

where fi41, and fipy are based on the first £ patients, and H(-) is the corresponding
distribution of (fiar — fiBk)/c based on k patients.

Finally we carry out the decision making problem addressed in (2.1). Based on
targeted n sample observations one chooses as or ag if the observed fia, — fipy, iS
greater than a pre-specified cut-off point u, or less than —u respectively. Otherwise
one chooses a;. One can carry out early stopping as well, as in most of the sequential
procedures. In that case one has to choose any of the three actions as soon as the
accumulated information is sufficient to do so. However, in the present article,
our main focus is on illustrating the possible applicability of CAD with robust
estimates, and we will not discuss the details of the early stopping in the decision
making procedure; see Bandyopadhyay and Biswas (1996).

2.2 Robustness considerations. In the above scheme of allocation we take the
actual continuous response of the patients into consideration. In doing that, we
have the opportunity of possibly identifying outlying observations which can exert
undue influence on our analysis. Under traditional designs such as the RPW, where
the scheme allows only one or zero as a response it is impossible to identify an
observation as an outlier by looking at the corresponding indicator variable.

But for the continuous adaptive design scheme, robustness considerations are
appropriate and necessary. This is particularly so because the estimates in equation
(2.3) estimating the unknown true means in question are the sample means of
the responses observed till that point. Given the nonrobustness of the sample
mean as the estimate of the population mean (although it is asymptotically efficient
under many common parametric models) we will like to use robust analogs of the
estimators in (2.3).

In this paper, we have used two different parametric robust estimates, one based
on M-estimators with Huber’s ¢ function (see, for example, Hampel et al. 1986),
which we have used for estimating the parameter in the normal location problem. In
the one population case one solves for 1 from the estimating equation . 1y ((X; —
w)/6) =0, where Xy, ..., X, represent the sampled observations, and & is a robust
estimate of the scale. The function () has the form

x if || <b
by()=4 b ifx>b (2.5)
—b if e <—b

so that this limits the impact of observations which have unusually large residu-
als. The other, used in the context of exponential models, is based on the robust
weighted likelihood estimators of Field and Smith (1995) which estimates the pa-
rameter by iteratively solving a weighted likelihood equation for the parameter 6
where the weights are given by

F(o,0)/p i F(z,6) <p
w(z,0) = 1 if p< F(z,0) <
6) >1—

) -p (26)
(1 —F(a:,()))/p if F(l‘, ) >
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F(z,-) being the distribution function of the response under the model, 6 is the
current estimate of the parameter, and p is some suitable small value, p € (0,1).

Obviously, these are just a few of the possible robust methods that may be used
in practice. These have been chosen to demonstrate the use of robust techniques.
The user can, of course, select other appropriate methods of determining the mean
depending on the problem at hand.

3.  Numerical Studies

Unlike the case of the ordinary adaptive designs of the success failure type, theo-
retical calculations in case of a continuous adaptive design are far more complicated,
and in this section we try to illustrate the properties and the performance of the
method through extensive numerical studies including simulations and examples.

3.1 Simulation results. In our first study we use the exponential model. The
responses in the two groups are assumed to be exponential with means A4 and
Ap (denoted here by exp(A4) and exp(Agp)), respectively, A4 > Ap. Since our
allocation scheme deterministically allocates the first patient to group A and the
second patient to group B, we initially draw a random number from exp(A4) and
exp(Ap) each to denote these responses. For each of the successive allocations we
use the current estirpates ;\ A and A Br and determine theAnext zjllocation according
to probabilities G((Aax, —Apr)/c) for group A and 1 —G((Aar —ABg)/c) for B where
G(-) = ®(+) is the standard normal distribution function. This is done for a fixed
number 7 of patients and two different types of estimates for the A parameters — the
ordinary sample mean and the robust weighted likelihood estimate for A based on the
Field and Smith approach. For the Field and Smith approach we use p = 0.01,0.05
and 0.1. For each approach we use several values of the scaling constant c. At
the end of the trial, after all n patients have been thus allocated, we calculate, for
each method, the final estimates of A4 and Ap. In addition, we calculate the total
number of allocations Ty and Tz to the drugs A and B respectively (Ta +Tp = n).
We also calculate the loss corresponding to the final decision with an appropriate
loss function. This loss function is chosen as follows: We take the loss for choosing
a; when a; is true as 0. Loss for choosing any decision one step apart (choosing as
or az when a; is true; choosing a; when as or az is true) is 1, while loss for taking
a decision two step apart (choosing a» when as is true or vice versa) is L (> 1). We
refer to Ferguson (1967) in connection with such a loss function.

We repeat this process over a large number of samples, and calculate the means
and variances of the number of allocations to either of the two treatments. In
addition we calculate the sample estimates of the probabilities of actions a3z and aq,
denoted, respectively as Probl and Prob2, and calculate the observed risk over the
different samples. Different choices for the A values and different values of n are used
to gain a better understanding of the performance of the method. We present some
of these calculations in Tables 1-2. The patterns of the results of other calculations
are similar. In these two tables, as well as the later ones presented here, n equals
20, and the number of replications equals 200.
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Table 1. SIMULATION RESULTS FOR THE EXPONENTIAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM exp(A4) AND exp(Ap) DISTRIBUTIONS. T4 IS THE NUMBER OF PATIENTS (OUT
OF 20) ALLOCATED TO POPULATION A. NUMBER OF REPLICATIONS IS 200. THE ESTIMATOR USED
IS THE SAMPLE MEAN. PROB1, PROB2 ARE THE EMPIRICAL PROBABILITIES OF THE DECISIONS
a3 :p1 < p2, ai : g1 = p2 FOR THE GIVEN CUT-OFFS.

cut-off=1 cut-off=2
(Aa,AB) ¢ E(Ts) V(Ta) Probl Prob2 Risk Probl Prob2 Risk
at L =1 at L =1

5 9.785  4.8832 0.005 0.985 0.015 0.000 1.000 0.000
(1.0,1.0) 10 10.035  4.8882 0.005 0.960 0.040 0.000 1.000 0.000
20 10.025 4.3964 0.015 0.970 0.030 0.000 1.000 0.000

5 9.605  5.0643 0.055 0.940 0.940 0.000 1.000 1.000
(1.0,1.2) 10 9.730  4.8212 0.055 0.940 0.945 0.000 1.000 1.000
20 9.790  3.9155 0.050 0.945 0.950 0.000 1.000 1.000

5 8.255  6.5125 0.515 0.485 0.485 0.075 0.925 0.925
(1.0,2.0) 10 9.145 5.3507  0.505 0.495 0.495 0.045 0.955 0.955
20 9.485  5.2259 0.465 0.535 0.535 0.075 0.925 0.925

5 6.095 6.2573 0.965 0.035 0.035 0.790 0.210 0.210
(1.0,4.0) 10 7.980  5.4870 0.960 0.040 0.040 0.755 0.245 0.245
20 8.615  4.8008 0.945 0.055 0.055 0.795 0.205 0.205

Table 2. SIMULATION RESULTS FOR THE EXPONENTIAL MODEL. DATA FOR POPULATIONS A AND B
ARE GENERATED FROM exp(Aa) AND exp(Ap) DISTRIBUTIONS. T4 IS THE NUMBER OF PATIENTS
(OUT OF 20) ALLOCATED TO POPULATION A. NUMBER OF REPLICATIONS IS 200. THE ESTIMATOR
USED IS THE WEIGHTED LIKELIHOOD ESTIMATOR (p = 0.05). PROB1, PROB2 ARE THE EMPIRICAL
PROBABILITIES OF THE DECISIONS a3 : 11 < {2, @1 : ft1 = 42 FOR THE GIVEN CUT-OFFS.

cut-off=1 cut-off=2
(Aa,AB) ¢ E(Ts) V(Ta) Probl Prob2 Risk Probl Prob2 Risk
at L =1 at L =1

5 10.035 4.5666 0.005 0.975 0.025 0.000 1.000 0.000
(1.0,1.0) 10 9.800  4.1508 0.020 0.950 0.050 0.000 1.000 0.000
20 10.025 4.3361 0.030 0.940 0.060 0.000 1.000 0.000

5 9.740  4.8366 0.055 0.920 0.945 0.005 0.995 0.995
(1.0,1.2) 10 9.815  4.1917 0.080 0.900 0.920 0.005 0.995 0.995
20 9.830  3.9207 0.075 0.890 0.925 0.000 1.000 1.000

5 8.615 6.3686 0.455 0.535 0.545 0.070 0.930 0.930
(1.0,2.0) 10 9.215  4.8329 0.465 0.535 0.535 0.045 0.955 0.955
20 9.525  4.1803 0.435 0.550 0.565 0.095 0.905 0.905

5 6.440 6.4386 0.920 0.080 0.080 0.715 0.285 0.285
(1.0,4.0) 10 8.255  5.1960 0.885 0.115 0.115 0.680 0.320 0.320
20 9.040 4.0285 0.880 0.120 0.120 0.675 0.325 0.325

The same procedure is then repeated, but now the response from population A
is assumed to have a distribution which is a mixture of exponentials of the form
0.9exp(Aa) +0.1exp(Ac), for a suitably chosen value of A¢. The second component
in this population, however, is considered to be a contaminant, and in this case we
are interested in observing whether the procedures can detect that population B is
better than the major component of population A, or whether the presence of the
second component causes a substantial increase in the proportion of allocations to
drug A (which we do not want to happen). We expect that in this respect the robust
procedures will be fairly stable. As before, we present some of the computations
keeping parity with Tables 1-2. These are presented in Tables 3-4 with Ac = 2.
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Table 3. SIMULATION RESULTS FOR THE EXPONENTIAL MODEL. DATA FOR POPULATIONS A AND B

ARE GENERATED FROM 0.9exp(A4) + 0.1lexp(2) AND exp(Ap) DISTRIBUTIONS. T4 IS THE NUMBER

OF PATIENTS (OUT OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE

ESTIMATOR USED IS THE POPULATION MEAN. PROB1, PROB2 ARE THE EMPIRICAL PROBABILITIES
OF THE DECISIONS a3 : 1 < j42, a1 : ft1 = jt2 FOR THE GIVEN CUT-OFFS.

cut-off=1 cut-off=2
(A4, AB) ¢ E(Ta) V(Ta) Probl Prob2 Risk Probl  Prob2 Risk
at L=1 at L=1

5 9.950 6.1080 0.020 0.970 0.030 0.000 1.000 0.000

(1.0,1.0) 10 10.020 5.3564 0.005 0.970 0.030 0.000 1.000 0.000
20 9.880  4.2669 0.020 0.945 0.055 0.000 1.000 0.000

5 9.815  5.8098 0.050 0.925 0.950 0.000 1.000 1.000

(1.0,1.2) 10 9.855  4.9789 0.025 0.960 0.975 0.000 1.000 1.000
20 9.870  4.7870 0.040 0.940 0.960 0.000 1.000 1.000

5 8.555  6.5598 0.425 0.575 0.575 0.090 0.910 0.910

(1.0,2.0) 10 9.155  5.2070 0.430 0.560 0.570 0.065 0.935 0.935
20 9.600 4.5126 0.470 0.530 0.530 0.085 0.915 0.915

5 6.620 7.1815 0.940 0.040 0.060 0.790 0.210 0.210

(1.0,4.0) 10 8.130 6.1137 0.890 0.110 0.110 0.735 0.265 0.265
20 8.770  4.4091 0.935 0.065 0.065 0.750 0.250 0.250

Table 4. SIMULATION RESULTS FOR THE EXPONENTIAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM 0.9exp(A4) + 0.1exp(2) AND exp(Ap) DISTRIBUTIONS. T4 1S THE NUMBER OF
PATIENTS (OUT OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE
ESTIMATOR USED IS THE WEIGHTED LIKELIHOOD ESTIMATOR WITH p = 0.05. PROB1, PROB2 ARE

THE EMPIRICAL PROBABILITIES OF THE DECISIONS a3 : 1 < [42, a1 : 41 = i42 FOR THE GIVEN

CUT-OFFS.
cut-off=1 cut-off=2
(Aa,AB) ¢ E(Ts) V(Ta) Probl Prob2 Risk Probl Prob2 Risk

at L =1 at L =1

5 9.940  5.4235 0.045 0.935 0.065 0.000 1.000 0.000
(1.0,1.0) 10 9.920 5.2398 0.030 0.940 0.060 0.000 1.000 0.000
20 9.880 4.2971 0.030 0.920 0.080 0.000 1.000 0.000

5 9.880 6.3172 0.050 0.915 0.950 0.000 1.000 1.000
(1.0,1.2) 10 9.820 4.7815 0.075 0.895 0.925 0.005 0.995 0.995
20 9.870  4.9277 0.065 0.910 0.935 0.000 1.000 1.000

5 8.525  5.8486 0.455 0.530 0.545 0.085 0.910 0.915
(1.0,2.0) 10 9.165  4.6209 0.460 0.535 0.540 0.065 0.935 0.935
20 9.630  4.2443 0.400 0.595 0.600 0.055 0.945 0.945

5 6.610  7.0532 0.885 0.105 0.115 0.635 0.365 0.365
(1.0,4.0) 10 7.925  5.8285 0.870 0.125 0.130 0.635 0.365 0.365
20 8.140 11.2300  0.780 0.220 0.220 0.605 0.395 0.395

This entire process is then replicated for the normal model, where the responses
are assumed to have N (ua,02) and N(up,o?) distributions, pa < pp. The method
assumes the variances to be equal but unknown. (For generating the simulated data
we have taken o2 = 1.) In this case the allocation probabilities are G ((fiax —fiBk)/c)
and 1 — G((fiax — fipr)/c) for populations A and B respectively. For this problem
we calculate the estimates of u4 and pup through the sample means, and the M-
estimates using the Huber ¢ function with several values of b. At the entry of the
k-the patient, the robust estimate of scale ¢ is chosen to be

6 = median{|U;—median(U;)|,i = 1,..., ki1, |V;—median(V;)|,j = 1,...,k2}/0.674,
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where k1 and ks are the number of patients allocated to A and B, ki + k» = k, and
the corresponding observations in groups A and B are Uy, ...,Uy,, and Vi,...,Vp,
respectively. However if either k1 or ks is 1, the estimate ¢ is obtained only from the
other group. Some of the results with sample means and M-estimates (with tuning
parameter b = 1.5) are presented in Tables 5-6. This process is then repeated where
the response from population A has the distribution 0.9N (4,1) +0.1N (uc, 1), the
second component representing the contamination. The results are given in Tables
7-8 with uc = 10.

Table 5. SIMULATION RESULTS FOR THE NORMAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM N(pa,1) AND N(up,1) DISTRIBUTIONS. T4 IS THE NUMBER OF PATIENTS (OUT
OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE ESTIMATOR USED IS

THE SAMPLE MEAN. PROB1, PROB2 ARE THE EMPIRICAL PROBABILITIES OF THE DECISIONS
a3 :p1 < p2, ai : g1 = 2 FOR THE GIVEN CUT-OFFS.

cut-off=0.5 cut-off=2
(BA,pB) ¢ E(Ta) V(Ta) Probl Prob2 Risk Probl  Prob2 Risk
at L=1 at L=1

5 10.010 5.4672  0.185 0.685 0.315 0.000 1.000 0.000
(1.0,1.0) 10 10.045 4.0030  0.185 0.705 0.295 0.000 1.000 0.000
20 10.030 3.9790 0.175 0.705 0.295 0.000 1.000 0.000

5 9.765  4.4922  0.265 0.685 0.735 0.000 1.000 1.000
(1.0,1.2) 10 9.815 4.4229  0.265 0.665 0.735 0.000 1.000 1.000
20 9.985 3.9143  0.260 0.685 0.740 0.000 1.000 1.000

5 8.390  4.8220 0.900 0.100 0.100 0.010 0.990 0.990
(1.0,2.0) 10 9.215 4.6319 0.910 0.090 0.090 0.000 1.000 1.000
20 9.825  3.9139 0.860 0.140 0.140 0.025 0.975 0.975

5 5.765  3.3365 1.000 0.000 0.000 0.990 0.010 0.010
(1.0,4.0) 10 7.815  4.7646 1.000 0.000 0.000 0.985 0.015 0.015
20 8.985  5.0098 1.000 0.000 0.000 0.985 0.015 0.015

Table 6. SIMULATION RESULTS FOR THE NORMAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM N(pa,1) AND N(up,1) DISTRIBUTIONS. T4 IS THE NUMBER OF PATIENTS (OUT
OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE ESTIMATOR USED IS

THE HUBER’S M-ESTIMATOR. PROB1, PROB2 ARE THE EMPIRICAL PROBABILITIES OF THE
DECISIONS a3 : 1 < {42, @1 : 41 = ft2 FOR THE GIVEN CUT-OFFS.

cut-off=0.5 cut-off=2
(LA, puB) ¢ E(Ta) V(Ta) Probl Prob2 Risk Probl  Prob2 Risk
at L=1 at L=1

5 10.190 5.6220  0.165 0.700 0.300 0.000 1.000 0.000
(1.0,1.0) 10 10.025 4.0546  0.190 0.675 0.325 0.000 1.000 0.000
20 10.045 4.1236  0.190 0.680 0.320 0.000 1.000 0.000

5 9.835 4.3797  0.275 0.650 0.725 0.000 1.000 1.000
(1.0,1.2) 10 9.810 4.4964  0.280 0.665 0.720 0.000 1.000 1.000
20 10.025 4.0446  0.285 0.650 0.715 0.000 1.000 1.000

5 8.260  4.3240  0.890 0.110 0.110 0.030 0.970 0.970
(1.0,2.0) 10 9.185 4.5636  0.895 0.105 0.105 0.005 0.995 0.995
20 9.875 3.5773  0.850 0.150 0.150 0.010 0.990 0.990

5 5.800 3.9397  1.000 0.000 0.000 0.985 0.015 0.015
(1.0,4.0) 10 7.845  4.9558 1.000 0.000 0.000 0.985 0.015 0.015
20 8.890 4.7617  1.000 0.000 0.000 0.995 0.005 0.005
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Table 7. SIMULATION RESULTS FOR THE NORMAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM 0.9N(pa,1) + 0.1N(10,1) AND N(pp,1) DISTRIBUTIONS. T4 IS THE NUMBER
OF PATIENTS (OUT OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE
ESTIMATOR USED IS THE SAMPLE MEAN. PROB1, PROB2 ARE THE EMPIRICAL PROBABILITIES OF
THE DECISIONS a3 : 11 < p2, a1 : 41 = p2 FOR THE GIVEN CUT-OFFS.

cut-off=0.5 cut-off=2
(La,uB) ¢ E(Ts) V(Ta) Probl Prob2 Risk Probl  Prob2 Risk
at L =1 at L =1

5 10.635 6.7053 0.260 0.415 0.585 0.000 0.890 0.110
(1.0,1.0) 10 10.575  4.9391 0.290 0.380 0.620 0.000 0.910 0.090
20 10.295  4.4100 0.350 0.350 0.650 0.000 0.920 0.080

5 10.345  5.9960 0.145 0.380 0.855 0.000 0.955 1.000
(1.0,1.2) 10 10.195 5.2331 0.160 0.395 0.840 0.000 0.920 1.000
20 10.160 4.5974  0.105 0.440 0.895 0.000 0.945 1.000

5 8.840 6.6376 0.495 0.335 0.505 0.020 0.975 0.980
(1.0,2.0) 10 9.840  4.9049 0.410 0.400 0.590 0.005 0.980 0.995
20 9.875 3.9994  0.490 0.380 0.510 0.020 0.970 0.980

5 6.390  6.5004 0.930 0.070 0.070 0.685 0.315 0.315
(1.0,4.0) 10 8.085  4.9123 0.935 0.055 0.065 0.630 0.370 0.370
20 8.860  4.5230 0.955 0.040 0.045 0.695 0.305 0.305

Table 8. SIMULATION RESULTS FOR THE NORMAL MODEL. DATA FOR POPULATIONS A, B ARE
GENERATED FROM 0.9N(pa,1) + 0.1N(10,1) AND N(pp,1) DISTRIBUTIONS. T4 IS THE NUMBER
OF PATIENTS (OUT OF 20) ALLOCATED TO TREATMENT A. NUMBER OF REPLICATIONS IS 200. THE
ESTIMATOR USED IS THE HUBER M-ESTIMATOR (b = 1.5). PROB1, PROB2 ARE THE EMPIRICAL
PROBABILITIES OF THE DECISIONS a3 : 1 < f42, @1 : 41 = ft2 FOR THE GIVEN CUT-OFFS.

cut-off=0.5 cut-off=2
(La,uB) ¢ E(Ts) V(Ta) Probl Prob2 Risk Probl  Prob2 Risk
at L =1 at L =1

5 10.430 5.6433 0.195 0.650 0.350 0.000 1.000 0.000
(1.0,1.0) 10 10.325  4.1803 0.180 0.640 0.360 0.000 0.995 0.005
20 10.040 4.1290 0.185 0.710 0.290 0.000 1.000 0.000

5 10.020  5.3966 0.205 0.615 0.795 0.000 1.000 1.000
(1.0,1.2) 10  10.040  4.9029 0.195 0.715 0.805 0.000 1.000 1.000
20 9.955  4.1537 0.130 0.750 0.870 0.000 1.000 1.000

5 8.585  5.0882 0.765 0.220 0.235 0.005 0.990 0.995
(1.0,2.0) 10 9.260  4.1833 0.765 0.220 0.235 0.015 0.985 0.985
20 9.675  4.5119 0.750 0.245 0.250 0.010 0.990 0.990

5 6.310 4.5366 1.000 0.000 0.000 0.905 0.095 0.095
(1.0,4.0) 10 7.875  4.3511 1.000 0.000 0.000 0.930 0.070 0.070
20 8.640  4.0506 1.000 0.000 0.000 0.950 0.050 0.050

From the computations we observe that the adaptive design we have used is doing
satisfactorily as the main objective of any adaptive allocation design is fulfilled here,
i.e., on an average a larger number of experimental units are being treated by the
eventual winner when the data are without contamination. Moreover it uses the
continuous responses with due weightage.

From Tables 7-8 we find that the robust method performs better in allocating to
the more effective treatment when contamination is present in the data. The sample
mean consistently allocates more patients to the inferior treatment compared to
the robust estimate (Tables 7 and 8). Notice that in this case the contaminating
component has a much larger mean. However the robust estimator performs only
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marginally better (if at all) than the sample mean in Tables 3 and 4, since the
contaminating component increases the mean of the first population only slightly.

To illustrate the applications of the method for larger sample sizes, Tables 1-
4 were reconstructed for samples of size 50. The results were similar to the case
n = 20. For brevity the entire sets of numbers are not reproduced here. However
for each of the four different situations corresponding to Tables 1-4, with the set of
parameters being Ay = 1, Ap = 2, A\, = 2, and ¢ = 5, the histogram of the entire
set of 200 different allocations to treatment A are shown in Figure 1. There are
no cases with such extremely small allocations to one arm as in the controversial
ECMO trial.

Thus the robust methods can perform better than the sample mean in terms
of satisfactory allocation to the superior treatment. The risk decreases when the
difference between the treatments increases in the sense that the proposed procedure
catches the difference with higher probability. Again any adaptive procedure must
have some variability in allocation, although the expected allocation is lager to the
better treatment. It is also observed that the variance observed in the present case
is not too much in comparison to the standard RPW or PW rule. In none of the
simulated cycles we got a pattern where only one observation was assigned to one
of the treatments, such as the controversial ECMO trial.

3.2 An example. As CAD is a newly introduced sampling design, it is not
possible to have a real life dataset based on CAD in the existing literature. Thus
to have a meaningful comparison we consider a part of the dataset obtained from
the fluoxetine trial, a famous real life adaptive trial available in literature. We
consider the responses by the two treatments obtained there in two stacks, and
carry out our CAD based on those responses. A particular permutation of the first
20 observations from each treatment is given as:

A: 4,2,-20,0,-21,-3,-16,-9,3,0,—6,-7,-3,-3,—4,—-16,—6,—11,—3, —16,
B: —-1,-1,-12,-2,-11,-17,—-5,-12, -10,—21, -7,
—-8,-20,—4,2,—-14,-1,-8,-16,—15.
For our experiment when a response is required from a treatment we consider the
stack for that treatment and take the response from the top of the remaining ob-
servations. As an illustration we consider the normal model with equal variance
and estimate the means using the M-estimator with different values of the tuning
parameter b. The results (number of allocations to treatment A) are presented in
Table 9 along with the allocation obtained by using the sample mean. The exper-
iment was terminated when 20 individuals had entered the study. Notice that the
robust methods generally allocated more observations to treatment A, the treatment
with the larger mean, compared to the method based on sample mean, probably
because of the latter’s inability to deal with the three very small values —20, —21
and —16, early on in the chain of treatment A values.
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Figure 1d: The robust estimator is used on contaminated data
Figure 1: Histograms of the number of individuals (out of 50) allocated
to the first treatment in 200 independent runs for four different situations.
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Table 9. AN EXAMPLE BASED ON THE PERMUTATIONS OF THE OBSERVATIONS OF THE TWO
TREATMENT GROUPS FOR THE FLUOXETINE TRIAL. COMPUTATIONS OF THE EXAMPLE ARE DONE
ASSUMING NORMAL MODEL. THE ENTRIES REPRESENT THE NUMBER OF ALLOCATIONS TO
TREATMENT A WHEN DIFFERENT ESTIMATES FOR THE PARAMETERS (M—ESTIMATES WITH
DIFFERENT TUNING PARAMETERS AND THE SAMPLE MEAN) ARE USED.

Scaling Estimates
constant M-estimates with Sample
c tuning parameter b mean
b=125 b=150 b=2.00

2.5 12 10 10 10
5.0 11 11 11 10
7.5 11 11 10 10
10.0 11 10 10 9

4. Discussions

Although it is easy to handle the situation of instantaneous responses, often,
in practice, we may face the situation of delayed response. In fact the fluoxetine
trial by Tamura et al. (1994) is a real life example of a trial with delayed response.
Delayed response is particularly important in adaptive trials where the existing data
decides the allocation pattern of the next incoming patient. Some work involving
delayed responses are available in the RPW rule. A model is provided by Wei
(1988). Bandyopadhyay and Biswas (1996) have also incorporated such a possible
delay in response in the RPW case. Then Biswas (1999) has revisited the problem.
In such a case one can carry out our allocation procedure by obtaining i, and
fipr only on the basis of the available responses before the entry of the (k + 1)st
patient.

Alternatively we can use a suitable surrogate declaration variable provided its
response is quick enough and the surrogate exhibits a high positive correlation with
the true responses. Tamura et al. (1994) have used such a surrogate in their
approach. But, in our case, it will increase theoretical complication as the joint
distribution of the true response and the surrogate will now have to be considered.

Choice of the scaling constant ¢ is of course an important question which is to
be addressed with great caution. It controls the allocation pattern of incoming pa-
tients and distribute them according to the state of the art provided by the data at
any stage. A small value of ¢ may make the design more sensitive to outliers partic-
ularly during the earlier stages when data are not adequate. Large values of ¢ will
have a tendency to ignore the information provided by the data and will eventually
pull the allocation ratio towards the 50:50 pattern. Figure 2 shows the allocation
probabilities (at any stage) to the better treatment plotted against difference of
the estimates of treatment means (standard or robust estimates) and the value of
the scaling constant. It seems natural to demand that the choice of ¢ should be
linked to the standard deviation of the estimated mean difference: for example, if ¢
is chosen to be a constant times the estimated standard deviation of the estimated
mean difference, the allocation probabilities will be based on the scaled differences



40 ATANU BISWAS AND AYANENDRANATH BASU

of the estimated means. This will make the design more complex in the sense

Allocation probability
0506 0.7 0.8 0.9 1

Figure 2: Probability of allocation to the better treatment
against different estimated difference of means and c

that the value of ¢ will change at the time of each allocation. Sometimes the exper-
imenter may have prior idea about the degree of variability among the estimated
mean difference (as functions of the sample sizes) which could also be used. For
example when the treatment responses are assumed to be normal, often the vari-
ances are assumed to be known and equal. Also sometimes variances are functions
of treatment means only, as in the exponential case. In general, one can talk about
a sequence {c,, n > 1} instead of a fixed ¢ which can be preset or can be adaptively
obtained reflecting the current estimates of the variability from the data obtained
till that point. The performance of the method under different possible choices of
c is currently under investigation, and we hope to report this in a sequel paper.

The proposed CAD allocates a larger number of patients to the better treatment
arm. Obviously, this complicated dependent procedure will reduce the power of the
method compared to a fixed sample size design. Estimating the actual powers of
this method in different situations will require large scale simulations which we hope
to conduct in the future, but we have no reason to believe that the power of the
method will be lower than that achieved through a RPW design.

In the present article we have taken the standard normal distribution function
® as a choice of G. The familiarity of this distribution, coupled with the fact that
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the quantiles of this distribution are now inbuilt in most statistical softwares make
it a natural choice. In general however G needs to satisfy only the two properties
that it is continuous and symmetric around zero. The allocation probabilities will
be different for different choices of G, but by choosing ¢ depending on G, this
differences can be minimized. In general, the choice of ¢ will be the more difficult
problem than the choice of G.
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