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SUMMARY. This paper provides a test procedure for the problem of testing on Bernoulli
success probability in case of costly trials. The proposed test is based on a sampling scheme which
we call ‘randomized play-the-looser’ rule. Some exact and asymptotic results related to the test
are studied.

1. Introduction

The paper considers the old problem of testing on Bernoulli success probability
which can be set in the following way: Suppose there is a sequence of independent
Bernoulli trials with outcomes Y7,Y3, -+, where Y; takes the values 1 (success for
the i-th trial) with unknown probability p and 0 (failure for the i-th trial) with
probability ¢ = 1 — p. Then for a prefixed value pg, the problem is to test

H:p=1py against H,:p > po. ...(L1)

One of the existing approaches for solving (1.1) is to consider n sample observations
Y1,Ys, -+, Y, and find U = Y | (1 — Y;), the total number of failures in n trials.
Then a left-tailed test based on U is appropriate and is given by:

Reject H if U < ¢ and accept H otherwise, ...(L.2)

where ‘¢’ is a positive integer so chosen that the level of the test is y (prefixed).
Suitable randomization can be done to make it a size v test. The test is uniformly
most powerful (UMP).

In many practical situations the trials involve some other costs except the sam-
pling cost like monetary cost for equipments of a machine, ethical cost in clinical
trials. Consequently such a costly trial necessitates the use of a test procedure with
smallest possible sample size when an alternative is true.
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For comparing two treatments in a clinical trial, Zelen (1969), assuming se-
quential entrance, introduced the concept of ‘play-the-winner’ rule for dichotomous
responses of patients. As a modification towards Zelen’s approach, Wei and Durham
(1978) and Wei (1979) introduced the idea of ‘randomized play-the-winner’ (RPW)
rule. For both the rules the goal was to allocate a larger number of patients to the
better treatment.

For testing (1.1) we modify the RPW rule as follows: First introduce a hypo-
thetical treatment with success probability pg. We call it treatment A. Suppose
the Bernoulli trials under consideration are responses by treatment B. As, under
an alternative the success probability (p) of treatment B is greater than that of
treatment A, we call treatment A ‘a hypothetical looser’. We need not have the
existence of such a looser. If a trial is needed from treatment A, we simply toss
a coin with probability pg of occurrence of ‘head’ (success). Then, with the help
of such hypothetical treatment, we introduce a sampling scheme called randomized
play-the-looser (RPL) rule. Let us illustrate the rule by an urn model as follows:

Start with an urn having two types of balls A and B, (kK — 1)a balls of type A
(k > 2) and « balls of type B. For any trial we consider it from either treatment by
drawing a ball from the urn with replacement. If a ball of kind A is obtained we toss
a coin with success probability pp. On the other hand, if a ball of kind B is obtained,
we take a trial from the treatment under consideration assuming instantaneous
response. If a success by treatment B is obtained we add an additional (k — 1)3
balls of kind A, and if a failure by treatment B is obtained we add an additional
(k — 1) balls of kind B in the urn. On the other hand, a failure by treatment A
results the addition of (k —1)8 balls of kind A and a success by treatment A results
the addition of (k — 2)3 balls of kind A along with § balls of kind B. For a given
(a, B), this is abbreviated as RPL(«, 8) rule. Thus, when the alternative is true, an
RPL rule results more trials from the hypothetical treatment A involving only the
trouble of tossing a coin of zero cost.

In section 2, the proposed RPL rule is used to provide an alternative test for
the problem (1.1) with a rationale. There we see that the expected number of trials
corresponding to treatment B decreases as p increases. It is also shown that the
proposed test is an improvement over the existing test with respect to the criterion
called ‘power per unit sample’ (PPUS). In section 3, some asymptotics related to
the proposed test are established. These are, respectively, the null and non-null
distributions of the test statistic, the consistency of the test, and the limiting pro-
portion of experimental units receiving the treatment B. Finally, section 4 ends with
a discussion.

2.  Proposed Test Procedure and Related Exact Results

Suppose there is a sequential chain of patient’s entrance upto a maximum of n
patients. First, corresponding to the i-th entering patient we set a pair {d;, Z;} of
indicator variables defined by:

d; = 1 or 0 according as treatment A or B applied using RPL(«, 3) procedure;

Z; =1 or 0 according as success or failure occurs for the i-th patient.
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Then, we can observe a pair of random variables defined by

N, =3 " (1 —4;) = Number of patients treated by treatment B, and

T, =Y ,(1—2;)(1—46;) = Number of failures by treatment B.
Hence S,, = T,,/N,, gives the proportion of failures by treatment B, which is ex-
pected to be larger under H than under H,.

We start with the problem of finding a most powerful test by using the Neyman-
Pearson lemma. The probability functions corresponding to H, and p = py for the
i-th sample observation are respectively given by

{poZi + (1 —po)(1 — Zi) Y {pZi + (1 — p)(L — Z;)}' %,

and

{poZi + (1 —po)(1 = Z;)}.

Hence, conditioning at every stage, the joint probability functions corresponding to
H, and H are respectively

n

foo(Z1y- - Zn3 01,0+, 0n) = H{(l — o) + (2po — 1)Zi}, - (2.1)

Fo(Zase e Zni 61,5 60) = [ {1 =po) + (2po — 1) Z:}7 {(1 = p) + (2p— 1) Z;}' 7.

i=1
...(2.2)
Then, for any ko (> 0), a most powerful test is given by
w = {(Zl’...’Zn;(sl’...,(sn):fp(Zl,...,Zn;(sl’...’én)> (23)
kofpo(Z1,- -5 Zni 61, -+, 0n)}- T
Then after some routine steps the statement under (2.3) reduces to
n n
by (1=8;)=by Yy (1= Z)(1=6;) > ki, ... (2.4)
i=1 i=1

where b; = log,(p/po), b2 = log, (ﬁgl(;_pz;) and k; = log, ko. Thus we get a class

of tests determined by the critical region:
n n
a Yy (1=6)—ay» (1-27Z)(1-6;) > as, ...(25)
i=1 i=1
by varying a;, as and az. Now, from (2.4), we get, provided 1" (1 —4;) > 0,

> (= zZ)(1-6) zn:(l —0;) < by /by — kl/ (bg zn:(l - 5i)> N XY

i=1 i=1
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If > (1—4;) =0, then H is automatically rejected. For operational convenience
and easy interpretation of the test, we ignore the random part in the right hand
side of (2.6). This motivates us to use S, as our test statistic and a left-tailed test
would be appropriate. Suppose, for a preassigned v € (0,1), we have a non-negative
integer c¢; satisfying

PH{Sn Scl} S'Y<PH{Sn §C1+1}. .. (2.7)
Then we reject H at the level ~y iff

Sn S Ci, (28)

and accept H otherwise. The test can be suitably randomized to get a size v test.
Let p;+1 be the conditional probability that d;11 = 1 given all the previous

assignments 41, - - -, d; and responses Z1,---,Z;. Then it can be easily seen that
pi = Qk=Da+s k-0 5+E-13 7
=t =t .. (2.9)

—kiajzj /(ka+i(k—1)6),

and hence, the marginal distributions of §;’s can be obtained by the method of
induction as

k—1
P(6i+1 = 1) = T + di+1, - (210)
where d; = 0, and for ¢ > 1,
iB k—1 (k—1)8 :
; . - — (1 —~ ;
divt = G g F PP Y koLt p);df
TR o
ka-{—i(k—l)ﬁj:l I
.. (2.11)

Note that (2.9)-(2.11) show that the procedure depends on a and 8 only through
f/a. Under alternative, the distribution of Z;;; depends on d;41 and hence on
all the previous (d;, Z;)’s. But, under H, the Z;’s are independently and identi-
cally distributed (i.i.d.) Bernoulli (py) random variables, and §;’s are identically
distributed Bernoulli (1 — £~ ') random variables but not independent.

From (2.10)-(2.11), it is clear that the probability of obtaining a ball of kind
Ais (1 — k') under H. But, under an alternative, the probability is (1 — k~!)
for the first draw, and is greater than (1 — k~!) from the second draw onwards.
The proposed test, compared to the existing test with ny observations, requires
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n = kng experimental units of which some correspond to B and the remaining to
A. From the probability distributions given above, the expected number of alloca-
tions to treatment B (which is the treatment under consideration) is E(Y ;- §;) =
i (3 —di) =no— > d;, which is less than ng under an alternative and equal
to ng under H. Hence, as k increases, we get a better test which is also clear from
Table 2.1. But this involves more time for tossing a coin and drawing balls from
the urn with little extra cost.

Here, for the proposed test procedure, we are mainly interested in two perfor-
mance characteristics, viz., the power function (P(p)) and, for treatment B, the
average sample number (A(p)) required to perform the test. It is to be noted that
the expected number of coin tossings required is given by n — A(p). The main goal
of the proposed sampling scheme is to have a fewer number of patients when an
alternative is true, i.e., to arrive at a decision by exposing a fewer number of such
costly trials. But, as the reduction of sample size results in reduction of power,
we consider P(p)/A(p), which is the PPUS, as our basic criterion and compare
it with that of the corresponding test (1.2) based on a sample size n/k. It can
be easily shown that A(py) = n/k. In the following table, taking pp = 0.5 and
n = 15k, k = 2,3,4,5, we compute the performance characteristics of the proposed
and the existing tests at some selected values of p. Here A(p) values are exact, but
P(p) values are obtained by 10000 simulations. Figure 1 also shows the comparison
between the PPUS of the proposed test and that of the existing one.

Table 2.1. PERFORMANCE CHARACTERISTICS OF THE PROPOSED TEST AND THE EXISTING TEST.

D Existing test k=2 k=3 k=4 k=5
0.0500 0.0500 0.0500 0.0500

0.5 15.0000  15.0000  15.0000  15.0000
0.0033 0.0033 0.0033 0.0033 0.0033

0.1592 0.1525 0.1560 0.1529

0.6 13.8759  13.5290  13.3448  13.2269
0.0126 0.0115 0.0113 0.0117 0.0116

0.3849 0.3667 0.3644 0.3455

0.7 12.8844  12.2788  11.9677  11.7729
0.0311 0.0299 0.0299 0.0304 0.0293

0.6965 0.6645 0.6775 0.6415

0.8 12.0065 11.2105 10.8139  10.5705
0.0529 0.0580 0.0593 0.0627 0.0609

0.9418 0.9203 0.9147 0.9109

0.9 11.2269  10.2926 9.8402 9.5677
0.0652 0.0839 0.0894 0.0930 0.0952

0.9930 0.9836 0.9825 0.9755

0.95 10.8697 9.8818 9.4099 9.1281
0.0666 0.0914 0.0995 0.1044 0.1069

0.9998 0.9992 0.9990 0.9990

0.99 10.5981 9.5738 9.0895 8.8082
0.0667 0.0943 0.1044 0.1099 0.1135

The three entries in each cell correspond to P(p), A(p) and PPUS at p respectively.

The above table shows that PPUS of the proposed test is almost same as that
of the existing one for all values of p < 0.75. But there is a gain in PPUS for the
proposed test at all p > 0.75.
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Figure 1. PPUS of the existing and proposed tests.

3. Some Asymptotic Results

As in Bandyopadhyay and Biswas (1996) the following lemma can be proved.

LEMMA 3.1. There exists u* € (0,1) such that, as n — oo,

%i(l—éi) 5 . (3.1)

Now we have the following theorem:
THEOREM 3.1. Under H, as n — 00,
n'/2(8, —qo) 3 N(0,07),

where 02 = kqo(1 — qo), and go = 1 — po.
ProoOF. Note that, as in Lemma 4.1, we have

1
Nn/n—P)E, as n — oo, ... (3.2)
and hence
nt/? Pk
n1/2(Sn —qo) = N (T, — Nngo) ~ —= (T, — Nnqo), ... (3.3)
n n
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P
where ‘X,, ~Y,,” means that, asn — oo, X, /Y, tends to 1 in probability. Denoting
by (i1,---,in,) the set of random indices for which §; = 0, we have, under H,

(T Nnqo) = lni 1-Z _QO):% Z (1-2Zi - q)

z:l i€ (i1, 0Ny, )

(1 —Zi — qo)

-
Il
=

N, v

1
(1-Zi—q)+—F Z(l Zi —q)| »
1 \/,,_-L i=1 i=1

la
S-Sl S\
M-1M7

2

where {v = v(n)} be a sequence such that v — oo and v/n — 1/k as n — co. As
Z;’s arei.i.d. Bernoulli (pg), the first part of the right hand side of (3.4) converges in
distribution to N(0,qo(1 — ¢o)/k) and, by Kolmogorov’s inequality (see Billingsley
(1979, pp. 320-321)), the second part of (3.4) converges in probability to zero.
Combining all these the theorem follows. 0

Now, using the above theorem, the proposed test can be approximated by: Re-
ject H at the level v € (0,1) iff

Sn < qo — "2 (kqo(1 — o)) /2@ 71 (1 — ), ... (3.5)

where ®~! (1 — 1) is the (1 — ) percentile point of an N (0, 1) distribution. The test
is then asymptotically size .
To find the limiting value of the power function we prove the following theorem:

THEOREM 3.2. Under H,, P(p) — 1 as n — oo.
ProOF. By Lemma 3.1, we have

N, 2 v, ... (3.6)

where it is always possible to have a sequence of positive integers {v}} such that
Vi — o0, and v} /n — p* as n — oco. Hence

Sy =T /No ~ T, /vt = S% (say). . (3.7)

It is easy to see that, given N,,, the conditional distribution of T}, is binomial (N, ¢),
where ¢ = 1 —p, and it is easy to show that as n — oo, E(S};) and V(S};) converge
respectively to ¢ and 0, which by (3.5), implies

Sngq.

Then, using (3.5) the theorem follows. 0

As the proposed test is consistent the asymptotic power can be obtained only
from the limiting distribution of the test statistic under a sequence of local alter-
natives : p = p, = po + ¢/v/n, ¢ > 0, n > 1. It can be easily argued that under
{pn}, as n — o0,
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/i (]f_— - qo) 4 N (e, kao(L - qo)), .(38)

and hence the asymptotic power is given by

kgo(1 — qo)

The initial goal of our sampling design was to have a fewer number of patients
under alternative. (Table 2.1 supports our assertion.) As for any p > po, the
sequence {d;, ¢ > 2} is monotonic and bounded, writing lim; ,~ d; = d, we have,
by Toeplitz’s lemma, as n — oo,

( Z&) ko1, 1 Zd —>kT+d ...(3.10)

as the limiting proportion of coin tosses, Where by (2.11), we have

® l@*(l—vH%l. ... (3.9)

1
d=2(p=po) + (1 +po—p)d—-—

yielding d = (k — 1)(p — po)/[k((k — 1)p + po)]. Hence the limiting value of the
expected proportion of trials that are allocated to treatment B is

1-}3210}5( Z&) m ...(3.12)

Note that this limiting proportion is free of any choice of (a, 3).

pod, ... (3.11)

4. Concluding Remarks

For large sample size, the test procedure is independent of any choice of §/a,
but the small sample behaviour depends on its choice. So it is the experimenter’s
task to choose §/a compromising between power and ASN.

It is to be noted that an early stopping can easily be employed to our present
sampling scheme. This will retain the same power at the expense of possibly smaller
sample size. But this is a routine extension of any sequential decision making
procedure, and hence we have not studied it. The proposed test, being a terminal
one, is thus comparable with an existing fixed sample size procedure. If an early
stopping were done, we could compare the test with an SPRT-type procedure with
truncation. But such a study is not undertaken simply because the aim of the
present, paper is to establish the usefulness of the proposed RPL sampling scheme
for costly trials.
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