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Abstract

We present an elitist multi-objective genetic algorithm (EMOGA) for mining classification rules from large databases. We emphasize on
predictive accuracy, comprehensibility and interestingness of the rules. However, predictive accuracy, comprehensibility and interestingness of the
rules often conflict with each other. This makes it amulti-objective optimization problem that is very difficultto solve efficiently. We have proposed
a multi-objective genetic algorithm with a hybrid crossover operator for optimizing these objectives simultaneously. We have compared our rule
discovery procedure with simple genetic algorithm with a weighted sum of all these objectives. The experimental result confirms that our rule

discovery algorithm has a clear edge over simple genetic algorithm,

Kevwords: Genetic algorithm: Multi-objective genetic al gorithm: Rule mining: Data mining

1. Introduction

Classification rule mining is one of the most studied tasks in
data mining community and 15 an active research area because
the data being generated and stored in databases of organiza-
tions are already enormous and continues 1o grow very fast.
This large amount of stored data normally contains valuable
hidden knowledge, which if hamessed could be used 1o improve
the decision-making process of an organization. For instance,
data about previous sales might contain interesting relation-
ships between products, customer segmentation and buying
habits of customers. The discovery of such relationships can be
very useful to efficiently manage the sales of a company.
However, the volume of the archival data often exceeds several
gigabyles and sometimes even terabyles. Such an enormous
volume of data is beyond the manual analysis capability of
human beings. Thus, there is a clear need for developing
automatic methods for extracting knowledge from data that not
only has a high predictive accuracy but also comprehensible

and imterestingness by users [ 1-5]. The wser should be able w0
understand the mining system’s results and combine them with
his/her knowledge 1o make a well-informed decision, mather
than blindly trusting the incomprehensible output of a “black
box™ system.

Furthermore, individual datasets may be gathered and studied
collectively for purposes other than those for which they were
orginally created. Knowledge with multiple-objectives may be
obtained in the process while eliminating one of the largest costs,
viz., datacollection. Medical data, for example, often exist in vast
quantities in an unstructured format. The application of
classification/clustering of data mining can facilitate systematic
analysis in such cases. Medical data, however, require a large
amount of preprocessing in order to be useful. Here numeric and
textual information may be interspersed, different symbols can
be used with the same meaning, redundancy often exists in data,
erroneous/misspelled medical terms are common, and the data
are frequently mther sparse. A robust preprocessing syslem 1s
required in order to extract any kind of knowledge from even
medium-sized medical datasets. The data must not only be
cleaned of errors and redundancy, but also organized in a fashion
that makes sense 1o the problem.

Soft computing, a consortium of methodologies, can be a
viable tool for handling real-life ambiguous situations [6]. The
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aim of this consotium is to exploit the tolerance for
HOprecision, uncertainly, approximate reasonming, and partial
truth in order to achieve tractability, robustness, and low-cost
solutions. Its pancipal components, at this juncture, are fuzzy
logic (FL), neural computing (NC), evolubonary algorithm
(EAs), and rough sets (RS). It has been shown that the different
soft computing tools are utilized, both in individual and
integrated manner, i ovarious ways o develop rule mining
systems based on single objective. However, & very rare atlempt
has been taken by the soft computing community to solve the
rule mining system based on multiple objectives.

Evolutonary algorithms (EAs) have inspired many research
efforts for optimization as well as rule generation [7.8].
Traditional rule generation methods, are vsually accurate, but
have brittle operations. Evolutionary algorithms on the other
hand provide a robust and efficient approach to explore large
search space. One of the EA called simple genetic algorithm
(SGA) introduced by J.H. Holland {1975) [8-10] is good for
rule generation satisfying a single objective. However, practical
rule generation 15 naturally posed as multi-objective problems
with three cntena: (1) predictive accuracy, (1) comprehensi-
bility and (iii) interestingness [4]. The SGA normally handles
problems with such crteria by single objective problems. In
other words, one can transfer the original muolt-objective
problem into a single-objective problem by using a weighted
sum formula. However, this approach is unsatisfactory due to
the nature of the optimality conditions for multiple objectives.
In the presence of multiple and conflicting objectives, the
resulting optimizatnon problem gives rise o a set of optimal
solutions, instead of just one optimal solution. Multiple optimal
solutions exist because no smgle solution can be a substitute for
multiple conflicting objectives. In order o overcome this
difficulty we have proposed an elitist multi-objective genetic
algonthm with a hybnd crossover operator that can extract the
high-level classification/prediction rules and are represented in
the following form.

IF some conditions hold on the values of a set of predicting
attributes
THEN predict a value for the goal atribute.

In other words, the value of a special attribute, called the
eoal attdbute, is predicted by the wvalues given for other
attnbutes called the predicting attnbutes.

In this approach, rmle generation 15 o associate cach
individual of the population with the same predicted class,
which is never modified during the running of the algordthm.
We would need o run at least for the specified number of
classes. So that in the ith run, the algorithm discovers only rules
predicting the ith class [11,12]. As it is difficult to find out a
single global solution for & multi-objective problem, so it is
natural to find out a set of solutions (i.e. called Pareto-optimal
set) depending on the non-dominance criterion in each run. Out
of the discovered rules the experimental results demonstrated
the rle having the objective function values more balanced
towards the associated measures. We shall use the results
reported in [ 12] for comparison with our resulis. By comparison

it has been observed that the predictive accuracy, comprehen-
sibility and interestingness is encouraging in genetic algorithm
for multi-objective optimization over SGA.

This paper 1s organized as follows. Section 2 discusses the
SGA for classification rule generation. In Section 3, we
describe evolutionary algorithms for multi-objective pro-
blems. In Section 4, we have discussed and ehitist multi-
objective genetic algorithm with a hybrid crossover for rule
generation. The implementation of our simulation expernments
is discussed in Section 4. Finally, Section 5 concludes this
article.

2. Using SGA for classification rule generation

In this section we review the funcion of SGA for rule
generation. Genetic algorithms are probabilistic search algo-
rithms characterized by the fact that a number N of potential
solutons (called individoals I € £2, where 2 represents the
space of all possible individuals) of the optimization problem
simultancously samples the search space. This population
P=1{i, L, ... I, is modified according to the natural
evolutionary process: after initialization, selection §: F¥ — 1%,
recombination H: /¥ — " and mutation are executed in a loop
until some termination cnterion 15 reached. Eachrunof the loop
15 called a genemtion and P denotes the populaton at
genermbon f

The selection operator is intended to improve the average
quality of the population by giving individuals of higher quality
a higher probability to be copied into the next generation.
Selection thereby focuses on the search of promising regions in
the search space. The quality of an individual is measured by a
fitness function fr P — R. Genetic operators changes the
genetic material in the population either by crossover or by
mutation i order o obltan new points o the search space.
Fig. 1 depicts the steps that are pedformed in SGA.

The following subsection discusses the individual repre-
sentations, fitness function, and genetic operators used for
classification rle discovery.

2.0 Individual representations

Each individual in the population represents a candidate rule
‘i of the form if A then C. The antecedent of this rule can be
formed by a conjunction of at most n — 1 attributes, where n is
the number of attributes being mined. Each condition is of the
form A; = Wir. where Ajis the ith atribute and Vi; 1s the jth value
of the ith auribute’s domain. The consequent consists of a single
condition of the form G = g, where Gis the goal atiribute and g;
is the fth value of the goal attribute domain.

A string of fixed size encodes an individual with n genes
representing the values that each attribute can assume in the
rule and each gene 1s divided mto two parts, one 15 value and
the other is flag for indication of the inclusion or exclusion of
the attributes in the rule. This encoding 15 shown in Fig. 2.

If an attribute is not present in the rule antecedent, the
corresponding flag value in gene is 0. This value is a flag 1o
mndicate that the attnbute does not occur in the rule antecedent.
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Fig. 1. Flow diagram of SGA.

Hence, this encoding effectively represents a vanable-length
individual (rule).

2.2, Fitness function

As discussed in Section 1, the discovered rules should have
(a) predictive accuracy (b)) comprehensibility and (¢) imterest-
ing. In this subsection we discuss each of these objectives and
how these can be incorporated into a single objective fitness
function.

2.2, Comprehensibility metric

In practice the comprehensibility metric is a kind of subject
concepl as it vares from user 1o user. However, the data mining
literature uses an objective measure: in generl the smaller the
ruks, more comprehensible it 1s. There are various ways 1o
measure rule comprehensibility [ 13-16]. The standard way of
measwring comprehensibility is to count the number of mles
and the number of conditions in these rules. If these numbers
mcrease then the comprehensibility decreases. I a rule has at
most M. conditions, the comprehensibility 5 of the rule i can
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Fig. 3. Confusion matrix to measure predictive accumcy.

be defined as:

: N(9R)
Y — —_ R T
%) =1 ( v )

where N_(H) is the number of conditions in the mle .
The comprehensibility s also measured by the followmg
CRPIESSION

o R) = M. — (N(R)).

2.2.2. Predictive accuracy

As already mentioned, our rules are of the form IF A =
v AAs = vy THEN C. That means 1t has two predicting
attnbutes and one goal attnbute. In general the antecedent part
of the rule is a conjunction of conditions. A very simple way o
measure the predictive accuracy of a rule PitH) is

ran _ IA&C]
PR = Al

where |A] 15 the number of instances sabsfying all the condi-
tions in the antecedent A and |A & C is the number of examples
that satisfy both the antecedent A and the consequent C.
Intuitively this metne measures prediclive accuracy in lenms
of how many cases both antecedent and consequent hold out of
all cases where the antecedent holds. However, it 1s gquite prone
to overfiting, because a rule covering small number of
mstances could have a high value, even though such a rule
would not be able to generalize the unseen data during training.

An alternative measure of predictive accuracy of the rule is
the number of correctly classified test instances divided by the
total number {comrectly classified + wrongly classified) of test
mstances. Although this method 1s owidely vsed it has a
disadvantages of unbalanced class distribution [17].

Hence o avoid these limitations the following measure of
predictive accuracy 15 taken into consideration and  ame
discussed in more detail [17,18]. A confusion matrix can
summarize the performance of a classification rule with respect
to predictive accuracy.

Let us consider a simplest case, where there are only two
classes to be predicted, referred 1o as the class C and the class
~. In this case the confusion matnx willbe a 2 = 2 matrix and
15 lustrated in Fig. 3.

[ A ¥ij [ My ovy | ]\ A ¥ij
F

,[ A vy
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‘ig. 2. Chromosome mepresentation.
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In Fig. 3, C denotes the class generated by a rule, and all
other classes are simply considered as ~C. The labels in each
quadrant of the matrix have the following meaning:

Lo Number of instances satisfying A and having class C
Ly - Number of instances satisfying A and having class ~C
L g Number of instances not satisfying A but having class C

L ¢ ¢ Number of instances not satisfying A and having class
~

Intuitively, the higher the values of the diagonal elements
and lower the values of other elements, better the corresponding
classification rule. This matrix can also work for a *m” class
problem: when there are more than two classes one can sull
work with the assumption that algorithm evaluates one rule at a
time and the class C predicted by the rule is considered as the
Cth class, and all other classes are simply considered as ~C
classes.

Given the wvalues of Ly, Lo Lo and L o - as
discussed above, the predictive accuracy is defined as

o L{'\r XL\.,(‘\.,L"
(Lec + Lewe) % (Lee + Leoe)

PR

where 0 < p(H) < 1.

2.2.3. Interestingness

The third objective of the ruke called interestingness has both
subjective (or wser driven) and objective (or data dnven)
measures. Subjective measures are dependent on previous
knowledge or previous expectations of the user. When using
this kind of measure, discovered rule is often considered
interesting in the sense of being novel and/or surprising for the
user—when 1t contradicts the previous knowledge or expecta-
tion of the user. On the other hand, objective measures ry to
estimate the interestingness of a rule based on the data being
mined. Hence, objpective measures tend o be domam
independent,  whereas  subjective  measures  tend 1w be
domain-dependent. Therefore, it is wise to combine objective
and subjective measures rather than being used inoa mutually
exclusive fashion.

Using general impressions Liu et al. [19] have proposed a
subjective approach for selecting interesting rules based on the
notion of general impression. In essence, the user specifies his/
her general impressions about data relatonships in the
application domain in an IF-THEN prediction rule hke
format. For example, a given user might specify the following
genemlimpression: IF (%_ol_mark = high) THEN (Result = -
passh. Note that this 1sa generalimpression in the sense thatitis
quite vague (fuzzy), different from a reasonably precise rule
such as: IF (% _ofl_mark = 60%) THEN (Result = pass). The
basic idea is that although the user is not supposed to know
reasonably precise rule, hefshe can have general impression
aboul the application domain that are valuable clues for the
system o determine what 18 interesting (novel, surpnsing) for
the user.

Once the general impressions are specified, the discovered
rules are compared with the general impression. There are
essentially two kinds of interesting rules selected by the system.
First one includes the rules with unexpected consequent (THEN
part). In this case, the condition s in 1F part matches the general
mmpression, but the rule’s consequent and the impression’s
consequent are different. The second category includes the
rules with wvnexpected conditions. In this case a rule’s
consequent matches a general impression’s consequent, but
the conditions in their antecedent are different. Note that a rule
15 interesting 15 no goamntee that it will be accurate and
comprehensible. For a more comprehensive discussion about
the general impressions approach and related  subjective
measures of rule interestingness the reader is referred 1o refs.
[19.20].

The general impression of measuring rule inlerestingness
has two man disadvantages: (a) it requires that the user spend
some time specifying general impressions, (b) It is application
domain dependent, e, the general impressions are valid only
for the current application domain and possibly only for the
current user, since different users of a given application domain
might have somewhat different general impressions about that
domain.

To cope with these disadvantages one can estimate that arule
15 novel and/or surprising based only on objective, data-driven
factors, without requiring that the user specily her/his general
mmpressions. Hence, the system would have greater autonomy
and generality, being to a large extent independent of the
application domain.

Noda et al. [20] has proposed tworelatively simple objectve
measures of rule Surprisingness (or interestingness ). The basic
idea of one of these measures is that a rule is considered
surprising to the extent that it predicts a class different from the
classes predicted by s mimimum generalizations. Let a rule
antecedent be a conjunction of m conditions of the form cond,
and conds and cond;y and . . . and cond,,,. In essence, a rule has m
minimum generalizations, one for each of its m conditions. The
ith minmimum generalizaton of the mule i=1, ..., m can be
obtained buy removing the ith condition from the rule
antecedent.

When a minimum generalization of a mle is generated,
the system recomputes the class predicted by the generalized
rule, which 1s the majority class of the data instances covered
by the generahized rule. Let ¢ be the class predicted by
both the orginal rule and the ith minimum generalization of
the original rule. Then the system compares ¢ with each ¢,
i=1, ... m, and counts the number of tmes that ¢ differs
from ¢;. The higher the value of this count the higher the
degree of Surprisingness (interestingness) assigned o the
original rule.

In other words, the system effectively considers that a rule
has a large degree of Surprisingness when attnbute interactions
make that rule cover a set of data instances whose majority class
is different from the majority class of the sets of dat instances
covered by most of the minimum generalizations of that rule.
One can also regard a rule with a large degree of Surprisingness
as an exception rule, since 1t covers fewer dala instances and



makes a prediction different from most of s minimum
generalizalions.

The second objective measure of mle Surprising-
ness proposed by Frietas [21] is an information theoretic
MEASUre.

Thus the computation of the degree of interestingness of a
rule, in turn, consists of two terms. One of them refers o
the antecedent of the rule and the other to the consequent.
The degree of interestingness of the mle antecedent is
caleulated by an information—theoretical measure, which is a
normalized version of the measure proposed by [ 15]. Initially,
as 4 preprocessing  step, the algonthm  caleulates  the
information gain of each attribute (InfoGain) [16]. Then
the degree of interestingness of the rule antecedent (Rlnt) is
ziven by:

5 InfoGain{A;)/{(n — 1)

Rnt = 1 — == Yol C:
logs | [dom{G|)

where n is the number of attributes in the antecedent and
(|dom(G)|) is the domain cardinality (i.e. the number of pos-
sible values) of the goal attribute G occurring in the consequent.
The log term 1s included in the Rint formula o nommalize the
value of Rlnt, so that this measure takes on a value between 0
and 1. The InfoGain is given by:

InfoGain(A;) = Info{G) — lnfo{ G|A;)
where

iy

[nfo(G) = — _(P(g;) loga( plg1)))

i—1

Info(GIA) = 3 (p::uu:l ( S plgfuig) toga (e n))

=1 i=l

where my is the number of possible values of the goal
attribute 7, n; is the number of possible values of the
attribute A;. The fitness function is computed as the arith-
metic weighted mean of comprehensibility, predictive accu-
racy and mlerestingness.

Finally, the fimess function is given by:

Flx) = wi (M) + wa p{H) + wiRlm 1

W+ w4 Wy

where wy, wy and wy are user-defined weights.
2.3, Genetic operators

2.3.1. Crossover

The crossover operator we consider 15 based on single-point
uniform crossover. This operator can also be treated as hybrid
crossover becavnse it combines the best atmbute of single point
and uniform crossover [22,23]. Let us discuss cach of these
operators briefly and how these operators influence the hybrid
one.

In single-point crossover between two individuals a single
point is randomly chosen in the range of the length of the
chromosomes. Then the genes to the right of the crossover
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point are swapped between the two individoals, yielding the
new offspring. In the uniform crossover, for each gene
position the genes from the two parents are swapped with a
fixed, position independent probability p. Unlike one-point
crossover, the swapped genes do not need o be adjacent 1o
each other. The influence of the value of p in the exploratory
power of uniform crossover is as follows. If the value of p is
closer o 0.5, then large numbers of genes are swapped
between the two parents. Hence the explomtory power of
uniform crossover is high, i.e. the search performed by this
operator tends 1o be global. Conversely, if the value of p is
closer to 0 or 1, then the number of genes swapped between
the two parents 15 smaller, and so more local searching 1s
performed by this operator.

1t has been found that both the operators suffer from search
bias. The single-point cmossover operator has a strong positional
bias, i.e. the creation of new individuals by swapping genes of
the parents depends on the position of the genes, in the genome.
Similarly, the uniform crossover suffers from distributional bias
but it has no positional bias. 5o the idea here s o combine the
best attribute of both the operators and generate a hybrid one-
point uniform crossover operator.

2.3.2. Mutation

Mutation 15 an operator that acts on a single individual at a
tme. Unlike crossover, which recombines genetic malenal
between two (or more) parents, mutation replaces the value of
an attribute into another value belonging to the same domain of
the atributes.

Besides crossover and mutation, the insert and remove
operators directly try o control the size of the rules being
evolved and thereby influence the comprehensibility of the
rules. These two operators randomly nsent and remove,
respectively, a condition in the ruke antecedent. These opertors
are not part of regular GA. The removal operator is also called
dropping condition operator.

3. Genetic algorithm for multi-objective problems
JA. Overview of MOEA

There are many muli-objective problems requiring simul-
taneous optimization of several competing objectives. For-
mally, it can be stated as follows.

We want to find ¥ = (x), 12,
the wvalues of ‘p

oo, xy) which maximizes
objective  functions F(X) = ( f, (%),

falX), ... f,(X)) within a feasible domain £2. Generally the

answer is not a single solution but a family of solutions called a
Fareto-optimal set.

Definitions.

o A vector 8= (g, ts, ..., i) is said o dominate =
vy, va, ..., u,) iff § is parially greater than @, i.e.
Yiell,2,3,...phhwzuAadiell, 2, . pY i

o A solution x € £2 15 said o be Pareto-optimal with respect
to 2 iff there is no ¥ €2 for which ¥=Fx) =
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(F1(), £2@), <oy £,(0)
(fi(x), falx), oo fplx)).
e Fora given multi-objective problem Fix), the Pareto-optimal
set P, is defined as: P, = (xe 2| - Jx' € 2: F{x') = F(x)}
e Fora given multi-objective problem Fx) and Pareto-optimal
set P, the Pareto front Py is defined as: Py = {ii = Flx) =
(f1(x), Falx),... folxllxePy))

dominates = Fix)=

Optimization methods generally try o find a given
number of Pareto-optimal solutions which are uniformly
distributed i the Pareto-optimal set, such solutions provide
the decision maker sufficient insight into the problem to
make the final decision. In Fg. 4, Pareto-optimal front of a
set of solutions generated from two conflicting objectives
like Fflx=+y+1) and filxyi=x +37 +1,
—3<xy=<3 is illustrated. Methods such as weighted
sum, g-constraint, and goal programming have been proposed
to search for Pareto optima [24,25]. However, an a priori
articulation of the preferences 1o the objectives is required,
which 1s often hard o decide beforehand. Besides, these
methods can only find one solution at a time. Other solutions
cannol be obtained without re-computation with the free
paramelers mesel.

By conwast, genctic algorithms (GAs) [9] mantan a
population and thus can search for many non-dominated
solutions in parallel. GA’s ability to find a diverse set of
solutions in a single mn and its exemption from demand for
objective preference information renders it immediate advan-
tage over aforementioned technigques. A lot of multi-objective
GAs (MOGAS) [26-29] have been proposed. Basically, an
MOGA is characterized by its fitness assignment and diversity
maintenance strategy.

In fitness assignment, most MOGAs fall into two
categories, non-Pareto and Pareto-based. Non-Pareto meth-
ods use the objective values as the fitness value to decide
an individual’s survival. Schaffer's VEGA is such a method.
The Predator—prey approach [30] 1s another one, where
some randomly walking predators will kill a prey or let it
survive according o the prey’s value in one objective. In
contrast, Pareto based methods measure individual’s fitness
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according to their dominance property. The non-dominated
individuals in the population are regarded as fittest regardless
of their single objective wvalues. Since Pareto-based
approaches respect better the dominating nature of multi-
objective problems, their performance 15 reported 1o be
better.

Diversity maintenance strategy is another characteristic of
MOGAs. It works by keeping the solutions uniformly
distributed in the Pareto-optimal set, instead of gathering
solutions in a small region only. Fitness sharing [31], which
reduces the fitness of an individual if there are some other
candidates nearby, is one of the most renowned techniques.
Restneted mating, where mating 15 permitted only when the
distance between two parents are large enough, 15 another
technique. More recently, some parameter free technigues
were suggested. The techniques used in SPEA [26] and
NSGA-IL [32] are two examples of such technigues. PAES
[30], SPEA [26], and NSGA-IL [32] are representatives of
current MOGAs. They all adopt Pareto-based fitness assign-
ment strategy  and implement elitism, an experimentally
verified technique known to enhance performance. A good
comprehensive study of MOGA can also found in Ghosh and
Dehuri [33].

3.2, Mathematical formulation of rule generation and
proposed method
Formally, the rule genemtion problem can be wnllen as

follows:
Maximize

f(X) = (£1X), f2(X), f3(F)),

wherne
FiX)=¢(R) =1- (N:ifj )

oy (Lee X Lucc)

AT p(R) = - . ;
f2(%)p(R) (Lec + Lewc) ® (Loe + Lor)
and

57 InfoGain(A;)/n — 1
log, | /dom( (7] ])

fr® =RInt =1—

Henee o optimize these three objectives simultancously
using evolutionary approach, this paper provides a method
called multu-objective genetic algorithm with a hybnd one-
point uniform cmssover. The pseudocode given here not only
serves the task identified by us but also serves as o general
framework for any kind of multi-criterion rule generation
problem like association rule generation, fuzzy classification
rule generation, dependency rule generation with a proper
parameter seting.
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4. Experimenial studies
4.0, Description of the dataset

The sumulation was pedomed wsing the 200, nursery and
adult datasets obtained from the UCL machine repository
(hitp:fwwwoacs.oct.edul). These datasets are normally usedas a
benchmark for evaluating algorithms performing classification
Lask.

41,1 Zoo dataset

The zoo dataset contains 101 instances and 18 attnbutes.
Each mstance corresponds to an animal. In the preprocessing
phase the attribute containing the name of the animal was
removed, since this atribute has no generalization power. The
attributes in the zoo dataset are all categorical. The attribute
names in the dataset are as follows: hair (h), feathers (), eggs
(e), milk (m), predator (p). wothed (1), domeste (d), backbone
(b}, fins (fs), legs (1), tail (), catsize (c), aithorne (a), aquatic
(aq), breathes (br), venomous (v) and type (Ly). Excepl type and
legs, all other attributes are Boolean. The goal attnbutes ane
type 1=7. The type 1 has 41 records, type 2 has 20 records, type
3 has 5 mcords, types 4-7 have 13, 4. 8, 10 records,

respectively.

4.0.2. Nursery dataset

This dataset has 12960 records and mne attnbutes, all of
them categoncal. The minth attributes s treated as class
attribute  and  there are fve classes: not_recom (NR),
recommended (R), Very_recom (VR), Pnorty (F), and

spec_prior SPL The attributes and corresponding values ane
listed in Table 1.

4.0.3. Adult dataset

The adult dataset contains 48,842 dala instances, a mix of
continuous and discrete. The number of attributes is 15, After a
removal of incomplete records there are only 45,222 instances.
It is divided into two sets, one set is for training and another one
15 for test having records 30,162 and 15060, respectively. The
classes are distributed are as follows. Probability for the label
S0 KT 2393524 78% (withoul unknowns). Probability for
the label *==50 K': 76.07%/75.22% (without unknowns).

The classification rule-mining algorithm needs o discover
rules by accessing the tmimng setonly. In order o do this, the
algonthm has access o the values of both predicting attnbutes
and the goal attribute of each example (record) in the training
scl.

Tahle 1

Dreseription of mirsery dataset in summary

Antribute Witlues

Parents Usual, pretentious, great_pret

Has_nurs Proper, less_proper, improper, critical, very_crt
Form Complete, completed, incomplete, foster
Children 1,23, more

Housing Convenient, less_cony, critical

Finance Convenient, incony

Social Monproh, slightly_prob, problematic
Health Recommended, prionty, not_recom
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Tahble 2
Parameters for both SGA and EMOGA

Drataset P P, P External R, H

Zon 08 0,013 15 [0,0.7] [0,08]
Mursery 500 075 0002 50 [0.2 08  [006]
Adult S0 07 0.2 1| [0.2,09]  [006]

£ population size; £, pmohability of crossover; £, pmbubility of mutation;
External, external population size: 8, removal opemtor; &, insert opemtor.

Once the training process is finished and the algorithm finds
a sel of classification rules, the predictive performance of these
rules is evaluated on the test set, which was not seen during
traming. Note that, onee we take imto account the large number
of attributes, this can be considered a difficult classification
problem.

4.2, Results and analysis

The experiments have been performed using MATLAB 6.5
on a Linux server. The data specific parameters and the
parameters, which are encountered during the mle discovery,
are listed in Table 2.

For each of the dataset, the simple genetic algorithm and
EMOGA was run 300 generations. The parameters values such
as P, P, R, and Ry given in Table 2 were sufficient to find
some good individuals. The following computational protocols
are used in the simple genetic algonthm as well as the proposed
elitist multi-objective genetic algorithm for rule generation.

The datasetis divided into two parts: training set and e st set.
Here we have used a two fold cross validation of 2/3 for training
set and 1/3 for test set. We represent the predicted class to all
individuals of the population, which is never modified during
the munning of the algorithm. Hence, for each class we run the
algorithms separately and collect the corresponding rules with

an average performance metric in case of SGA and an average
performance metric with respect 1o all the associated objectives
in the case of an elitist MOGA. The generated rules of SGA and
GA for multi-criterion rule generation have been compared and
all rules are listed in the following table.

Tables 3 and 4 shows the results generated by SGA and
EMOGA for multi-criterion rule discovery respectively from
zoo dataset. The table has three columns namely class#, mined
rules, fitness function of each rule. Table 3 presents the final
seven rules discovered by the SGA and one rule for each class.
For each class, the SGAwas run five times, varying the random
seed used o generate the initial population. The best rule from
each run is collected; according to its fitness value measured in
the training set predicting that class. Hence for each class, the
corresponding rule with average performance metric is given in
column number 2 and 3, respectively. Once the seven rules were
selected, they were evaluated on a separate west sel.

For each rule in Table 1 the third column shows the fitness
value of the rule computed by Eqg. (1), One can see that fitness
value of the mles 1-4 discovered from the training set has a
standard deviation of 0.02189 in contrast 1o the fitness value of
the rules 5-7 discovered from the tmining set of standard
deviation of 1.560. In other words, the fitness values of the rules
5-7 are closer enough than fitness values of the rules 1-4.

In Table 4, the predictive accuracy, comprehensibility and
interestingness is given in columns 3, 4 and 5, respectively for
cach rule. The basic idea is that instead of transforming a multi-
objective problem into a single objective problem and then
solving it by using SGA, we use EMOGA to solve the orginal
multi-objective problem. Intuitively this approach makes sense.
Similar to SGA, for cach class the EMOGA was run five tmes
varying the random seed used to generate the initial population.
For each run the set of non-dominated solutions are collected
and the best compromising rules with the associated objectve
values are presented.

Table 3

Rules genemted by SGA from zoo dotaset

Class# Mined rules Fitness

1 TF {hair= 1) A (eggs = 0 A {(venomons = 0) A (domestic = 0) THEN (tpe = 1) (.773625
2 IF (hair = 1) A feathers = N A (venomons = ) A (legs = 20 A {domestic = ) THEN (type = 2) (1.765

3 IF {eges = 1 Aaguatic = 00 A predator = 1) (foathed = 1) A fins = 0 A ldomestic = (0 A (catsize = 0) THEN (tpe = 3) 0721

4 ITF {aguatic = 1) A (breathes = ) A (venomons = 0 A (tail = 1) THEN (tvpe=4) 0.774

5 IF {hair =N A {airbore = 0 Adaguatic= 1) A (toothed = 1) A (breathes = 1) A (legs = 4) A (catsize =) THEN (type = 5) (.8 10

il TF {airbone = 1) A fins =) A tail = 0) THEN (tvpe = 6) (L8371

7 IF {hair =N A predator = 1) A (breathes = (0 A (tail = A (domestic = ) THEN (type = 7 814
Tahle 4

Rules genemted by EMOGA from zoo dataset

Class # Mined rules Ry S Rnt
1 IF fegps = 0) A (venomous = () A (domestic = () FHEN (type=1) 019050 (1. 8aaT 0.67
2 IF {feathers = N A (breathes = N A (domestic =000 THEN (rvpe = 2) (19333 (18667 (1.503
3 IF {eges = D A predatar = 1) A (toathed = 1) A (carsize = 00 THEN (tvpe=3) 10 0.8 (1503
4 IF {aguatic= 1) A {breathes = A (tail = 1) THEN (tvpe=4) 08 (1.8667 (1.823
5 TE {airbone = 0 Adaguatic= 1) A (toothed = 1) A (breathes = 1) A (catsize = ) THEN (tvpe= 5) 10 (0.7333 (.81
il IF {airbone = 1 A fins =00 A (rail = 0) THEN (tvpe = 6) (18333 L8 (1856
7 IF { predator = I A (breathes = (0 A (rail = ) A (domestic = 0 THEN (type= 7 (1875 0.8 farl
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Tahle 5

Rules generated by SGA from nursery dataset

Cluss Mined rules Fitness

P TF { parents = nsual) A {howsing = less_conv) A (sacial = problematic) A (health = reconmended) THEN (class = P) (163
IF { parents = grear_prer) A (childrm = 3) A (social = slightly_prob) & (health = recommended) THEN (class = ) (15946

MNE TF | parents = wsual) A {howsing = less_conv) A (sacial = slightly_prob) A {health = nor_recam) THEN (class = NR) (1567
TF { parents = pretentions) A {children = 2) A {howsing = convenient) A (health = not_recom) THEN (class = NR) (1h32
IF { parents = grear_prer) A {children = 20 A (honsing = critical) A (health = not_recom) THEN {class = NR) (Lh41

VR TF { parents = wsual) A {howsing = less_conv) A finance = inconv) A (sacial = siightly_prob) & {health = recormmended) THEN (class = VR) 0627

K IF {has_nurs = proper) A finance = convenient) A (health = recomended) THEN (class = R) 07175

Tahle &

Rules generated by EMOGA from numsery dataset

Class#  Mined mles PR S Rlnt
P TF | parents = wsual) A thonsing = less_conv) A (sacial = problematic) THEN (class = P) 07780 0625 (L815
IF | parents = grear_prer) A {social = slightly_prob) A (health = recommmended) THEN (class = ) 08114
MNE TF { parents = psual) A (honsing = less_conv) A (sacial = slightly_prob) Alhealth = not_rcom) THEN (class = NR) 1634 05 (LER3
TF { parents = pretentions) A (children = 3) A {howsing = convenient) A (health = not_recom) THEN (class = NR) 07641
IF { parents = grear_prer) A {children = 20 A (honsing = critical) A (health = not_recom) THEN {class = NR) (1783
VR ITF {howsing = less_conv) A finance = inconv) A (social = slightly_prob) A (health = reconmmended) THEN (class = VR) 0897 05 0.7a1
K ITF {has_nirs = proper) A finance = conveniens) A (health = recomended) THEN (class = R) 081 (1625 (1L781
Tahle 7
Rules generated by SGA from adult dataset
Class# Mined rules Fitness
=S K ITF {work_class = private) & (Sex = Male) o Relation-ship = Hushand) THEN (class = < = 50 K) 05146
<=5 K TF {work_class = private) & {Marital_stams = Married-civ-Spouse) & (Relation-ship = Not-in-family) THEN (class = < = 50 K) 0832

Tables 5 and 6 show the result generated by SGA and
EMOGA for multi-criterion rule discovery, respectively, from
nursery datasel. The table has five columns namely class#,
mined rules, predictive accuracy, comprehensibility and
interestingness. In Table 5, for class P and NR we have
discovered two and three rules, respectively, because a single
ruke is unable o have a high expressive power. However, for
class VR and R, we have got one rule each but with a good
expressive power. With the same argument as in Table 4,
EMOGA has discovered two rules for class P and three rules for
class NR.

Similarly Tables 7 and 8 show the results generated by
SGA and an elitist MOGA for rule discovery from adult
dataset. With the same argument as in the case of zoo and
nursery datasets, Tables 7 and 8 show results generale by
SGA and an elitist MOGA (EMOGA) for rule discovery from
adult dataset. In this case single mle is generated for each

class both by using SGA and EMOGA with a good expressive
power.

Further in Fig. 5 we have shown the performance metric of
EMOGA obtained from three different dataset in the form of
histogram. The performance metrc corresponding 1o rules 6
and 7 shows that rule interestingness 15 no goaantee that the
rule will be accurate and comprehensible.

Further, it1s observed that in the case of zoo dataset after 100
generations il ceases Lo generate new rules. Similady for the
case of nursery dataset after 500 generations we are not getling
any new rules with satisfactory performance. In the case of
adult dataset after 500 generations though it ceases but the rules
are different from each other Moreover very few number of
attributes got involved in the rules, which means that all the
attributes are not equally imporant but the trends of mle
comprehensibility is increasing. Except few, most of the rules
are not as much interesting as we are expecting.

Tahle &

Rules generated by EMOGA from adult dataset

Class# Mined rules fEg! e ] Rint
=80k IF (Sex = Male) A Relation-ship = Hushand) & (Native_country = United-State) THEN (class = < = 50k) (15480 (L7857 L615
=50k IF fwork_class = privare) A {Marital_status = Marred-civ-Spause) o (Relation-ship = Nor-in-familv) A (L8621 (L7143 (L6S

(Race = white) THEN (class = < = 5} k)
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Fig. 5. Histogmm mepresentation of performance metric.

5. Conclusions and foture research directions

In this article we have explored the use of an elitist multi-
objective genetic algorithms for discovering predictive,
comprehensifble and interestingne sy rules. We have discussed
the basic concepts and principles of application of SGA and
the proposed method called EMOGA for classification rule
generation and experimental results. Despite the small
number of patterns available in our application domain the
results can be considered to show the approximate trend. The
comprehensibility of the discovered rules could, in principle,
be improved with a proper modification of the fitness
assignment method. We are now concentrating on careful
selection of attributes [36] in a preprocessing step in order to
reduce the number of attributes (and the corresponding search
space) given to the EMOGA. Though there are few
applications of EMOGA in data mining tasks [34 35], for
validating its robusiness and scalability more practical
application to various domains of data mining and more
studies are needed.

In addition, the complexity of the proposed algorithm seems
Lo be low, because of the different runs at keast once for cach
class {value of the goal atribute) and the continuous growth of
the datasets. To make the algonthm more scalable, either it
requires considering only a subset of the available data o
evaluate the fitness of an individual or parallelizing EMOGA
and then munning on a clusters of PCs. Other important issues 1o
be addressed include MOGA for fuzey rule discovery and
dealing with noisy, imprecise, and uncertain information. These

issues provide the soft computing community a new dimension
for further research.
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