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Abstract

De pove structure determination of proteins is a significant research issue of bicinformatics. Biochemical procedures for
protein structure determination are costly. Use of different pattern classification techniques are proved to ease this task. In
this article, the secondary structure prediction task has been mapped into a three-class problem of pattern classification,
where the classes are fiefliv, sheer and coil. Here we have made an attempt to analyze this secondary structure prediction
problem using three distance based classifiers { minimum distance, K-nearest neighbor and fuzzy K-nearest neighbor). The
only information about the proteins used is the primary structure (sequence of amino acids) itself. A matrix-based new
representation of such categorical data is used to convert the sequence into real numbers. A comparative study among
these classifiers has been made based on some standard classification performance measures. From this study., it is found
that the simple minimum distance classifier performs better compared to others.

1. Introduc ion

Mumber of unknown proteins is increasing exponentially compared to the number of known protein struc-
tures [1]thereby widening the gap of protein sequence-structure mapping. Protein secondary structure predic-
tion is a task for predicting the conformational state of each amino acid in a protein sequence, e.g_, to predict
whether a given amino acid is a part of helix, sheet or coil structure. Since the biochemical methods for protein
structure determination is too expensive, some computational tools that can predict protein structures are
needed to narrow this widening gap. Pattern classification methods are popular tools that help to perform this
prediction job. Thus, design and development of such classifiers is one of the prime concerns of bioinformatics.

Advancement of in vifro techniques enables availability of primary structure information of thousands of
proteins. The three-dimensional conformational state (tertiary/quarternary structure) of a protein is depen-
dent on the primary structure to a large extent. Function of a protein depends on its final conformational
state. So, the determination of protein structure is an important problem. This problem is computationally
not tractable till now. S0 we move for protein structure prediction. Again, since reliable tertiary structure
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prediction is far beyond, an intermediate step is to predict the secondary structure which is a way to simplify
the prediction task. Note that the secondary structure of a protein is very useful to understand its three-dimen-
sional structure and its function [2].

Accurate prediction of secondary structure of proteins is one of the greatest challenges in protein structure
analysis. The task of secondary structure prediction of proteins is synonymous with identification of types of
secondary structural elements, ie., helices, sheets and random coils. It should be noted that location of an
amino acid in the protein sequence along with the nature of its neighboring amino acids affect the overall sec-
ondary structure. Prediction tools like classifiers attempt to investigate this apparent relationship between
amino acids sequences and their structures.

Protein secondary structure prediction can be mapped to a standard pattern classification problem. Struc-
tural categories of proteins are considered as classes, whereas, structural and functional units of proteins
{amino acids) are treated as patterns. Since, amino acids are considered to be patterns, they need to be rep-
resented by numerical features that are responsible for classification. The only information available in a
sequence is the symbolic name of the amino acid itself along with its neighbors. The underlying principle
of the prediction problem is that the secondary structure of a particular amino acid is highly correlated with
its neighboring amino acids [3-5). Protein secondary structure also depends on the local short ranged interac-
tions between the neighboring amino acids (residues) [6].

Research has been conducted for more than 40 years on prediction of protein secondary structures. At pres-
ent we have several classification approaches that predict the secondary structure with acceptable accuracy.
Meural network [7] based methods include PHD [B], PHDpsi [5], PROFsec [9] S5Pro2 [10], JINET [11] and
PSIPRED [12] Although neural network based methods give higher accuracy, they suffer from some draw-
backs. Black-box nature of neural networks makes it difficult to view how the structures are actually predicted
[2]. Neural based methods along with hidden Markov models (HMM) [13] perform well when many homologs
of query protein are available. This goes against generalization of prediction. It may be noted that use of sup-
port vector machines (SVM) introduced by Vapnik [14] improves prediction accuracy effectively [11

Mearest-neighbor classifiers have been used mainly for predicting one category of secondary structures, e.g.,
heta turn [15] In the present study, we have used the K-nearest neighbor method (a generalization of nearest
neighbor) to handle the three-class secondary structure prediction problem. Conventional K-nearest neighbor
method also has some drawbacks. It gives equal importance to all the classes. This difficulty can be reduced by
using fuzzy K-nearest neighbor [16] method. In this investigation, we used both fuzzy K-nearest method and
minimum distance classifiers for predicting secondary structures.

For all classifiers, we need to represent an amino acid as a numerical pattern. A stretch of amino acid
sequence tends to attain a particular secondary structure depending on what kind of amino acids are present
in that stretch, their properties and mode of arrangement. This is also affected by the other amino acids pres-
ent in the chain (i.e., the total amino acid chain [17]). Thus, the “length of the stretch™ is very important for
prediction purpose. To make life simple, many methods examine a slice of sequence window and assume that
the central amino acid in that window will adopt a conformation that is determined by side groups of all the
amino acids present in that window. We exploit this idea to represent an amino acid as a pattern, i.e, an
amino acid is represented as a pattern whose feature values come from the neighbors of the amino acid.

Using this new representation for patterns {amino acids) we investigated the problem of secondary struc-
ture prediction using distance based classifiers.

2. (lassifiers for structure prediction

We have studied three different distance based classifiers for protein structure analysis. The required data
used in classification process is collected from the standard non-homologous protein data set. An amino acid
is represented as a pattern (discussed in Section 2.6) whose feature values come from the neighbors of the
amino acid. Accuracy of different types of classifiers depends on classification principle as well as character-
istics of patterns. For example, if the classes are linearly separable, then use of minimum distance classifier
may be a wise decision, whereas, it is not useful if the classes are linearly non-separable. In that case K-nearest
neighbor classifier can produce better results. In the following section, we discuss the working principles of the
classifiers being used.



2.1, Minimum distance classifier

Minimum distance classifier basically generates the decision plane between two classes which is the perpen-
dicular bisector of the plane between center points of the classes. A pattern is assigned a class label based on
the closeness with respect to the class representatives. The representative of a class is assumed to be the mean
point of all patterns belonging to that class. For an n-class problem, » numbers of means are determined from
the training set. Let p; and p; represent the mean of class i and j, respectively. Now for each new pattern to be
classified, distance is calculated from each of these mean points. Although different distance measures can be
used for this, e.g., Euclidian distance, city block distance, Mahalanobis distance, etc; in this paper we used
square of the Euclidean distance measure. This can be expressed as

di = (X — ) (X — )" (1)
where X is the new pattern vector, X' = [x1, x2, x3, ---, xn] and p; stands for mean of kth class. g = [ml, m2,
m3, - nnl.

This classifier is very low cost in terms of both time and memory requirement. It gives sound results when
the distribution of samples is regular, round or oval shaped and the classes are linearly separable.

2.2, K-nearest neighbor method

In most pattern recognition applications, the assumption of distribution of patterns is the prime suspect.
Practically, the common parametric forms rarely fit the densities that actually encountered. In such cases,
we can examine with non-parametric procedures that can be used with arbitrary distributions and without
knowing the assumption of the form and their underlying densities. K-nearest neighbor is one such method
that overlooks the probability estimation and go directly to decision function.

We begin by letting D" = | X, X5, ..., X} denote a set of n labeled prototype and letting X" € D" be the
nearest to a test point X. Then (nearest-neighbor rule) for classifying X is to assign it the label associated with
X' [18]. K-nearest-neighbor rule is an extension of the nearest-neighbor rule. A pattern X is classified by assign-
ing it the label of most frequently encountered class from among K nearest samples. Thus, decision is made by
majority voting contributed by its nearest K neighbors.

2.3, Fuzzy k-nearvest neighbor

One of the problems encountered in K-nearest neighbor method is that each sample vector is considered
equally important in assigning class label to unknown pattern irrespective of its actual degree of belonging
to each class. To reduce this problem fuzzy techniques are incorporated with classical &-nearest neighbor rule.

Fuzzy K-NN introduced by Keller [16] addresses the aforementioned problem. Basically a fuzzy algorithm
uses the fuzzy class membership value of samples and produces fuzzy class labels. Fuzzy concepts can be
applied on three stages of a classifier, i.e, input stage, decision rule generation stage and output stage. The
membership value of a pattern to a particular class denotes the level of assurance for being in that class.

The basis of fuzzy K-NN algorithm is to assign class membership to an unknown pattern as a function of
that pattern’s distance from its K-nearest neighbors and those neighbors’ memberships in possible classes [16].
We find K-nearest neighbors of each sample X from the labeled sample set. Now, let u;; be the membership
value of the jth neighbor of pattern X to the ith class. The predicted membership value wd X) of Xto class i can
be calculated as

) = et X (/1 X)P) o)
‘ Y1/, X))

As evident from the above Eq. (2), degree of belonging of X to different classes are influenced by inverse dis-
tances from its nearest neighbors and their class membership. Inverse distance reflects that lesser the distance
of a pattern from the representatives of a class, its degree of belonging to that class is more, and vice versa. u;;



40

is a K x C matrix, where C is the number of classes. Here the variable m, called as fuzzifier, determines how
heavily the distance is weighted when calculating each of the neighbor’s contribution to the membership value.

2.4, Daia set

An effective prediction tool should have the capability of handling extreme non-homologous data. We used
three data sets to test our algorithms. One of them is standard protein data set used by Rost and Sander [8],
referred as R5126 set. This set consists of 126 non-homologous amino acid sequences; which means no two
sequences in this data set share more than 23% sequence similarity. R5126 contains a total of 23,346 amino
acids. Average sequence length of all the proteins in this set is 185, Another larger data set used in our algo-
rithm is CB396 [11] It was constructed by Cuff and Barton. CB396 has 396 number of non-redundant proteins
whose average sequence length is 157, Total number of amino acids in this set is 537,996, The third data set
contains 87 proteins which are more or less dissimilar having 22,031 amino acids.

We used the standard DSSP labels for the training samples [11]1 DSSP distinguishes the amino acids into
eight classes according to their secondary structures as,  (2-helix), & (3 ,-helix), ! (n-helix), £ (p-strand), B
(isolated B-bridge), T (turn), 8 (bend) and — (rest). These eight structural class can be reduced to three using
two different reduction method; (i) #, Gand ! — H; £ and B — E rest are O, and (ii) / and G — H; E and
B — E and all other states as C [19] We adopted the first one for simplicity.

2.5, Training and validation seis

The data set we considered is divided into two parts, one part is used as training set, and the rest is for
testing. The classification is considered better which gives better result taking less amount of training data.
Varying percentage of data from the total data set is used for training. As the percentage of training data
increases, prediction accuracy also grows accordingly. But after a certain amount of training data, the rise
in prediction becomes slower. We conducted experiments taking 10-30%4 data for training.

2.6, Data representation

Alphabetical characters represent the amino acids. Classifiers are not capable to handle this type of data.
To make it accessible to the classifiers, we need to convert the alphabetic characters into some numeric values
that is meaningful and holds biological significance. Information about individual amino acids are encoded
using wnary encoding scheme [20]. Class label of a single amino acid depends not only on itself, but depends
on the effect of its neighboring amino acids also. To take care of this effect of neighbors we consider a window
of length W while determining the feature values of the central amino acid. Thus, W2 residues remain on
either side of the central amino acid. To have equal number of neighbors in both the sides of the central res-
idue, W' is taken as odd.

Since the total number of amino acids is twenty, they are considered as a frame which consists of the sym-
bolic representations of all the 20 amino acids. Each of the amino acids in a window is compared with this
frame. This comparison results a 1 if there is a match, otherwise it is 0. Thus, a 0/1 vector of length 20 is pen-
erated for each amino acid of the window, having a single 1. For example, alanine, the first amino acid of the
frame is represented as —(1, 0, 0,0, 0, 0, 0,0, 0,0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0). Thus, for a window, a matrix

Fol 01 Doswss B )
0000 - 0
1 001 we D
o= | G0 e 1
\ 0100 - 0

Fig. 1. Pattern representation [or amino acids,
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Moy e is generated. This matrix represents a pattern for the amino acid present at the center. Such a window
is now slided over the whole sequence. To generate patterns for the terminal amino acids of a sequence, zeros
are padded to fit the window. This matrix representation of a pattern is shown in Fig. 1.

Class labelsare represented by 1, 2, and 3; | representing helix class(H), 2 beta sheet( E) class and 3 for the rest.

3. Performance measures

To measure the performance of predictive methods, there exists some standard statistical scoring tech-
niques. All these measures are used depending on problems. The most frequently used measures can be derived
from the following scalar quantities which are directly available from the classifiers:

ip, = number of correctly predicted x residues.

tpp = number of correctly predicted ff residues.

ipeqn = number of correctly predicted coil residues.

tp =tp,+ tpg+ tpy = is correctly predicted residues in total.

i, = number of correctly classified non-x residues.

tn; = number of correctly classified non-f# residues.

M.y = number of correctly classified non-coil residues.

tn =ty + thg+ theen is the sum of correctly predicted non-=, non-§ and non-coif residues.
Jp, = number of incorrectly classified = residues.

Jig = number of incorrectly classified f residues.

fpeoi = number of incorrectly classified coil residues.

Mo = fpx+ fpg + fpeoi 1s the sum of incorrectly classified =, § and coil residues.

Jh, = number of incorrectly classified non-2 residues.

Jity; = number of incorrectly classified non-f residues.

Jheon = number of incorrectly classified non-coil residues.

and fit = fh, + fhg + fhen. where fi indicates false negative alpha, beta and coil residue prediction.

The most commonly used overall performance measure is O, [5] as described in Eq. (3). It indicates the
ratio of correctly predicted and incorrectly predicied residues. It shows the overall accuracy of the classifier.

0 T .1t R T (3)

Another way of measuring the sensitivity of prediction performance is Qpeq [B] as described in Eq. (4). Itisthe
fraction of correctly predicted residues among predicted residues.

ip
D et = ——— x 100 4
L'I'-'n.'d -f_P +ﬂ7 x I: :I

Selectivity of prediction performance can be measured using (., which is the fraction of correctly predicted
residues among the observed residues [8] described in Eq. (35).

i 5
o= 1040, 5
Lﬂhﬁ f_P +_i|rlﬂ X q. :I
To retain the flavor of both sensitivity and selectivity, we can use MCC (Matthews Correlational Coefficient)
score [21] given by the following equation.

Vit +m)(tp + fn)(tn + fp)(tn + fn)

4. Results

Experiments were conducted for all the three data sets and three classifiers. Since results were similar for all
the data sets, here we present results for only one data set (namely the R5126). Percentage of training data was
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Table |
Comparison of classifiers with varying window siee
W Minimum distance K-NM Fuzzy K-MNN

ol e Gt MCC  Cuw Oy Qs MCC Chonat Disca Qs MCC

3 557724 557018 X451 01062 520112 494035 335447 00093 54 4585  S37R03 36925R 0.0753
5 569716 570607 M.e5R4 01302 522133 479500 X2HTE 00056 531135 523252 355908 00459
7 570353 572061 MUTR4S 01326 510907 4560013 MUAM O 00404 4074 532B63 3659RS 0.06949
9 5T48LR 574520 400969 OU13BR 493558 418242 200312 00963 M 2544 52 2R3L 354589 00570
I 592167 595357 419672 01750 498533 421770 203296 —00B6T  S30B06 499429 340686 0.0229
13
(]
17

SR6682 S9.0503 41533 01669 479753 3RTIH 22438 01469 52432 494026 31aM] 00121
SR5917 59055 4143 01651 462687 3SITIL O 177595 00993 525458 4B.0073 324178 —0.002
579411 53364 407572 QL1519 450682 336201 159912 0233 510042 454923 295R11 00436

chosen randomly in the range 10-30%4. Since the finding was similar, here we put results of 30% training data.
In Table 1, we provide the classification performance (using the measures discussed in Section 3) for the three
classifiers. The window size W is varied in the range 3, 5, ..., 17. From Table | we notice that window size 11
gives the best (., accuracy of 39.2167% for minimum distance classifier. The MCC score for the same is
(.1750 which is better than others. Further increment in W does not affect the accuracy significantly, some-
times it decreasing instead.

For K-NN and fuzzy K-NN methods, we varied two parameters to determine their effect in prediction per-
formance. One of them is number of neighbors, K and the second one is corresponding window size W. Taking
initial window size as three, we increased its value. As the value of W increases, K-NN and fuzzy K-NN pro-
duce relatively poor results. In this case K-NN and fuzzy K-NN performs better for small window size. Win-
dow 3 gives the best result in our experiment for both K-NN (MCC score 0.0093) and fuzzy K-NN (MCC
score (1LO733).

We have also experimented with the number of neighbors, K for K-NN and fuzzy K-NN classifier. We con-
sidered a wide range of K-values and depict the result in Table 2. From Table 2, we see that gradual increase of
the number of neighbors gives improvement in accuracy. But large value of K deteriorates the performance.
Thus, we put resulis for window size three in Table 2. Fuzzy K-NN produced comparatively better resulis with
maximum accuracy as 53.78% O . score. In this algorithm, we set the value of the fuzzifier, m to 2.4. Taking
the values of m with m = 1.1, 1.2, ..., 2.8, 3 did not affect the performance of the algorithm significantly.

We have compared our approaches to an existing neural network based secondary structure prediction
method [22]. Implementation of this neural method has been done using the same framework and data set.
We constructed a multilayer perceptron model with single hidden layer having 15 number of nodes. QOutput
layer contains three nodes corresponding to each of the structural classes. Some considerable findings from
the MLP are compared with minimum distance classifier resulis has been depicted in the following Table 3.

It may be noticed that minimum distance gives better results compared to MLP. The important factor is
time requirement for minimum distance is negligible compared to MLP. Thus, minimum distance is compar-
atively performs better both in terms of time of execution and accuracy.

Table 2
Result Tor different & value
K K-NN Fuzzy K-NN
[ pred Qans MCC Qaim et Qins MOC
5 47.76412 45 065 30.2978 —0.0644 52175 51.9429 35114 0.0377
7 491007 47 0597 314474 —1.0394 531063 52 3897 356891 0.0497
9 521112 40 4035 315447 00083 54 4585 537803 36,9258 00753
1§ 522133 47 9506 324478 —0.0056 54 4585 537803 36,9258 0.0753
13 529787 49 6797 318721 0.01928 216l 51 2082 16.5719 0.0683
15 525195 48. 7916 331049 00060 531 5455 529752 36,1605 0.0595
17 526215 4R SRS 3129742 00044 51651 5314581 646601 006612
19 535145 49 2763 316102 0.01a0 531 B462 533896 36,496 01.06640

21 533480 48.775 330922 001335 538079 31141 30332 0.0632
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Table 3
Result comparison with MLF and minimum distance
W MLP Minimum distance

Chomi Lo o MOC Chionar peat Cans MOC
Il 51.78 47331 312489 —0.0182 59.2167 59,5357 419672 01750
I3 52 1R48 482814 319922 — (L0043 SR.O682 59,1503 415336 0. 1669
15 51.5657 47503 31.2566 — {00180 58.5917 59,0554 414436 0.1651
17 515467 4739498 31ORRY —0.0172 579411 58.3304 40,7572 01519

In wunary encoding scheme, length of sliding window plays a very important role to have better prediction
accuracy. Length of the sliding window, W implies the consideration of neighboring information. The residues
situated nearer to the target amino acid has more influence in determining its structure rather than the further
residues. Window size W' controls this influence and so determination of the optimal window length is impor-
tant. If we take the size too small, it may lose important classification information and lead to low prediction
accuracy, whereas, larger value of W may suffer from incorporating unnecessary noise. From Table 1, we see
that a value of W that gives better performance for a classifier, does not guarantee the same for other classi-
fiers. That means different window size for different classifiers help to achieve optimal performance.

5. Conclusions and discussion

In this article, we have made an attempt to map the protein secondary structure prediction problem as pat-
tern classification problem and used three different low cost pattern classification techniques for solving it. We
used minimum distance, K-NN and fuzzy K-NN classifiers, among which minimum distance produced the best
results for window size 11. Between the other two, fuzzy K-NN gave better performance with window size 3.
We also varied the value of K, better results were achieved in the range 19-21. Experiments are conducted
using different percentage of training sets and the findings were similar.

The main problem in protein secondary structure prediction is that, the data cannot be used directly to clas-
sifiers. An efficient technique is needed that can convert these categorical data to acceptable numerical forms.
The techniques available now are not too effective to perform this job. As described in Section 2.6, the amino
acid in the central position of a window has the maximum effect to retain its secondary structure along with its
corresponding neighbors. Present encoding scheme fails to impose any weight factor to the central residue that
can reflect its strength compared to its neighbors. An unique encoding scheme that can provide the positional
information of each residue as well as its corresponding weight may be helpful to make a good representation
of protein data.

Another problem for this prediction problem is the selection of ideal training data. In classification of pro-
tein secondary structure, it is very hard to find out good representatives of a class. In future we will do some
studies on this.

All the results provided in Tables | and 2 are the direct outcomes of the classifiers. No post-processing tech-
nique is used to improve this performance. Some smoothing filters may be used here to remove certain breaker
residues into different classes.

Finally, we observe in this study that some patterns in a particular protein are classified correctly by a clas-
sifier better than the other classifiers. Keeping this in mind, our further aim is to build ensemble of classifiers to
predict the class label of residues using the classifier that favors it
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