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Abstract

This paper presents the design of a hybrid leaming model, termed as neural network tree (NNTree). It incorporates the advantages of
both decision tree and neural network. An NNTree is a decision tree. where each non-terminal node contains a neural network. The idea
of the proposed method is to use the framework of multilayer perceptron to design tree-structured pattern classifier. At each non-
terminal node, the multilayer perceptron partitions the dataset into m subsets, m being the number of classes in the dataset present at that
node. The NNTree is designed by splitting the non-terminal nodes of the tree by maximizing classification accuracy of the multilayer
perceptron. In effect, it produces a reduced height m-ary tree. The versatility of the proposed scheme is illustrated through its application
in diverse fields. The effectiveness of the hybrd algorithm, along with a comparison with other related algorithms. has been
demonstrated on a set of benchmark datasets. Simulation results show that the NNTree achieves excellent performance in terms of

classification accuracy, size of the tree. and classification time.

Kevwords: Dala mining; Pattern classification; Meural network; Decision tree; Bicinformatics; Deoxyribenucleic acid; Gene

1. Introduction

The inter-networked society has been experiencing an
explosion of data. However, the explosion is paradoxically
acting as an impediment in acquiring knowledge. The
meaningful interpretation of these large volume of data is
increasingly becoming difficult. Consequently, researchers,
practitioners, and entreprencurs from diverse fields are
trying to develop sophisticated techniques for knowledge
extraction, which leads to the promising field of data
mining/knowledge discovery in databases [22,31]. It can be
defined as the nontrivial extraction of implicit, previously
unknown, and potentially useful information from data-
bases [30].

Data mining is an interdisciplinary research area
spanning several disciplines such as database systems [39],
machine learning [9,24.27], intelligent information systems,
statistics [10,18,37]), and expert systems [26]. Different
methods like association rules "™ characterization [14,15],

classification [17], clustering [5], etc. have been applied for
mining different kinds of knowledge.

One of the important problems in the emerging field of
data mining is classification [1]. In classification, a training
set consisting of feature wvectors (objects) and their
corresponding class labels is used to develop an accurate
description or model for each class using the features
present in the data. In effect, it partitions the feature space
into regions, each region for each category of input data;
and attempts to assign every data point in the feature space
to one of the possible classes. The class descriptions are
used to classify future test data for which the class labels
are unknown [16].

Applications of dassification include medical diagnosis,
performance prediction, selective marketing, etc. Solutions
based on Bayesian cassification [3], neural networks [17.20],
genetic algorithms [11], decision trees [4,23,32,36], etc. have
been proposed. But, the search for new and better solutions
continues specifically to classify large volume of dataset
eenerated in the inter-networked society of cyber-age.

In this background, many pattern classifiers have been
proposed, integrating the advantages of decision tree and
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neural network. One of the early pattern classifiers based
on this concept is Entropy Nets due to Sethi [34]. It derives
a multilayer feedforward neural network from a decision
tree. The knowledge represented by the decision tree is
translated into the architecture of a neural network whose
connections can be retrained by a back propagation
algorithm. On the other hand, the ANN-DT [33] uses
neural network to generate outputs for examples inter-
polated from the training dataset and then extracts a
univariate binary decision tree from the network.
Another method which also extracts decision tree from
neural network is [40]. The design of a tree-structured
neural network using genetic programming is proposed
n [19]. In [12,3842-44], designs of WNTrees have been
introduced. The NNTree is a decision tree with each
non-terminal node being a neural network. In [33],
Sethi and Yoo have proposed a decision tree whose
hierarchy of splits is determined in a global fashion by a
neural learning algorithm. Recently, Zhou and Chen [43]
have introduced a hybrid learning approach named HDT
that embeds neural network in some leaf nodes of a binary
decision tree.

To design an WNTree, the most important and time
consuming step is splitting the non-terminal nodes of the
tree. There are many criteria for splitting non-terminal
nodes. One of the most popular criteria is the information
eain ratio which is used in C4.5 [32]. Designs of NNTree
have so far mostly concentrated around binary tree with
information gain ratio used to partition the available
dataset at each non-terminal node [12,35 42—44]. However,
this structure generates larger height of the tree. In effect, it
increases classification time and error rate in classifying test
samples. Also none of the work has so far dealt with the
application of NNTree to biological dataset.

In the above background, the paper presents the design
and applications of an NNTree. The NNTree proposed
here adopts an approach which is completely different
from [12,3540,42-45]. The neural networks used in this
design are multilayer perceptrons with m output nodes, m
being the number of classes in the given dataset. Unlike
[12,38.42-45], the NNTree designed here splits each non-
terminal node by maximizing (minimizing) classification
accuracy (error) of the muliilayer perceptron rather than
using information gain ratio. So, the proposed design
always generates a reduced height m-ary tree. The back
propagation algorithm is used recursively at each non-
terminal node to find a muliilayer perceptron. The
effectiveness of the proposed algorithm, along with a
comparison with individual components of the hybrid
scheme as well as other related algorithms, has been
demonstirated on benchmark datasets.

The structure of the rest of this paper is as follows.
Section 2 presents the design of neural network based
tree-structured pattern classifier. While Section 3 addresses
the problem of letter recognition and satellite image
classification, Sections 4 and 5 present the application of
NNTree in splice-junction and protein coding region

identification problems. In order to validate the design of
proposed model, extensive experimental results are also
reported in these sections. Concluding remarks are given in
Section 6.

2. MLP based tree-siructured pattern classifier

A neural network tree (NNTree) is a decision tree with
each intermediate/non-terminal node being a muldlayer
perceptron (MLP). It is constructed by partitioning the
training set consisting of feature vectors and their
corresponding class labels in such a way as to recursively
generate the tree. This procedure involves three steps:
splitting nodes, determining which nodes are terminal
nodes, and assigning class labels to terminal nodes. In this
tree, a leafterminal node covers the set/subset of elements
of only one class. By contrast, an intermediate node covers
the set/subset of elements belonging to more than one class.
Thus, NNTrees are class discriminators which recursively
partition the training set to get nodes belonging to a single
class. Fig. 1 shows an MLP based NNTree.

To classify a training set § ={5,...,5....,54} con-
sisting of m classes, an MLP has to be designed with m
neurons in output layer. If a pattern belongs to ith class, ith
output neuron is selected. That is, the content of the ith
neuron is 1. At this moment, content of all other output
neurons are (5. So, the output layer represents m distinct
m-dimensional vectors, each representing a unique loca-
tion/node. Thus, the training set § gets distributed into m
locations/nodes using an MLP. )

Let, & be the set of elements in a node. If § belongs to
only one class, then label that node as that class. Otherwise,
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Each MLP {multiayer perceptron) is designed with BF (beck propagaton ) algosthm

Fig. . MLP based treestructured pattern classifier.
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this process is repeated recursively for each node
until all the patterns in each node/location belong to
only one class. Single or multiple nodes of the tree
may form a leaf/terminal node representing a class, or it
may be an intermediate/non-terminal node. A leaf node
represents a  location that contains the set/subset of
elements of only one class. By contrast, an intermediate
node refers to a location that contains the elements
belonging to more than one class. In effect, an intermediate
node represents the decision to build a new MLP for the
elements of multiple classes covered by the location of the
earlier level. The above discussions are formalized in
Algorithm 1.

Algorithm 1. NNTree Building

Input: Training set 8= {85),.... 5, ...
Output: NNTree (set of MLPs)
Partition( S, m);

S}

Partition( 5, /1)
(1) Generate an MLP with /i output neurons.
(ii) Distribute the training set § into M locations (nodes).
(iii) Evaluate the distribution of patterns in each node.
{iv) If all the patterns {.‘_'-f} of a location (node) belong to
one particular class, then label the location (leaf node) for
that class.

{v) If for the set of patterns {.f;“} of a location belonging to
mi classes, Partition {.i Hi).
{vi) Stop.

In Fig. 1, the node Ay is the root node. So, the MLP,
corresponding to node 4y, distributes the training sets § =
{§,....8,....8,) into m locations denoted by
A A, Al Now, 4y s an intermediate node as
the elements covered by this location belong to multiple
classes (here m) which are distributed again by MLP; into
m number of locations—dAay, A, ..., Ay A3 15 also an
intermediate node, but it covers the elements of classes 11
and II1 only. So, MLP; corresponding to node A3
generates two locations/nodes to distribute this elements.
Whereas 4> is a lkaf/terminal node as it contains the
elements of only one class (here class 11). Similarly,
Aay, Ay, AzrsAn, ..., are the leaffterminal nodes as they
cover the elements of single class.

In designing an NNTree for a given dataset, there are
two options:

(i) design an NNTree that correctly classifies all the
training samples (referred to as a perfect tree), and
select the smallest perfect tree; and

{ii) construct an NNTree that is not perfect but has the
smallest possible error rate in classification of test
samples.

The second type of tree is of greater interest for real life
pattern recognition task. Regardless of the type of tree

{perfect or otherwise), it is usually desirable to keep
the size of the tree as small as possible. Because, smaller
trees are more efficient in terms of both tree storage
requirements and test time; and tend to generalize
better for the unseen test samples that are less sensitive to
the statistical irregularities and idiosyncrasies of the
training data. So, the basic criteria for NNTree design
are as follows:

{i) minimize error rate that would lead to maximum
classification accuracy;
(i1) less number of nodes in the tree—that is, minimum
number of locations of the selected NNTree; and
(iii) least height of the NNTree.

2.1 Selection off MLP

The following two steps are implemented at

each intermediate node to pick up the best possible
NNTree:

(i) evaluation of candidate MLPs—that is, evaluation of
distribution of the elements of different classes in
different locations of an MLP: and

(ii) selection of a location using the best distribution in the
intermediate nodes ensuring maximum classification
ACCUracy.

The complexity lies in determining the best distribution for
each intermediate node. The optimal NNTree is evolved
through the application of back propagation algorithm
[17.20] recursively at each intermediate node.

2.2 Splitting and stopping criteria

Splitting an intermediate node involves the design of a
new MLP to classify the subset of input elements of
different classes covered by the node/location of the MLP
of earlier level of the tree. A location is considered as a leaf
node if all the training examples falling into the current
location belong to the same class. In other words, a node
{location) is split as long as there are class elements that
belong to different classes.

To aveid overfitting, a prepruning strategy is needed. Let
Cy represent the number of elements of class § covered by
ith location, where i = 1,2, ..., mand j=1,2,...,m; and
fi; indicates the uniformity of the distribution of class
elements in the ith location. The value of fi, corresponding
to ith node (location) is given by

L]
= : where of = max,{C}; #= z Cy- (n
; =

The diversity of the current node is measured as

S=1-f=1-—. (2)
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When current node (location) is to split, its §, value is
measured and compared with a threshold value
£ (= 0.9988).

(i) If fi,= e, then current node is split. That is, partition
the examples of ith location.

(ii) If ;=& that is, d; = (), then the learning process
terminates and the ith location indicates the class j for
which €y is maximum. The future class elements
falling into current node (location) are classified to the
most probable class of current node— that is, the class
that has the maximum number of training examples in
current location.

(iii) In some cases, even fi, <&, there exists a possibility
where desired MLP is not available. That is, it is not
possible to find an MLP which can distribute the given
training samples into multiple locations. This occurs
when the training examples of different classes are
highly correlated. In that case, the learning process is
terminated. The future class elements are classified as
class j for which Cj is maximum, that is, the most
probable class of the current node.

Suppose, after evaluating the distribution of patterns of
each class, the pattern set § is partitioned into S, and 5;,
where §, and §; represent the pattern set belonging to leaf
nodes, and intermediate nodes, respectively. The goodness
of the splitting or partition is given by the figure of merit
{FM), where

_ iS:rI = 1 IShI

s s
where | 5] represents the cardinality of the set 8. The value
of FM indicates the classification accuracy of an inter-
mediate/non-terminal node.

The next three sections present the applications of
NNTree in letter recognition, satellite image classification,
splice-junction and protein coding regions identification in
anonymous sequences of DNA, respectively. The proposed
method is implemented in C language and run in LINUX
environment having machine configuration Pentium IV,
3.2GHz, 1MB cache, and 1GB RAM. For ease of
discussions, in rest of the paper, the following terminolo-
gies are used:

FM where 5,U 8; = S, 3

e n and z represent the lkearning rate and momentum
constant of back propagation algorithm.

e [, is the number of neurons in the hidden layer of
MLP.

e [ is the depth of the NNTree, which is equal to the
number of levels from the root to the leaf nodes.

e B represents the breadth of the NNTree, which is the
number of intermediate nodes in each level of the tree.

e Classification accuracy is defined as the percentage of
samples that are correctly classified.

e Classification time is defined as the time required to
classify all the samples.

3. Letter and satellite image classification

This section presents the application of NNTree in letter
recognition and satellite image classification. An analysis
regarding accuracy of the NNTree is also presented here.

3.1 Letier recognition

The dataset used here is constructed by David 1. Slate,
Odesta Corporation, Evanston, IL 60201. The objective
here is to classify each of a large number of black and white
rectangular pixel displays as one of the 26 capital letters of
the English alphabet. One-shot train and test is used for the
classification. The character images produced are based on
20 different fonts and each letter within these fonis is
randomly distorted to produce a fik of 20,000 unique
images. For each image, 16 numerical attributes are
calculated using edge counts and measures of statistical
moments which are scaled and discretized into a range of
integer values from 0 to 15. As one of the fonts used,
Gothic Roman, appears very different from the others,
perfect classification performance is unlikely to be possible
with this dataset [23].

The experimental results on this dataset are presented in
Tables 1 and 2 and Figs. 2 and 3. Subsequent discussions
analyze the results presented in these tables and figures in
respect of classification accuracy—hboth training and
testing.

311 Generalization of NNTree

Here, the aim is to generate an NNTree that is good at
classifying sequences/patterns similar to, but not identical
to, patterns in the training set. That is, the generated
MNMNTree has the ability to act as a general pattern classifier.

Tabhles 1 and 2 represent the generalization capability of
the WNTree on letter database. Figs. 2 and 3 show the mean
accuracy with error bar at each level of the NNTree.
Extensive experiments are performed for different values of
y, o, and H, to evaluate the classification accuracy of both
training and test samples. For a particular set of 4, =, and
., 15 independent runs have been performed by initializing
weights of the MLPs with different sets of random numbers.
The mean, maximum, and minimum accuracy are calculated
based on these 15 runs. The results reported in Figs. 2 and 3

Table |
Classification accuracy [or p = 0.50

Depth of wree =070 and H, = 15 2= 040 and H, =20

Training Testing Breadth Training Testing Breadth

731 664 I TH.4 66.2
BT.4 ELO 26 E78 B2.3 2
897 32 142 8.7 B2.6 40

a0.2 24 104 a0.2 B2R 132
0.3 B25 42 1.4 g2.9
0.3 E25 E a4 g2.9 7

L= R




Table 2
Classilication accuracy Tor n = 070

Depth of tree o =080 and i, =15

& =090 and M, = 20

Training Testing Breadth  Training Testing  Breadth
| BlL.5 669 I 59.7 57 l
2 BE.6 BB 26 Rg5.2 7.1 26
3 90.2 £2.2 (] BR.7 820 206
4 Q0.8 824 112 919 E25 162
5 Q0.9 B2.5 43 934 826 54
f 909 R2.5 Il 935 £2.6 22
Mean Accuracy with Emor Bars
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Fig. 2. Performance of MMNTree on letter database for p=
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establish the fact that the difference between mean,
minimum, and maximum accuracy of both training and
testing significantly reduces with the increase in L irrespec-
tive of the values of y, =, and H,. The mean (average)
classification accuracy of training and testing, reported in
Tables 1 and 2, confirm that the evolved NNTree can
generalize the letter database irrespective of the values of »,
a, and Hf . Initially as the value of L increases, the value of B
also increases. But, for L= 3, the values of §; (Eq. (1)) of
most of the nodes become equal to 1. In effect, the value of
B decreases, as the value of L increases.

Mean Accuracy with Error Bars
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Fig. 3. Performance of NNTree on letter database for p =070 2 = 080 and f, = 15, and o= 090 and £, =20
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Table 3

Performance of NNTree and C4.5 on letier database
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Alpgorithms methods Classification accuracy (%) Total nodes Height of tree Classification time {ms)
NMNT ree 352 6 B7L3
4.5 2107 20 14,352
Table 4 Table 5
Classification accuracy of dilferent algorithms for letter database Classi ication accuracy Tor n = 0.50 and 2 = 0.70
Algorithms Accuracy (%) Depth of wree H, =15 H,=20
NMNTree g9 Training Testing Breadth  Training Testing  Breadth
MLP 67.2
Bayesian 874 | 867 840 | 1.5 B6.2 |
4.5 866 2 a9 B39 0 896 B8 f
CA g44 3 90.2 Bo6 9 9.1 87.1 It

4 90.3 6.6 8 a90.1 £87.1 [

5 90.3 B6.6 1 a1 87.1 |
3420 Comparison beoween NNTree and C4.5

Table 3 presents the detailed results of WNNTree,
comparing each of the factors—classification accuracy, SR
able

total number of intermediate nodes, height of the tree, and
classification time with the most popular decision tree
algorithm C4.5 [32]. The source code of C4.5 is obtained
from hitp://wwweseunsw.edu.au/~quinlan. From the
resulis reported in Table 3, it is established that NNTree
achieves comparable classification accuracy with signifi-
cantly lesser number of intermediate nodes, smaller height
of the tree and fast classification time with respect to C4.5.

343 Classification accuracy

Finally, Table 4 compares the classification accuracy of
MNMNTree with that of different classification algorithms
namely Bayesian [5], C4.5 [32], MLP [17.20], and cellular
automata (CA) [21]. The experimental results of Table 4
clearly establish the fact that the classification accuracy of
MNMTree is comparable to that of different algorithms
reported in published literature.

3.2 Saeellite image classification

The original Landsat data for this database is generated
from data purchased from NASA by the Australian Centre
for Remote Sensing, and used for research at the
University of New South Wales. The sample database is
eenerated taking a small section (82 rows and 100 columns)
from the original data [25). The data are divided into train
and test set with 4435 examples in train set and 2000 in test
set. The results on this database are presented in Tables 5
and 6 and Figs. 4 and 5 with respect to classification
accuracy.

3.2 Generalization of NNTree

Tables 5 and 6 represent the generalization capability of
the NNTree on satellite database for different values of x,
z, and ff,,. The mean classification accuracy of training and

Classifcation accuracy lor g = 0.70 and 2 = 0.80

Depth of tree H, = 10 H,=20

Training Testing Breadth  Training Testing  Breadth

| B39 837 | E7.3 B5.3 |
2 £9.3 Bo.l (i 0.0 B6.7 (i
3 00 863 ] o2 B6.B ]
4 0.1 £6.3 & o903 L1 5
5 .1 B6.3 | 1.4 B8 |

testing confirm that the evolved NINTree can generalize the
satellite database irrespective of the values of y, =, and H,.

In case of satellite database, as the value of L increases,
the value of B also increases. Because, initially for all the
nodes, the values of ;<& But, for Lz 3, the values of §, of
most of the nodes become equal to 1. Hence, the value of B
decreases with the increase in L when L =3,

Figs. 4 and 5 show the mean, minimum, and maxi-
mum accuracy of both training and testing on this
database. The results show that as the value of L increases,
the standard deviations of both training and testing
accuracy reduce.

3.2.2 Comparison between NNTree and C4.3

Table 7 compares the performance of NNTree with that
of C4.5 with respect to classification accuracy, total
number of intermediate nodes, height of the tree, and
classification time. From the results reported here confirm
that NNTree achieves better performance in terms of
classification accuracy, total number of intermediate nodes,

height of the tree, and classification time with respect to
C4.5.
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Fig. 4. Performance of MMNTree on satellite database for p =050 and 2 =030 H, = 15 and H, =20
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Fig. 5. Performance of NMNTree on satellite database for g =070 and 2 =0.80: H, = 10 and H, =20
3.2.3. Classification accuracy In bicinformatics, one of the major task is the

Finally, Table 8 compares the classification accuracy of  recognition of certain DNA subsequences important in
NNTree with that of Bayesian [5], C4.5 [32], MLP [17,20], the expression of genes. Basically, a DNA sequence is a
and CA [21]. The experimental results of Table § establish string over alphabet D = {A,C, G, T}. DNA contains the
that the classification accuracy of NNTree is higher than information by which a cell constructs protein molecules.
that of different classification algorithms. The cellular expression of protein proceeds by the creation

of a ‘message’ ribonuckic acid (mRNA) copy from the
DNA template. This mRNA is then translated into a
4. Identification of splice-junction in DNA protein. One of the most unexpected findings in molecular
biology is that large pieces of the mRNA are removed

In this section, the application of NNTree in finding before it is translated further [3]. The utilized sequences are
splice-junction in anonymous sequences of DNA s known as exons while the removed sequences are known
presented. The proposed method is evaluated for bench- as introns, or intervening sequences. The points at
mark dataset analyzing classification accuracy. which DNA is removed are known as splice-junctions.
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Table 7
Performance of NNTree and C4.5 on satellite dawbase

Alpgorithms methods Classification accuracy (%) Total nodes Height of tree Classification time {ms)
NMNT ree £7.1 25 5 1317

4.5 g5.2 433 21 2255

Table & Table 9

Classification accuracy of different algorithms for satellite database Classification accuracy [or g = 0.50 and 2= 0.70

Algorithms Accuracy (%) Depth of wree H, =10 H,=15

MNMT ree g7.1 Training Testing Breadth Training Testing  Breadth
MLFP 862

Bavesian B4 I 99.2 914 I 987 al.6 I

C4.5 §5.2 2 99.6 915 3 9.7 942 2

CA 71.5 3 999 935 | 99 942 1l

The splice-junction problem is to determine into which of

the following three categories a specified location in a  Table 10

DMNA sequence falls: (1) exon/intron borders, referred to as
donors; (2) intron/exon borders, referred to as acceptors;
and (3) neither.

4.1, Description of datases

The dataset used in this problem is a processed version
of the Irvine Primate splice-junction database [25]. Each of
the 3186 examples in the database consists of a window of
60 nucleotides, each represented by one of four symbolic
values {({A,C,G,T}) and the classification of the middle
point in the window as one of intron—exon boundary, or
neither of these. Processing involved the removal of a small
number of examples (4), conversion of the original 60
symbolic attributes to 180 binary attributes and the
conversion of symbolic class labels to numeric labels. The
training set of 2000 is chosen randomly from the dataset
and the remaining 1186 examples are used as the test set.

4.2 Experimental resulis

The experimental results on dataset reported in earlier
subsection are presented in Tables 9-12 and Figs. 6 and 7.
Tahbles 9 and 10 represent the classification accuracy of
both training and test samples for different values of y, o,
and H,. The classification accuracy of training and testing
confirm that the NN Tree can generalize the splice-junction
database irrespective of the values of 4, #, and /. From
Figs. 6 and 7, it is seen that the standard deviations of both
training and testing accuracy reduce with the increase in L.

For splice-junction database, at n = (.50 and « = (.70,
most of the nodes of the NNTree have i, values greater
than & So, the learning process terminates at L =13
irrespective of the value of H,. Whereas, for other values
of n and =, the values of f§; for most of the nodes of the
NNTree are less than & when L<6. So, for L< 6, most of

Classi ication accuracy Tor « = 0.70

Depth of ree n =090 and H, = 10 n=080and H, =15

Training Testing Breadth Training Testing Breadth

I R4.2 Bl I E2.3 B2.6 I
2 93 B4.3 3 £7.6 B4.9 3
3 aL.7 B4 i 0.3 56 f
4 937 B4R & 935 Bi.6 B
5 5.0 B49 5 953 B5.7 E
f 964 B3l i 6.5 B5.7 7

the nodes are intermediate nodes. At L = 7, though f§,<«
for most of the nodes, the training examples of different
classes are so correlated that an MLP cannot be found
corresponding to each node, which can classify the dataset
present at that node. Hence, the NNTree stops to grow.

Tahle 11 compares the performance of NNTree with
C4.5 with respect to classification accuracy, total number
of intermediate nodes, height of the tree, and classification
time. For splice-junction database, the classification
accuracy of NNTree is higher than that of C4.5, while
the number of intermediate nodes, height of the tree and
classification time of NNTree are significantly smaller than
C4.5.

Finally, Table 12 compares the classification accuracy of
NNTree with that of different classification algorithms—
Bayesian [5], C4.5 [32], MLP [17.20], and CA [21]. The
experimental results of Table 12 clearly establish the fact
that the classification accuracy of NNTree is higher than
that of different classification algorithms.

5. Identification of protein coding region in DNA

This section presents the application of NNTree for
finding protein-coding (exon) regions in anonymous
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Table 11
Performance of NNTree and C4.5 on splice-junction database

Algorithms method s Classilication accuracy (%)

Total nosles

Height of tree Classilication ime {ms)

MMTree 94.2 3 L 517
45 913 127 12 f35
Table 12 whether it is entirely coding, entirely non-coding, or mixed,

Classification accuracy [or splice-junction database

Algorithms Accuracy (%)

MMNTree a4z
MLP 91 4
Bavesian a3
C45 933
CA g79

sequences of DNA. The proposed method is evaluated for
few sequences and an analysis regarding the accuracy of the
proposed method is also presented.

Over the past 20 vears, researchers have identified a
number of features of exonic DNA that appear to be useful
in distinguishing between coding and non-coding regions
[2.6,7,41]. These features include both statistical and
information-theoretic measures, and in many cases are
based on knowledge of the biology underlying DNA
sequences and transcription processes. These features are
summarized in a survey by Fickett and Tung [8], who also
have developed several benchmark features and databases
for future experiments on this problem.

Previous research on automatic identification of protein
coding regions has considered methods such as linear
discriminants [7.8] and neural networks [641]. These
systems have used measures such as codon frequencies,
dicodon frequencies, fractal dimensions, repetitive hexam-
ers, and other features to identify exons in relatively short
DMA sequences. The standard experimental study con-
siders a limited window (ie., a subsequence) of a fixed
kength, for example 100 base pairs, and computes features
based on that window alone. The goal is to identify the
window as either all<coding or all-non-coding.

3.4, Data and method

The data used for this study are the human DNA data
collected by Fickett and Tung [8]. All the sequences are
taken from GenBank in May 1992, Fickett and Tung have
provided the 21 different coding measures that they
surveyed and compared. The benchmark human data
include three different datasets. For the first dataset, non-
overlapping human DNA sequences of lkength 54 have been
extracted from all human sequences, with shorter pieces at
the ends discarded. Every sequence is labeled according to

and the mixed sequences (i.e., overlapping the exon-intron
boundaries) are discarded. The dataset also includes the
reverse complement of every sequence. This means that
one-half of the data is guaranteed to be from the non-sense
strand of the DNA, which makes the problem of identifying
coding regions somewhat harder. For the current study, the
same division into training and test data have been used as
in the benchmark smdy [8] The training set is used
exclusively to construct an MLP based tree-structured
pattern classifier (WNTree), and the tree is then used to
classify the test set. In addition to the 54-base dataset, the
datasets containing 108 and 162 bases have been used. The
sizes of these datasets are shown in Table 13, which gives
the number of non-overlapping windows in each set. No
information about reading frames is used in this study.
Every window is either alkcoding or all-non-coding, but the
reading frame of each window is unknown. This choice of
window lengths and experimental method follows that used
by Fickett and Tung [8], and the problem here is what they
defined as protein coding region.

All the attributes in a dataset are normalized to facilitate
MNTree lkearning. Suppose, the possible value range of an
attribute atir; is {attrval; gi,, attrval; pa,), and the real value
that class element j takes at attr; is attrvaly, then the
normalized value of attrval;j is

attrval; — attrval; mi

(4)
attrval; oy — atteval g,

MNormalize{attrval;) =

Mext subsection presents an extensive experimental
analysis regarding the classification accuracy of the
proposed MLP based tree-structured pattern classifier.

5.2 Experimental results

In this subsection, the results of NNTree for Fickett and
Tung’s dataset are presented. Values are given for the
percentage accuracy on both training and test set. Results
of NN Tree on each of the dataset are given in Tables 14-19.
The mean accuracy of training and testing confirm that the
evolved NWNTree can generalize the datasets presented in
Table 13 irrespective of the number of attributes, tuples, =,
y,and H,.

In case of Fickett and Tung database, for L=6, the
values of fi; for all possible nodes/locations of the NNTree
are less than & So, all the nodes are intermediate /non-
terminal nodes for L<6. Hence, the NNTree have been
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egrown by splitting all these non-terminal nodes. At L = 7,
though the value of §,<z for each non-terminal node, the
training samples of two classes in each non-terminal node
are highly correlated. So, at L =7, an MLP cannot be
found, corresponding to an intermediate node, which can
classify the training samples. So, the karning process
terminates at this stage, and the nodes are considered as
leaf nodes indicating the class that has the maximum
number of training examples in current location.

Figs. 5-10 show the classification accuracy with error bar
of NNTree on different DNA sequences. All the resulis
reported in Figs. 8-10 establish the fact that the proposed

NNTree can generalize a DNA dataset irrespective of its
sequence length. Also, the standard deviations of training
and testing accuracy are very small

Table 20 compares the classification accuracy of NNTree
with that of OC1 [2829], MLP, and other related
algorithms. The OCI, proposed by Murthy et al. [28,29],
is an oblique decision tree algorithm that combined
deterministic hill-climbing with two forms of randomiza-
tion to find a good oblique split at each intermediate node
of a decision tree. All the results reported in Table 20
establish the fact that the classification accuracy of
NNTree is higher than that of existing algorithms. Also,
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Table 17
Human DNA I0E bp at g = 0.70 and « = 0.70

Table 13

Benchmark datasers proposed by Fickett and Tung

Dratasel Human 54 Human 108 Human 162
Training sel—ecwling 20,456 TEL 3512
Training set—non-coding 125,132 SE.1IB 36,502
Training set Lotal [ 45,588 03,204 40,014

Test set—oeoding 2902 Bl192 4220

Test sel—non-coding 122,138 57032 35602

Test set Lotal 145,040 65,224 39 868

Table 14
Human DMNA 54 bp at p = 0.50 and = 0.70
Depth of tree £, = 10 Hy =15
Training Testing Breadih  Training Testing  Breadth
I 5712 4.7 I 515 4.9 I
2 B4.6 B2.5 2 B4.5 BL.E 2
3 B5.2 B2.6 4 B4 E2.0 4
4 E6.0 §2.7 g L] E21 &
3 B6.5 E29 L6 Bh.d E22 I6
3 B6.5 g2.9 16 £6.7 B2.4 12
Table 15
Human DMNA 54 bp at g = 0.70 and « = 0.70
Depth of tree £, = 10 H, =15
Training Testing Breadih  Training Testing  Breadth
I 55.6 53.2 I 516 50.2 I
2 T3 15.5 2 T6.1 T3 2
L B0.0 TE.0 4 BL3 %7 4
4 k22 R g Ei2 R4 &
& B35 LR 6 B33 B4 I6
6 B4.4 BL.3 32 857 B2.6 12
Table 16
Human DMNA 108 bp at y= 050 and « = 0.70
Depth of tree £, = 10 H, =15
Training Testing Breadih  Training Testing  Breadth
I R4 55.7 I 9.0 56.1 I
2 E6.E E2.5 2 BT EL.O 2
3 BE.3 826 4 B8 ELE 4
4 B9.6 B2.7 g B93 g2.9 B
5 90.2 B2R 16 Q0.1 B35 I6
fi 0.7 B3l 32 922 B35 2

the results reported here establish the fact that the
proposed NNTree can generalize a DNA dataset irrespec-
tive of its sequence length.

Depth of tree  H, = 10 H, =15

Training Testing Breadth Training Testing  Breadth

| 553 52.5 | 57.4 5540 |
2 789 76.3 2 77.6 744 2
3 B25 ™7 - g5.2 79.3 -
- Mo Bla B 0.8 827 8
5 B6.5 B2.6 16 935 829 16
[i] 8.7 B34 32 937 B335 32
Table I8

Human DNA 162 bp at y = 050 and « = 0.70

Deepth of tree ff, = 10 He=15

Training  Testing  Breadth Training Testing  Breadih

| 0.1 6.9 | al.0 57.5 |
2 g5 3 2 Bl.1 71.5 2
3 85l B8 4 §4.9 79.6 4
4 BR.0 29 3 £9.9 837 3
5 a1 .4 842 lé 91,2 B4.3 16
6 a1.7 844 32 al.3 B4.3 12
Table 19

Human DNA 162 bp at p = 0.70 and « = 0.70

Depth of tree = 10 He=15

Training Testing Breadth Training Testing  Breadth

I 55.2 53.3 I 5R.3 528 I
2 E2E 72.5 2 TLE 0.1 2
3 BE.1 77.6 4 £5.9 T6.8 4
4 a4 E39 B £9.9 E23 B
5 931 B4.2 16 927 B4 16
i 931 B2 32 932 B2 32

6. Conclusion and future directions

This paper presents the design of a hybrid learning
algorithm, termed as NNTree. It uses multilayer percep-
tron for designing tree-structured pattern classifier. Instead
of using information gain ratio as splitting criterion, a new
criterion is introduced in this paper for NNTree design.
This criterion captures well the intuitive goal of reducing
the rate of misclassification.

The performance of NNTree is evaluated through its
applications in letter recognition, satellite image classifica-
tion, splice-junction and protein coding region identifica-
tion. Experimental comparison with other related algo-
rithms provide better or comparable classification accuracy
with significantly smaller trees and fast classification
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times. Also, it performs well for datasets with large
number of examples and attributes. Extensive experimental
results reported in this paper confirm that the proposed
NNTree is crucial over conventional techniques for
classification.

Also, the sizes of the trees produced by both C4.5 and
NMNTree have been compared in terms of total number of
nodes and height of the trees. A smaller tree is desirable
since it provides more compact class descriptions, unless
the smaller tree size leads to a loss in accuracy. The results
show that the NNTree achieves trees that are significantly
smaller than the trees generated by C4.5.

The promise exhibited by the NNTree suggests
several avenues for further investigation. One possible
improvement would be to include fuzzy multilayer
percepiron in each intermediate node of the tree to
handle uncertainties in class definition. Aside from
developing a good classifier, the proposed model
may be very much useful to solve many other related

problems like protein  structure  prediction, RNA
structure prediction, etc. The investigation, besides
having significance in pattern classification and

bicinformatics research, has potential in soft computing
research.



P Maji { Newocomputing 71§ 2008 | 78780} 7949

Mean Accuracy with Emor Bars

Mean Accuracy with Error Bars

100 T T T T T T 100 T T T T T T
Training Accuracy Training Accuracy
o | P o » ) op L . RS ) |
e e
7 / * A =
g 80 + ,':! = Testing Accuracy g 80 - £ Testing Accuracy
s G
% ; % A |
E 0 1 & T0r 3
3 3 /
3 -
60 | ¥ . 60 I f 1
1 ]
-H:I 'l 1 1 1 1 1 m Il L 1 'l 1 'l
0 1 2 3 4 5 G 7 0 1 2 3 4 5 & T
Mumber of Level Mumberof Level
Fig. 10, Performance of MNTree on 162bp human DMNA sequence For g = 050 and a= 070 H, = 10 and H, = 15
Table 20 Uthurusamy (Eds.), Advances in Knowledge Discovery and Dala
Classification accuracy lor human DINA 54, 108, and 162 bp Mining, AAALMIT Press, Cambridge, MA, 196, pp. 133180,
- [6] B. Farber, A, Lapedes, K. Sirotkin, Determination of Eucarvolic
Algorithms 34 bp LOE bp 162 bp protein coding regons using neural networks and information theory,
. J. Mol Biol. 226 (2) (1992) 47 1-479.
NNTree §2.9 £3.5 34": [7] 1. Fickett, Recognition of prowin coding regions in DNA sequences,
ocl 739 837 842 Nucleic Acids Res. 10 (17) (1982) 5303-5318.
ML_P_ 4.9 361 7.5 [8] J. Ficketr, C.5. Tung Assessment of protein coding memsures,
Pasition sxymimerey 70 7.6 517 Nucleic Acids Res, 20 (24) (1992) 64416450,
Fourier 69.5 774 820 3 ; : . R
Hexs 69.8 714 218 9 D, Fisher, Improving inference through conceplual clustering,
R ’ : AP Proceedings of AAAL Conlerence, Seattle, Washington, 1987,
Dicodon usage 69.8 71:2 737
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