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THE MOMENT PROBLEM FOR THE STANDARD
k-DIMENSIONAL SIMPLEX

By J.C. GUPTA
Indian Statistical Institute, Calcutta

SUMMARY. We give necessary and sufficient conditions for a multi-sequence of real con-

stants to be the moment multi-sequence of a probability measure on the standard simplex in

Rk.

1. Historical Introduction

The problem of moments on S, a closed subset of Rk, is as follows. Given a
multi-sequence of real constants

µ(β1, β2, . . . , βk), β1, β2, . . . , βk = 0, 1, 2, . . . ,

µ(0, 0, . . . , 0) = 1, . . . (1.1)

one is interested in finding necessary and sufficient conditions on the multi-
sequence so that there exists a probability measure P, supported on S, for which∫

S

xβ1
1 xβ2

2 . . . xβk

k dP = µ(β1, β2, . . . , βk)

for all
β1, β2, . . . , βk = 0, 1, 2, . . . . . . (1.2)

We say that the moment problem on S is determined if any P , supported
on S, is uniquely determined by its moment multi-sequence; otherwise we call it
indeterminate. Clearly the moment problem on a compact set is determined. For
the case k = 1 and S = [0,∞) the moment problem was posed and completely
solved by Stieltjes (1894-95). The case k = 1 and S = (−∞,∞) was studied
and solved by Hamburger (1920-21). Hausdorff (1923) solved the problem for
the unit interval of the real line and Haviland (1935-36) for rectangles in higher
dimensions. For more details, see Shohat and Tamarkin (1943).
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2. Moment Problem on the Standard Simplex

We recall Hausdorff’s solution to the moment problem on the 1-dimensional
standard simplex, viz., [0, 1] ⊂ R1. A sequence {µ(n)}n≥0, µ(0) = 1, is called a
completely monotone sequence if

(−1)n4nµ(k) ≥ 0, k, n = 0, 1, 2, . . . . . . (2.1)

where 4µ(k) := µ(k + 1)− µ(k) and 4n stands for n applications of 4.

Theorem 2.1 (Hausdorff, 1923). A sequence {µ(n)}n≥0, µ(0) = 1, is the
moment sequence of some probability measure on [0, 1] if and only if it is com-
pletely monotone.

Hausdorff’s proof exploits some properties of the Bernstein polynomials, see
Shohat and Tamarkin (1943); also see Feller (1965).

We study the problem of moments on the standard k-dimensional simplex :

Sk = {(x1, x2, . . . , xk) : xi ≥ 0 ∀i, x1 + x2 + . . . + xk ≤ 1} . . . (2.2)

We introduce the notion of a completely monotone multi-sequence.
Definition. The multi-sequence given in (1.1) is said to be completely mono-

tone if

(−1)β04β0µ(β1, β2, . . . , βk) ≥ 0 ∀β0, β1, β2, . . . , βk = 0, 1, 2 . . . . . . (2.3)

where

4µ(β1, β2, . . . , βk) := µ(β1 + 1, β2, . . . , βk) + µ(β1, β2 + 1, . . . , βk)+

. . . + µ(β1, β2, . . . , βk + 1)− µ(β1, β2, . . . , βk). . . . (2.4)

Theorem 2.2. There exists a probability measure P on the standard k-
simplex Sk such that∫

Sk

xβ1
1 xβ2

2 . . . xβk

k dP = µ(β1, β2, . . . , βk) . . . (2.5)

if and only if the multi-sequence µ(β1, β2, . . . , βk), β1, β2, . . . , βk = 0, 1, 2, . . . is
completely monotone.

Before giving a formal proof we would like to discuss the main idea behind it.
Let Ek = {0, 1, . . . , k} and let Q be an exchangeable probability on E∞k := Ek×
Ek× . . .. By a theorem of de Finetti (1937) Q has the following representation :

Q(A) =
∫
P

P∞(A)d ν(P ) . . . (2.6)



288 j.c. gupta

for all Borel subsets A of E∞k . Here P∞ := P ×P × . . . is a product probability
on E∞k , P is the class of all probabilities P on Ek and ν is a probability on
P equipped with a suitable σ-field. We observe that a probability P on Ek =
{0, 1, 2, . . . , k} can be identified with the element (x1, x2, . . . , xk) of the simplex
Sk where xi = P ({i}), i = 1, 2, . . . , k; of course 1− x1 − x2 − . . .− xk = P ({0}).
The theorem of de Finetti establishes a one-one correspondence between the
class of exchangeable probabilities on E∞k and the class P of all probabilities on
Sk. We exploit this correspondence in our proof; see the concluding paragraphs
of this section.

Proof. If µ(β1, β2, . . . , βk), β1, β2, . . . , βk = 0, 1, 2, . . . is the multi-sequence
of moments of a probability P on Sk, then

(−1)β04β0µ(β1, β2, . . . , βk)

=
∑

i0+i1+...+ik=β0

(
β0

i0, i1, . . . , ik

)
(−1)i1+i2+...+ikµ(β1 + i1, β2 + i2, . . . , βk + ik)

=
∫

Sk

xβ1
1 xβ2

2 . . . xβk

k (1− x1 − x2 − . . .− xk)β0 dP

≥ 0

for all β0, β1, . . . , βk so that the multi-sequence is completely monotone.
Conversely, let µ(β1, β2, . . . , βk), β1, β2, . . . , βk = 0, 1, 2, . . . , µ(0, 0, . . . , 0) =

1 be a given completely monotone sequence. We define, for β0 +β1 + . . . βk = n,

qn(β0, β1, . . . βk) := (−1)β04β0µ(β1, β2, . . . , βk) . . . (2.7)

and observe that

qn(β0, β1, . . . , βk) ≥ 0 ∀ β0, β1, . . . , βk = 0, 1, 2, . . . . . . . (2.8)

For β0 ≥ 1 and β0 + β1 + . . . + βk = n, we define

5qn(β0, β1, . . . , βk) := qn(β0, β1, . . . , βk) + qn(β0 − 1, β1 + 1, . . . , βk)

+ . . . + qn(β0 − 1, β1, . . . , βk + 1). . . . (2.9)

By (2.7) and (2.9) it easily follows that

5qn(β0, β1, . . . , βk) = qn−1(β0 − 1, β1, . . . , βk) . . . (2.10)

where n = β0 + β1 + . . . + βk.
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It follows from (2.10) and (2.7) that, for all β0 = 0, 1, 2, . . . ,

µ(β1, β2, . . . , βk) = 5β0qn(β0, β1, . . . , βk) . . . (2.11)

where n = β0 + β1 + . . . + βk.
In particular we have∑

β0+β1+...+βk=n

(
n

β0, β1, . . . , βk

)
qn(β0, β1, . . . , βk)

= 5nqn(n, 0, . . . , 0) = µ(0, 0, . . . , 0) = 1. . . . (2.12)

On the n-fold product En
k let Qn be the symmetric measure assigning mass

qn(β0, β1, . . . , βk) to each point ω = (ω1, ω2, . . . , ωn) of En
k for which #{i : ωi =

j} = βj , j = 0, 1, . . . , k. By (2.8) and (2.12) Qn is a probability. In an obvious
way Qn may be considered as a probability on the n-dimensional cylinder sets,
defined in terms of the first n coordinates of E∞k and, by (2.9) and (2.10),
Qn, n = 1, 2, . . . form a consistent set of probabilities on the finite-dimensional
cylinders of E∞k . It then follows by, say, the Kolmogorov’s consistency theorem
that Qn, n = 1, 2, . . . determine a unique probability Q on the Borel σ-field of
E∞k ; this Q is an exchangeable probability.

Let Xn, n = 1, 2, . . . , be the coordinate variables on E∞k and let

ξi : {0, 1, 2, . . . , k} 7−→ {0, 1} be the indicator of {i}, i = 0, 1, . . . , k

and
Si

n : = ξi(X1) + ξi(X2) + . . . + ξi(Xn)

= #{j : Xj = i; j = 1, 2, . . . , n}.
. . . (2.13)

Clearly,

Q{S0
n = β0, S

1
n = β1, . . . , S

k
n = βk} =

(
n

β0, β1, . . . , βk

)
qn(β0, β1, . . . , βk).

. . . (2.14)

Now choose and fix m and β1, β2, . . . , βk such that β1 + β2 + . . . + βk = m.
For all n ≥ m, by (2.10), we have

µ(β1, β2, . . . , βk) = 5n−mqn(n−m,β1, . . . , βk)

=
∑

i0+i1+...+ik=n−m

(
n−m

i0, i1, . . . , ik

)
qn(i0, β1 + i1, . . . , βk + ik)

=
∑

i0+i1+...+ik=n−m

(
n−m

i0, i1, . . . , ik

)
Q{S0

n = i0, S
1
n = β1 + i1, . . . , S

k
n = βk + ik}(

n
i0, β1 + i1, . . . , βk + ik

)
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by (2.14)

=
(n−m)!

n!

∑
α0+α1+...,αk=n

Q{S1
n = α1, S

2
n = α2, . . . , S

k
n = αk}.

k∏
i=1

(αi)βi

=
nm.(n−m)!

n!
EQ

[
k∏

i=1

{(
Si

n

n

) (
Si

n − 1
n

)
. . .

(
Si

n − βi + 1
n

)}]

= lim
n→∞

EQ

[(
S1

n

n

)β1 (
S2

n

n

)β2

. . . .

(
Sk

n

n

)βk
]

. . . (2.15)

Under Q let νn be the law of (S1
n

n ,
S2

n

n , . . . ,
Sk

n

n ) on the simplex Sk. Then, for
all β1, β2, . . . , βk = 0, 1, . . . , by (2.15),∫

Sk

xβ1
1 xβ2

2 . . . xβk

k dνn −→ µ(β1, β2, . . . , βk).

It follows from the compactness of Sk that there exists a probability measure
ν̃ on Sk such that νn weakly converges to ν̃ and∫

Sk

xβ1
1 xβ2

2 . . . xβk

k dν̃ = µ(β1, β2, . . . , βk) . . . (2.16)

for β1, β2, . . . , βk = 0, 1, 2, . . ..
This completes the proof.

To complete the story we identify the probability ν̃ in (2.16) with the ‘mixing’
probability ν in the de Finetti representation of the exchangeable probability Q
as given in (2.6).

For each n = 1, 2, . . . , let Sn be the σ-field of those Borel sets of E∞k which
are invariant under any permutation of the first n coordinates. Further let S
be the σ-field of symmetric Borel sets of E∞k . Then Sn ↓ S and, by the reverse
martingale convergence theorem,

Sj
n

n
= EQ(ξj(X1)||Sn)

→
a.s. EQ(ξj(X1)||S) = Q(X1 = j||S). . . . (2.17)

By de Finetti’s theorem X1, X2, . . . are conditionally i.i.d. given S, and
consequently, for 1 ≤ j ≤ k,

(
Sj

n

n
)βj

−→
a.s. {Q(X1 = j||S).Q(X2 = j||S) . . . Q(Xβj

= j||S)

= Q(X1 = X2 = . . . = Xβj
= j||S).
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Thus

EQ[
k∏

j=1

(
Sj

n

n
)βj ] → Q{Xi = j,

j−1∑
m=1

βm < i ≤
j∑

m=1

βm; j = 1, 2, . . . , k}

=
∫
P

k∏
1

(P ({j}))βj dν(P )

=
∫

Sk

xβ1
1 xβ2

2 . . . xβk

k dν̃.
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Sciences de Toulouse, 8 1-122; 9 5-47.

Hamburger, H. (1920-21). Uber eine Erweiterung der Stieltjes’schen Momentenproblems.
Math. Ann. 81 235-319; 82 120-164; 82 168-187.

Hausdorff, F. (1923). Momentprobleme für ein endliches Intervall, Math. Zeit., 16 220-248.

Haviland, E.K. (1935). On the momentum problem for distributions in more than one
dimension. Amer. Jour. Math., 57 562-568.

Haviland, E.K. (1936). On the momentum problem for distribution functions in more than
one dimension. II. Amer. Jour. Math., 58 164-168.
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