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SUMMARY. The purpose of this article is to propose a new scheme for robust multivariate

ranking by introducing a not so familiar notion called monotonicity. Under this scheme, as

in the case of classical outward ranking, we get an increasing sequence of regions diverging

away from a central region (may be a single point) as nucleus. The nuclear region may be

defined as the median region. Monotonicity seems to be a natural property which is not

easily obtainable. Several standard statistics such weighted mean, coordinatewise median

and the L1-median have been studied. We also present the geometry of constructing general

monotonic measures of location in arbitrary dimensions and indicate its trade-off with other

desirable properties. The article concludes with discussions on finite sample breakdown points

and related issues.

1. Introduction

Robust handling of multivariate data typically refers to the following: (a)
finding a robust measure of location, (b) finding a robust measure of dispersion
matrix and (c) detection of possible outliers. The central purpose however,
is to create an increasing sequence of regions (depicting increasing degree of
outwardness) depending on the geometry of the data cloud. As a consequence
we get a center outward ranking of a multivariate data (see, Liu (1990)). The
method of construction through ellipsoidal regions (required by (a) and (b))
becomes therefore, one of the many similar techniques. There is a great deal
of literature on finding out descriptive multivariate location measures with high
finite sample breakdown point. These measures are loosely classified
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according to their equivariance properties. Suppose x
∼1

, ..., x
∼n

∈ IRd denote a set

of observations.
A statistic T (x

∼1
, ..., x

∼n
) is translation equivariant if T (x

∼1
+ b

∼
, ..., x

∼n
+ b

∼
) =

T (x
∼1

, ..., x
∼n

) + b
∼

for all b
∼
∈ IRd. There are two other groups of transformations

which play pivotal roles in this context. These are the groups of orthogonal and
non-singular transformations respectively. If a statistic is translation equivari-
ant and equivariant under orthogonal transformations (non-singular transforma-
tions),then the statistic is orthogonally (affine) equivariant.

For finite sample breakdown point we use the definition introduced by Donoho
and Huber (1983), i.e.,

BD(T ,X) = inf
m
{m

n
: sup
Y m

‖T (Y m)− T (X)‖ = ∞} . . . (1.1)

where, X = {x
∼1

, ..., x
∼n
} and Y m is another set of n points satisfying |Y m∩X| =

n−m.
Among orthogonally equivariant measures the most studied one is the L1-

median (see, Small (1990)). This statistic is a natural extension of sample me-
dian in the univariate case and has a breakdown point about 1

2 . There is a
host of other procedures which are affine equivariant. Among them the mini-
mum volume ellipsoid (MVE) statistic introduced by Rousseeuw (1985), efficient
multivariate M-estimators by Lopuhaä (1992) are worth mentioning. Lopuhaä
(1990) gives a detailed study of the problem of finding robust covariance ma-
trices. These procedures are classical in the sense that they lead to ellipsoidal
outward ranking. A general technique introduced by Tukey (1975), called ‘data
depth’ works quite well for the problem of constructing affine equivariant mul-
tivariate median (with an associated centre outward ranking). Liu (1990) intro-
duced a notion called ‘simplicial depth’ and related it to Oja’s simplicial median
(Oja (1983)). Small (1990) did a thorough review of the literature on medians in
higher dimensions. As far as the computation of finite sample breakdown point
of various measures of location is concerned we refer to a couple of excellent
papers in this direction, namely, Lopuhaä and Rousseeuw (1991) and Donoho
and Gasko (1992).

The purpose of this article is to introduce a new scheme for robust multi-
variate ranking by making use of a not so familiar notion called monotonicity.
Under this scheme, as in the case of classical outward ranking, we get an increas-
ing sequence of regions diverging away from a central region (may be a single
point) as nucleus. The nuclear region may be defined as the median region. Ac-
cording to Bassett (1991), the univariate sample median is the only monotonic,
affine equivariant statistic with breakdown point 1

2 . Such a characterization of
sample median is indeed interesting. We look into the problem of extending
the above fact to higher dimensions. The monotonicity property is a natural
requirement in many applications (for example, in case of income/expenditure
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economic data). It is also worth mentioning that there are measures of location
(for example, the ‘shorth’) which are sometimes used in practice and which show
anti-monotonicity property. In higher dimensions the problem becomes more in-
volved as there is no straightforward extension of univariate monotonicity.

In section 2 we define some notions of multivariate monotonicity via contrac-
tions. Several monotonicity properties are discussed. We study these properties
with respect to some standard measures of location such as the coordinatewise
median and the sample mean in section 3. In the next section the emphasis
is given to the problem of constructing monotonic measures of location with
specified equivariance properties. In section 5 we discuss the breakdown (or,
descriptive robustness) properties of these measures together with other issues
and concluding remarks.

2. Monotonicity in General Euclidean Spaces

A vector valued function g : IRd → IRd is a contraction towards µ
∼
∈ IRd

if it satisfies ‖g(x
∼
) − µ

∼
‖ ≤ ‖x

∼
− µ

∼
‖ for every x

∼
∈ IRd. Any geometric notion

of monotonicity is intrinsically related to the concept of contraction towards a
point. In other words, given a set of points x

∼1
, ..., x

∼n
∈ IRd if we contract them

towards a fixed point µ
∼

any monotonic measure of the center of this configuration

of points should also move towards µ
∼
. This is the key idea in this article as far

as monotonicity is concerned. Because the class of contractions towards a point
is quite large it is unlikely that the center of a data cloud would move towards
the point of contraction for any kind of distortion of the original configuration.
To avoid this problem, we restrict to linear convex combinations, i.e., g(x

∼
) =

αx + (1 − α)µ
∼

for some 0 ≤ α ≤ 1 and µ
∼
∈ IRd. We shall denote this class by

C(µ
∼
).

Definition 2.1 A statistic T is monotonic at µ
∼
∈ IRd if for every g1, ..., gn ∈

C(µ
∼
)

‖T (g1(x∼1
), ..., gn(x

∼n
))− µ

∼
‖ ≤ ‖T (x

∼1
, ..., x

∼n
)− µ

∼
)‖ . . . (2.1)

for every configuration X = {x
∼1

, ..., x
∼n
}.

Fact 2.1. If T is translation equivariant and monotonic at some µ
∼0

∈ IRd

then T is monotonic at every µ
∼
∈ IRd.
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Proof. Let µ
∼
∈ IRd and gi(x∼) = αi x

∼
+ (1− αi)µ

∼
, 1 ≤ i ≤ n. Then,

‖T (g1(x∼1
), ..., gn(x

∼n
))− µ

∼
‖

= ‖T (µ
∼

+ α1(x∼1
− µ

∼
), ..., µ

∼
+ αn(x

∼n
− µ

∼
))− µ

∼
‖

= ‖T (α1(x∼1
− µ

∼
), ..., αn(x

∼n
− µ

∼
))‖ (by translation equivariance)

= ‖T (α1y
∼1

+ (1− α1)µ
∼0

, ..., αny
∼n

+ (1− αn)µ
∼0

)− µ
∼0
‖,

where y
∼i

= x
∼i
− (µ

∼
− µ

∼0
), 1 ≤ i ≤ n. The above step again requires translation

equivariance. Now using monotonicity of T at µ
∼0

we have

‖T (g1(x∼1
), ..., gn(x

∼n
))− µ

∼
‖ ≤ ‖T (y

∼1
, ..., y

∼n
)− µ

∼0
‖

= ‖T (x
∼1

, ..., x
∼n

)− µ
∼
‖.

In view of Fact 2.1 we can say that a translation equivariant statistic is
simply monotonic if it is monotonic at µ

∼
= 0

∼
, which is equivalent to say-

ing that ‖T (α1x∼1
, ..., αnx

∼n
)‖ ≤ ‖T (x

∼1
, ..., x

∼n
)‖ for every x

∼1
, ..., x

∼n
∈ IRd and

0 ≤ α1, ..., αn ≤ 1. Also note that while actually verifying monotonicity of a
translation equivariant statistic it is necessary and sufficient to verify it for a
single coordinate.

Fact 2.2. A translation equivariant statistic T is monotonic if and only if

‖T (αx
∼1

, x
∼2

, ..., x
∼n

)‖ ≤ ‖T (x
∼1

, x
∼2

, ..., x
∼n

)‖ . . . (2.2)

for any α ∈ [0, 1] and x
∼1

, .., x
∼n

∈ IRd.

Next notice that one implication of monotonicity of a translation equivariant
statistic is the following. For g1, ..., gn ∈ C(µ

∼
)

〈 T (g1(x∼1
), ..., gn(x

∼n
))− T (x

∼1
, ..., x

∼n
) , T (x

∼1
, ..., x

∼n
)− µ

∼
〉 ≤ 0, . . . (2.3)

where 〈·, ·〉 denotes the standard inner product on IR. Moreover, using transla-
tion equivariance, we can choose µ

∼
= 0

∼
without loss of generality. In many cases

of interest it is easier to verify (2.3) rather than (2.1) or (2.2). This property
has nice geometric appeal on its own.

Definition 2.2. A translation equivariant statistic T is weakly monotonic
if

〈 T (α1x∼1
, ..., αnx

∼n
)− T (x

∼1
, ..., x

∼n
) , T (x

∼1
, ..., x

∼n
) 〉 ≤ 0 . . . (2.4)

for 0 ≤ α1, ..., αn ≤ 1 and x
∼1

, ..., x
∼n

∈ IRd. The following is an easy conse-

quence of the above discussions.
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Fact 2.3. A monotonic translation equivariant statistic is also weakly mono-
tonic.

The notions of monotonicity introduced so far are quite natural and intu-
itively plausible. Next we consider another notion of monotonicity which re-
duces to the usual coordinatewise definition when d = 1. To fix the idea let
us consider a real valued function h(x1, ..., xn), x1, ..., xn ∈ IR which is symmet-
ric in its arguments. The function h is said to be coordinatewise monotonic if
h(x1 + u, x2, ..., xn)− h(x1, ..., xn) ≥ 0 (≤ 0) whenever u ≥ 0 (≤ 0). If we think
in terms of the configuration of the set of points {x1, ..., xn}, the geometric in-
terpretation of shifting x1 by u amounts to saying that we are contracting the
configuration towards (sign (u))∞. For the real line the points at infinity are
characterized by {−1, 1}. Analogously in IRd the points at ∞ are characterized
by various unit directions, i.e., by the points on the unit sphere, S(d−1) to be
more precise. Next fix some unit direction µ

∼
∈ IRd and denote the point at

infinity in that direction by ∞(µ
∼
). Also let H(t, µ

∼
), t ∈ IR denote the family of

hyperplanes orthogonal to µ
∼

and shifted to the point tµ
∼
. The half spaces formed

by this family in the direction of µ
∼

can be interpreted as the family of concentric

spheres centered at ∞(µ
∼
). Therefore a natural notion of monotonicity at ∞ can

be defined as follows.
Definition 2.3. A translation equivariant statistic T is directional mono-

tonic if for any µ
∼
∈ S(d−1) and α1, ..., αn ≥ 0,

〈 µ
∼

, T (x
∼1

+ α1µ
∼
, ..., x

∼n
+ αnµ

∼
)− T (x

∼1
, ..., x

∼n
) 〉 ≥ 0 . . . (2.5)

for every x
∼1

, ..., x
∼n

∈ IRd.

Remark 2.1. Note that because T is symmetric in its arguments it is enough
to take α1 ≥ 0, α2 = .... = αn = 0. The concept of directional monotonicity
reduces to usual monotonicity in each coordinate when d = 1. Although the
definition 2.3 is a direct extension of the univariate monotonicity, definitions 2.1
and 2.2 are also equally appealing in higher dimensions.

Remark 2.2 There is another popular notion of multivariate ordering,
namely the coordinatewise ordering. This concept can be used to define mono-
tonicity. The major drawback of this ordering is that it is only a partial order.
Secondly, it is not quite compatible with orthogonal and affine group operations
where the coordinates get mixed up after transformation. The coordinatewise
ordering of the transformed data does not seem to carry any meaning. Fi-
nally, the concept of directional monotonicity implies this sort of monotonicity.
To see this, apply (2.5) with µ

∼
= e

∼1
, µ
∼

= e
∼2

, ..., µ
∼

= e
∼d

sequentially, where
e
∼1

, ..., e
∼d

are standard basis vectors. This will imply if x
∼1

� y
∼1

, ..., x
∼n

� y
∼n

then T (x
∼1

, ..., x
∼n

) � T (y
∼1

, ..., y
∼n

). Here � stands for the coordinatewise order-
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ing of multivariate vectors. See, Barnett (1976) for an excellent discussion on
various aspects of multivariate ordering.

3. Monotonicity Properties of Some Standard Statistics

In this section we study the monotonicity properties of some standard trans-
lation equivariant statistics which are commonly used as measures of central
tendency of a data cloud. First we consider the example of weighted mean. Let

T w(x
∼1

, ..., x
∼n

) =
n∑

i=1

wix∼i
. . . (3.1)

where w1, ..., wn is a set of nonnegative weights with
∑

wi = 1.

Theorem 3.1. The statistic T w is directional monotonic but neither mono-
tonic nor weakly monotonic.

Proof. Take any µ
∼
∈ S(d−1) and α1, ..., αn ≥ 0. Then

〈 T w(x
∼1

+ α1µ
∼
, ..., x

∼n
+ αnµ

∼
)− T w(x

∼1
, ..., x

∼n
) , µ

∼
〉 = 〈 (

∑
αiwi)µ

∼
, µ
∼
〉

=
∑

αiwi ≥ 0.

To show that T w is not weakly monotonic take any configuration of points
x
∼1

, ..., x
∼n

satisfying 〈x
∼1

,T w(x
∼1

, ..., x
∼n

)〉 < 0. Also assume w.l.o.g. that w1 > 0.

Next choose α1 = 0, α2 = · · · = αn = 1. Then

T w(α1x∼1
, ..., αnx

∼n
)− T w(x

∼1
, ..., x

∼n
) = −w1x∼1

.

Hence we have 〈T w(α1x∼1
, ..., αnx

∼n
) − T w(x

∼1
, ..., x

∼n
),T w(x

∼1
, ..., x

∼n
)〉 =

−w1〈x∼1
,T w(x

∼1
, ..., x

∼n
)〉 > 0.

This is a contradiction to the weakly monotonic property. Now, by fact 2.3 it is
also clear that T w cannot be monotonic.

Next we consider the example of sample median for d = 1. Let us also assume
for the sake of simplicity that n is odd and x1, ..., xn are random samples from
a continuous distribution so that there is no tie. This will uniquely define the
sample median as 1

2 (n + 1)th order statistic, namely, x( n+1
2 ).

Theorem 3.2 The sample median is both monotonic and directional mono-
tonic.

Proof. To prove the theorem we shall first verify the condition (2.2) of the
fact 2.2. This will show that the sample median is monotonic. In order to do so
we consider the following cases. First assume that x( n+1

2 ) > 0.
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Case (i) x1 < x( n+1
2 ). In this situation αx1 < x( n+1

2 ) for 0 ≤ α ≤ 1. Hence
in the new configuration the position of the n+1

2 th order statistic is not altered.
Therefore (2.2) is verified.

Case (ii) x1 = x( n+1
2 ). Since x( n+1

2 ) > 0, in the new configuration {αx1, x2,

..., xn} the total number of nonnegative observations remains same. If 0 ≤
αx1 ≤ x( n−1

2 ) then the new median is located at x( n+1
2 ). Therefore we have 0 ≤

median {αx1, x2, ..., xn} = x( n−1
2 ) < x( n+1

2 ). Thus (2.2) is verified. Otherwise
if x( n−1

2 ) < αx1 ≤ x( n+1
2 ), the median of the new configuration is αx( n+1

2 ) and
(2.2) is again verified.

Case (iii) x1 > x( n+1
2 ). Using similar arguments we observe that if αx1 <

x( n+1
2 ), the median of the new configuration will move towards 0. It will remain

unaltered otherwise. The condition (2.2) is satisfied in either case.
Next consider the case when x( n+1

2 ) < 0. The same proof as in the earlier
case goes through by symmetry of the configuration with respect to reflection
around 0.

The remaining case is when x( n+1
2 ) = 0. In this case the number of positive

and negative data points remain same in the new configuration {αx1, ..., xn}
regardless of the position of x1 with respect to the data set.

Hence it follows that the sample median is monotonic. Since we have al-
ready observed that the notion of directional monotonicity reduces to usual
coordinatewise monotonicity for d = 1, the remaining part of the result follows
from observations made by Bassett (1991).

The assumptions that n is odd and there are no ties can be assumed without
loss of any generality. Also, the same is true for any quantile (not necessarily
median). If we define the qth quantile Tq(x1, ..., xn) = F−1

n (q) for 0 < q < 1
where Fn is the empirical cumulative distribution function then we have the
following.

Corollary 3.3. The family of quantiles Tq, 0 < q < 1 are both monotonic
and directional monotonic.

The argument used to prove theorem 3.2 has other interesting implications.
For example, the same argument when applied coordinatewise works for coor-
dinatewise multivariate median. In general suppose T1, ..., Td are d univariate
translation equivariant statistics defined on sets of samples of size n. Given n
points x

∼1
, ..., x

∼n
∈ IRd let xij denote the jth coordinate of x

∼i
, 1 ≤ i ≤ n and

1 ≤ j ≤ d. Define

T 0n(x
∼1

, ..., x
∼n

) = (T1(z∼1
), ..., Td(z∼d

))′, . . . (3.2)

where z
∼j

= (x1j , ..., xnj) for 1 ≤ j ≤ d.
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Theorem 3.4. If each of T1, ..., Td is monotonic (directional monotonic)
then T 0n, defined by (3.2), is also monotonic (directional monotonic).

We have discussed so far, certain features of monotonicity through differ-
ent examples. There are other commonly used orthogonal and affine equivari-
ant multivariate medians such as the L1-median and Tukey’s halfspace median.
These measures (so called geometric medians, cf., Small (1990)) are highly non-
linear in nature and we are unable to verify their monotonic status directly.
Intuitively it seems they should possess some of the monotonicity properties.
We look into this issue at length in the next section and obtain partial results
for some of these highly nonlinear estimators.

Remark 3.1 It should be noted that theorem 3.1 and theorem 3.2 combined,
have a striking implication. The notion of monotonicity seems to act as a line of
demarcation between the ‘mean type’ and ‘median type’ measures of location.
There has been a long standing debate regarding which ‘type’ actually serves as a
more efficient estimator of location. See Huber (1981) for some useful comments
on this issue. Also Chaudhuri and Sengupta (1993a) established certain property
of ‘median type’ measures which gives the sample median a unique status. We
also refer to Bassett (1991) in this context which acted as a major motivation
for the current investigation.

4. The Geometry of Constructing Monotonic Multivariate
Measures of Location

As remarked earlier it is difficult to verify monotonicity properties for general
orthogonally or affine equivariant estimators such as L1-median and Tukey’s half
space median. We shall verify a weaker form of monotonicity for the L1-median
next.

Definition 4.1. A translation equivariant estimator T is locally weakly
monotonic (directional monotonic) at a set of points X = {x

∼1
, · · · , x

∼n
} ∈ IRd

with respect to an inner product < ·, · > if (2.4) holds for almost all α1, ..., αn

sufficiently close to 1 ((2.5) holds for almost all α
∼

= (α1, · · · , αn) in a neighbor-

hood of 0
∼

for all µ
∼
∈ S(d−1)).

Next we study the local monotonicity properties of L1-median to get a general
insight into the geometry of multivariate monotonicity.

Let h : [0, 1]× IRd → IRd be a differentiable vector valued function with the
property that h(0, x

∼
) = x

∼
for any x

∼
∈ IRd. The function h can be thought of as

a smooth deformation of IRd. A given set of points X = {x
∼1

, · · · , x
∼n
} ∈ IRd is a
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regular for L1-median if the solution θ̂
∼

of the equation

n∑
1

x
∼i
− θ

∼
‖x
∼i
− θ

∼
‖

= 0
∼

. . . (4.1)

is unique and is not one of the x
∼
′
i
s. If {x

∼1
, · · · , x

∼n
} is a random sample from

a continuous density in IRd, d ≥ 2 then it is easy to see that {x
∼1

, · · · , x
∼n
} is

regular with probability one. Next let us define a family of transformed data
points y

∼i
(αi) = h(αi, x∼i

), 1 ≤ i ≤ n. Also, let θ
∼
(α1, · · · , αn) denote the L1-

median of the set of points {y
∼1

(α1), · · · , y
∼n

(αn)}. Then we have the following

facts: (i) θ̂
∼
(0, · · · , 0) = θ̂

∼
(ii) The set of points {y

∼1
(α1), · · · , y

∼n
(αn)} is regular

for α
∼

= (α1, · · · , αn) belonging to a sufficiently small neighborhood of (0, · · · , 0).

(This is true because the deformation h is continuous and also the left hand side
of (4.1) is a continuous function at regular points {x

∼1
, · · · , x

∼n
}. Also note that

by smoothness of h and the estimating equation (4.1),
θ̂
∼
(α1, · · · , αn) is differentiable at (0, · · · , 0) by implicit function theorem (cf.

Apostol(1974)). Let us next define

Û i = ‖x
∼i
− θ̂

∼
‖−1(x

∼i
− θ̂

∼
), 1 ≤ i ≤ n.

Lemma 4.1 Suppose {x
∼1

, · · · , x
∼n
} is a set of regular points for the L1-median

(defined by (4.1)). Then

Γ(X)
∂ θ̂
∼

∂αk
(0
∼
) =

1
‖x
∼k

− θ̂
∼
‖

(Id − ÛkÛ
′
k)

∂h

∂αk
(0, x

∼k
) . . . (4.2)

for 1 ≤ k ≤ n, where

Γ(X) =
n∑

i=1

1

‖x
∼i
− θ̂‖

(Id − Û iÛ
′
i) . . . (4.3)

and Id is the d × d identity matrix. Proof. We start by differentiating the
relation

n∑
1

y
∼i

(αi)− θ̂
∼
(α
∼
)

‖y
∼i

(αi)− θ̂
∼
(α
∼
)‖

= 0
∼
. . . . (4.4)
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While differentiating with respect to αk, the terms for which i 6= k are to be
treated separately from the term i = k. Now differentiating by product rule we
get

∂
∂αk

 y
∼k

(αk)− θ̂
∼
(α
∼
)

‖y
∼k

(αk)− θ̂
∼
(α
∼
)‖

 (0
∼
) = 1

‖x
∼k

− θ̂
∼
‖

[
∂y
∼k

∂αk
(0)−

∂ ˆθ
∼

∂αk
(0
∼
)

]

− 1

‖x
∼k

− θ̂
∼
‖ ÛkÛ

′
k

[
∂y
∼k

∂αk
(0)−

∂ ˆθ
∼

∂αk
(0
∼
)

]
.

. . . (4.5)

Note that by definition
∂y
∼k

∂αk
(0) = ∂h

∂αk
(0, x

∼k
). Next for i 6= k

∂
∂αk

 y
∼i

(αi)− θ̂
∼
(α
∼
)

‖y
∼i

(αi)− θ̂
∼
(α
∼
)‖

 (0
∼
) = − 1

‖x
∼k

− θ̂
∼
‖

[
(Id − Û iÛ

′
i)

∂ ˆθ
∼

∂αk
(0
∼
)

]
.

. . . (4.6)
The lemma follows after combining (4.5) and (4.6).

The above lemma gives some insight into the geometry of L1-median. The
matrix n−1Γ(X) is an estimator of the inverse of asymptotic covariance matrix
of θ̂

∼
when samples are generated from a spherically symmetric distribution.

Theorem 4.2. Suppose x
∼1

, · · · , x
∼n

∈ IRd, n ≥ 3 are i.i.d. samples from

a continuous population. Then the L1-median is locally weakly and directional
monotonic with probability one with respect to the inner product generated by
Γ(X).

Proof. First consider the case of weak monotonicity. Because the samples
are drawn from a continuous distribution the data will be regular with proba-
bility one. Also note that the matrix Γ is positive definite whenever there will
be at least two distinct Ûi’s. This event occurs with probability one too. Now
without loss of generality we can change α to (1 − α) so that we can apply
lemma 4.1 as it is. In the case of weak monotonicity we apply the lemma for
h(α, x

∼
) = x

∼
− αx

∼
. Let J(X) denote the Jacobian of θ̂

∼
at {x

∼1
, · · · , x

∼n
}. Then

for a small perturbation α
∼

= (α1, · · · , αn)′,

∆θ̂
∼
(α
∼
) := θ̂

∼
(α1x∼1

, · · · , αnx
∼n

)− θ̂
∼
(x
∼1

, · · · , x
∼n

) = J(X)α
∼

+ o(‖α
∼
‖). . . . (4.7)

Next notice that ∂h
∂αk

(0, x
∼k

) = −x
∼k

. Because (Id−ÛkÛ ′
k)(x

∼k
− θ̂
∼
) = 0

∼
, by lemma
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4.1 we have

Γ(X)
∂ θ̂
∼

∂αk
(0
∼
) = − 1

‖x
∼k

− θ̂
∼
‖

(Id − ÛkÛ ′
k)θ̂

∼
. . . . (4.8)

Therefore in view of (4.7) and (4.8)

Γ(X)∆θ̂
∼
(α
∼
) = Γ(X)J(X)α

∼
+ o(‖α

∼
‖)

= −

 n∑
1

αk

‖x
∼k

− θ̂
∼
‖
(Id − ÛkÛ ′

k)

 θ̂
∼

+ o(‖α
∼
‖).

Thus

〈∆θ̂
∼
(α
∼
), θ̂
∼
〉Γ = −θ̂

∼

′

 n∑
1

αk

‖x
∼k

− θ̂
∼
‖
(Id − ÛkÛ ′

k)

 θ̂
∼

+ o(‖α
∼
‖).

The matrix on the right hand is positive definite as long as more than two αk’s
are strictly positive. The collection of directions having less than or equal to
two nonzero coordinates have zero measure and hence the weak monotonicity
follows, once we note that the property is trivially true when θ̂ = 0

∼
.

The local directional monotonicity follows exactly the same way. The only
difference is that now for given µ

∼
∈ S(d−1) we have to choose h(α, x

∼
) = x

∼
+ αµ

∼
.

Hence the theorem.
Remark 4.1. Theorem 4.2 points out where the actual difficulty lies in

handling highly nonlinear measures like the L1-median. The main trouble here
is that the inner product under which the monotonicity property is to be studied
depends on the local geometry of the configuration of points. It is interesting to
see that the driving inner product matrix is the ‘observed’ precision matrix of
the L1-median if the population is spherically symmetric. While studying the
geometry of the maximum likelihood estimators the Fisher information matrix
(which is the asymptotic precision matrix of the m.l.e) becomes a natural inner
product matrix. We feel that the connection between these two apparently
unrelated ideas should be studied further. We refer to Efron (1978), Barndorff-
Nielsen (1978) in this regard.

The analysis of L1-median gave us useful insight into the relationship between
monotonicity in local sense and the ‘∆-method geometry’ (as we are tempted
to call it) of such nonlinear measures. Apart from this one can comprehend the
issue of monotonicity from a purely geometric point of view.

The problem of constructing affine equivariant statistics with monotonicity or
even orthogonally equivariant statistics with directional monotonicity is a much
harder problem. One method of construction can be conceived of by making use
of an auxiliary data on the same set of variables X1, · · · , Xd. Think



multivariate monotonic measures of location 373

of a set of carefully collected observations z
∼1

, · · · , z
∼m

on a set of attributes

(say, incomes of various individuals from various sources) with higher sampling
cost. Suppose the current data is collected less carefully for the same set of
attributes and may have some systematic bias (such as under-reporting or other
directional biases). In some applications, one can even split the available data
into two parts. The first part would take the role of auxiliary data, z

∼1
, · · · , z

∼m
,

while the overall measure of location will be monotonic only with respect to
the second part. Any reasonable measure of the center of the current data
should reflect the pattern of bias relative to the center of the auxiliary data
z
∼1

, · · · , z
∼m

. By equivariance, if we transform the current data x
∼1

, · · · , x
∼n

, the

auxiliary data z
∼1

, · · · , z
∼m

should also be transformed accordingly. Therefore

exploting the idea described above we can construct a measure of the center
of the current data where the coordinate system is chosen on the basis of the
auxiliary data z

∼1
, · · · , z

∼m
. This is an appropriate thing to do in this framework

because, we are equating the requirement for monotonicity with the detection
of any severe systematic bias in the current data; which is assumed to be absent
in the auxiliary data.

First let us consider orthogonally equivariant monotonic statistics. Let X
denote the d×n data matrix whose columns are x

∼1
, · · · , x

∼n
respectively. We are

interested here in transformations of the from X → Y = PXA + b
∼

1
∼
′

n
where P

is an orthogonal matrix, A = diag(α1, · · · , αn) with 0 ≤ α1, · · · , αn ≤ 1, b
∼
∈ IRd

and 1
∼n

the n × 1 vector with all components equal to 1. The problem of con-

structing monotonic orthogonally equivariant statistics is in a sense equivalent
to producing a data dependent orthonormal reference frame say, η̂

∼1

, ..., η̂
∼d

which

is (i) equivariant under orthogonal transformations (P ) and (ii) invariant under
the joint action of the set transformations produced by (A, b

∼
).

By studying the latter set of transformations we see that the invariant func-
tions under (A, b

∼
) are not orthogonally equivariant. Notice that if we do away

with the requirement of monotonicity with respect to the full data set ( i.e, with
respect to both X and the auxiliary data z

∼1
, · · · , z

∼m
), we can make use of the

eigenvectors of sample dispersion matrix such as

R =
m∑

i=1

(z
∼i
− µ̂

∼
)(z
∼i
− µ̂

∼
)′

to construct the basic reference frame η̂
∼1

, ..., η̂
∼d

, where µ̂
∼

denotes some orthogo-

nally equivariant directional measure of location of the set of points z
∼i

, 1 ≤ i ≤
n }. We can take µ̂

∼
to be the usual mean for example. A host of other techniques
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for circular and spherical data can be found in Mardia (1972). Let us rewrite

R =
d∑
1

λ̂i η̂
∼i

η̂
∼

′

i
. . . (4.9)

where η̂
∼1

, · · · , η̂
∼d

constitute an orthonormal basis for IRd. There might be some

ambiguity in the choice of η̂
∼1

, · · · , η̂
∼d

. Because they are orthogonally equivariant,

once we define them for a fixed point in each orbit of the orthogonal group the
choice is unique. Also notice that we can actually choose η̂

∼1
, · · · , η̂

∼d
as smooth

functions of the data. Next let

t̂in = t(η̂
∼

′

i
x
∼1

, · · · , η̂
∼

′

i
x
∼n

), 1 ≤ i ≤ d,

where t is some univariate affine equivariant statistic. Finally let

T ∗
n =

d∑
1

t̂in η̂
∼i

. . . . (4.10)

If t is chosen to be the sample median the corresponding T ∗
n in (4.12) may

be thought of as a multivariate median. It is clear from the definition that
T ∗

n defined this way is translation equivariant because the orthonormal system
obtained from {z

∼i
, 1 ≤ i ≤ n} is translation invariant.

Theorem 4.3. Suppose x
∼1

, · · · , x
∼n

are i.i.d. samples from an angularly

symmetric density about θ
∼
∈ IRd which is strictly positive in a neighborhood of

θ
∼
, and the univariate statistic t is the sample median. Let z

∼1
, . . . , z

∼n
be the

auxiliary data. Then

(i) T ∗
n is equivariant under orthogonal transformations of the data and mono-

tonic.

(ii) T ∗
n → θ

∼
almost surely as n →∞, for every choice of auxiliary data.

Proof. (i) Suppose we change x
∼1

→ Px
∼1

, · · · , x
∼n

→ Px
∼n

for some orthog-

onal matrix P . Therefore the matrix R changes to PRP ′ and thus η̂
∼1

, · · · , η̂
∼d

changes to P η̂
∼1

, · · · , P η̂
∼d

which is a new orthonormal system. On the other

hand, (P η̂
∼i

)′Px
∼i

= η̂
∼

′

i
x
∼i

for 1 ≤ i ≤ n. Thus t̂1n, · · · , t̂dn remain invariant.

Hence
T ∗

n(Px
∼1

, · · · , P x
∼n

) = PT ∗
n(x

∼1
, · · · , x

∼n
),

so that T ∗
n is equivariant under orthogonal transformations.
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Next if we change x
∼1

→ α1x∼1
, · · · , x

∼n
→ αnx

∼n
by construction the reference

system η̂
∼1

, · · · , η̂
∼d

remains invariant. Let t̂1n(α
∼
), · · · , t̂dn(α

∼
) denote the changed

coordinates under the transformed data. Because t is a monotonic statistic, by
virtue of theorem 3.4,

|t̂in(α
∼
)| ≤ |t̂in| for 1 ≤ i ≤ n. . . . (4.11)

Thus,

‖T ∗
n(α1x∼1

, · · · , αnx
∼n

)‖2 =
d∑
1

t̂2in(α
∼
)

≤
d∑
1

t̂2in

= ‖T ∗
n(x

∼1
, · · · , x

∼n
)‖2.

. . . (4.12)

Therefore T ∗
n is monotonic at 0

∼
. Now making use of the fact 2.2, we can establish

T ∗
n is actually monotonic at each µ

∼
∈ IRd.

(ii) First notice that by lemma 18 (p. 20) of Pollard (1984) the sets of
the form {η

∼
′x
∼
≤ a}, η

∼
∈ S(d−1) and a ∈ IR, have polynomial discrimination.

Therefore, by theorem 14 (p. 18) of Pollard (1984)

sup
η
∼
∈ S(d−1), a ∈ IR

∣∣∣∣ 1
n

#{η
∼
′x
∼i
≤ a} − P{η

∼
′x
∼1

≤ a}
∣∣∣∣ → 0 . . . (4.13)

almost surely as n → ∞. By the assumptions made η′θ
∼

is the unique solution

of P{η
∼
′x
∼1

≤ a} =
1
2

for every η
∼
∈ S(d−1). Hence by (4.16)

Dn := sup
η
∼
∈ S(d−1)

∣∣∣∣t(η∼′x
∼1

, · · · , η
∼
′x
∼n

)− η
∼
′
θ
∼

∣∣∣∣ → 0 . . . (4.14)

almost surely as n →∞. Therefore

‖T ∗
n − θ

∼
‖2 = ‖

d∑
1

t̂in η̂
∼i
−

d∑
1

(η̂
∼

′

i
θ
∼
) η̂
∼i
‖2

=
d∑
1

(t̂in − η̂
∼

′

i
θ
∼
)2

≤ dD2
n
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which converges to 0 almost surely as n →∞.

The above theorem gives a partial solution to the problem of construct-
ing multivariate medians with equivariance under orthogonal transformations
and monotonicity. Moreover, the multivariate median statistics obtained in this
manner remains strongly consistent for angularly symmetric distributions.

Remark 4.2. Next we address the problem of affine equivariant medians.
Employing the same logic used in constructing T ∗

n in (4.10) we can construct an
affine equivariant versionl of T ∗

n. In this case, we need to construct a suitable
affine equivariant, ‘data driven’ coordinate system using z

∼1
, · · · , z

∼n
. A general

recipe for such constructions can be found in Chaudhuri and Sengupta (1993b).
We shall denote the affine equivariant version of (4.18) by T̃

a

n for future references
(with the corresponding affine equivariant reference frame η̃

∼1
, · · · , η̃

∼d
).

5. Finite Sample Breakdown Points and Related Issues

As mentioned earlier, the main idea of Bassett (1991) can be stated as follows.
For any α, 0 < α ≤ 1

2 , let Sα be the range of all (univariate) affine equivariant,
monotonic statistics with finite sample breakdown point at least α. The family
{Sα} turns out to be a nested family of regions (actually intervals between
certain order statistics) starting with the convex hull of the data and ending
at the sample median (or, the median interval). In the multivariate case we
developed certain classes of statistics, namely, T 0n,T ∗

n,T ∗a
n and T̃

a

n. The key
idea behind extending Bassett’s result to higher dimension is to represent any

measure of location as
d∑
1

tiη
∼i

. The quantities t1, · · · , td are (univariate) affine

equivariant, monotonic statistics. However they should be invariant under the
group of transformations operating on the d-dimensional data. On the other
hand the reference system {η

∼1
, · · · , η

∼d
} should be constructed in such a way

that it is equivariant under the group of transformations but invariant under
contractions of the data.

In our method of construction the components, t1, · · · , td are constructed on
the basis of the projected data along η

∼1
, · · · , η

∼d
respectively. For coordinatewise

measures like T 0n (defined by (3.2)) the reference system is fixed (the system
consisting of the standard basis directions). For measures which are equivariant
under orthogonal transformations such as T ∗

n or T ∗a
n , the reference system is

‘data driven’ and is equivariant under orthogonal transformations. Notice that
the L1-median, θ̂

∼
defined through (4.1) can be expressed in this fashion. Fix any

orthonormal, reference system η̂
∼1

, · · · , η̂
∼d

which is equivariant under orthogonal
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transformations. Then,

θ̂
∼

=
d∑
1

t̂i η̂
∼i

. . . (5.1)

where t̂i =
∑n

k=1ŵkûki with ûki = η̂
∼

′

i
x
∼k

and ŵk = ‖x
∼k
−θ̂
∼
‖−1

[
n∑
1

‖x
∼`
− θ̂‖−1

]−1

for 1 ≤ k ≤ n. Because θ̂
∼

is orthogonally equivariant, the components of

t̂1, · · · , t̂d are also orthogonally equivariant. Next let us consider a reference
system η

∼
, · · · , η

∼d
and fix some 0 < α ≤ 1

2 . Consider the d × d matrix E =

(η
∼1

, · · · , η
∼d

) which is nonsingular by construction. The coordinates of x
∼1

, · · · , x
∼n

under the new reference system are given by y
∼i

= (yi1, · · · , yid)′ = E−1x
∼i

, 1 ≤

i ≤ n respectively. If η
∼1

, · · · , η
∼d

form an orthonormal system, E−1 = E′. Let

Sjα denote the range of (univariate) affine equivariant, monotonic statistics with
breakdown point ≥ α, based on the univariate data {y1j , · · · , ynj}. Therefore a
natural extension of Bassett’s idea to the d-dimensional space would be

Sα = S1α × · · · × Sdα. . . . (5.2)

Here ‘×’ denotes the Cartesian product. The sequence of regions Sα for 0 <
α ≤ 1

2 are rectangular and nested. The coordinatewise median with respect to
the reference system constructed from the columns of E sits at the center.

Suppose S(X) denote a region in IRd for a given set of points X = {x
∼1

, · · · , x
∼n
}.

We shall define the breakdown point of S(X) (just as in (1.1)) by

BD(S,X) = min{ m

n
: S(Y m) is unbounded} . . . (5.3)

where Y m = {y
∼1

, · · · , y
∼n
} with |Y m ∩X| = n−m.

Fact 5.1. When the basis matrix E is fixed or chosen in such a way that it
is orthonormal (and equivariant under orthogonal transformations), the region
Sα (defined through (5.2)) has a breakdown point at least α (for 0 < α ≤ 1

2 ).
In order to see why the above result is true notice that the region S(Ym)

becomes unbounded whenever one of the Siα does so. From earlier univariate
calculations we know that each Siα has breakdown level α. Therefore, Sα must
have breakdown α.

Fact 5.2. Under the assumptions of the theorem 4.3, the breakdown point of
T ∗

n (or, T ∗a
n ) can be made as large as ( 1

2 −
1
2n ).

Fact 5.2 can be obtained from Fact 5.1, by choosing each univariate ti’s as
median. In view of the above facts we can construct monotonic statistics with
breakdown point close to 1

2 which are orthogonally equivariant in an asymptotic
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sense. If we are permitted to use auxiliary data on the same set of variates
we can construct monotonic, orthogonally equivariant statistics with breakdown
point as high as 1

2 in an exact sense. One can also construct natural ‘breakdown
contours’ in IRd (namely, Sα described by (5.2)) using such statistics. Such
contours would serve the same purpose as so called ‘depth contours’ (see, Liu
(1990) or Small (1990) for example) introduced by Tukey (1975).

Finally we discuss the issue of coupling affine equivariance in IRd with mono-
tonicity. The conclusions of the previous facts (5.1 and 5.2) are not true for affine
equivariant statistics because the choice of the reference frame will affect the
breakdown point of the statistic. If one considers the minimum volume ellipsoid
(MVE) statistics, the breakdown point would be as high as 1

2 but the statis-
tic may show ‘anti-monotonicity’ behaviour for various configurations. There
is a trade-off between monotonicity and breakdown point for affine equivariant
statistics.

Theorem 5.1. Let T be an affine equivariant, directional monotonic statistic
satisfying T (x

∼1
, · · · , x

∼n
) ∈ convex hull (x

∼1
, · · · , x

∼n
). Then

inf
X

BD(T ,X) ≤ 1
3

+
2
3n

. . . (5.4)

provided d ≥ 2.
Proof. First fix some λ

∼
∈ IRd, ‖λ

∼
‖ = 1 and z

∼1
, · · · , z

∼n
∈ IRd satisfying

λ
∼
∼

′z
∼i

= 0 for 1 ≤ i ≤ n. For fixed λ
∼

and z
∼1

, · · · , z
∼n

define for u1, · · · , un ∈ IR

h(u1, · · · , un) = λ
∼
′ T (z

∼1
+ u1λ

∼
, · · · , z

∼n
+ unλ

∼
). . . . (5.3)

Note that the definition depends on λ
∼

and z
∼1

, · · · , z
∼n

. We suppress this de-

pendence for notational convenience. It is now easy to verify that h is affine
equivariant. Because for a ≥ 0, b ∈ IR

h(au1 + b, · · · , aun + b) = λ
∼
′ T (Ay

∼1
+ bλ

∼
, · · · , Ay

∼n
+ bλ

∼
)

= λ
∼
′ A T (y

∼1
, · · · , y

∼n
) + bλ

∼
′
λ
∼

= a h(u1, · · · , un) + b,

. . . (5.6)

where y
∼i

= z
∼i

+ uiλ
∼
, 1 ≤ i ≤ nandA = (Id − λ

∼
λ
∼
′) + aλ

∼
λ
∼
′ is nonsingular. Also,

notice that h(0, · · · , 0) = 0 because T (z
∼1

, · · · , z
∼n

) is an element of the convex hull

of z
∼1

, · · · , z
∼n

, which is orthogonal to λ
∼
. Further by the assumption of directional

monotonicity of T , h is monotonic in each coordinate.
Next let x

∼1
, · · · , x

∼n
be the given data and let us assume the hypothesis that

BD(T ,X) ≥ r/n for all x
∼1

, · · · , x
∼n

. For a given set of observations x
∼1

, · · · , x
∼n
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consider h with z
∼i

= (Id − λ
∼
λ
∼
′)x
∼i

for some λ
∼
∈ S(d−1). It is clear that the

breakdown point of any such h is at least r/n. In view of Bassett (1991) we can
now claim that

(λ
∼
′x
∼
)(r) ≤ λ

∼
′ T (x

∼1
, · · · , x

∼n
) ≤ (λ

∼
′x
∼
)(n−r+1), . . . (5.7)

where (λ
∼
′x
∼
)(·) denotes the order statistics of λ

∼
′x
∼1

, · · · , λ
∼
′x
∼n

. Next fix two unit

vectors λ
∼1

, λ
∼2

(λ
∼1

6= λ
∼2

) and let λ
∼3

= ‖λ
∼1

+λ
∼2
‖−1(λ

∼1
+λ
∼2

). Define ai = λ
∼
′

1

x
∼i

and

bi = λ
∼
′

2

x
∼i

for 1 ≤ i ≤ n. Also let C = λ
∼
′

1
T (x

∼1
, · · · , x

∼n
) and D = λ

∼
′

2
T (x

∼1
, · · · , x

∼n
)

respectively. By virtue of (5.7) the following inequalities are valid.

a(r) ≤ C ≤ a(n−r+1)

b(r) ≤ D ≤ b(n−r+1)

(a + b)(r) ≤ C + D ≤ (a + b)(n−r+1),
. . . (5.8)

where (a + b)(·) are the order statistics of (ai + bi), 1 ≤ i ≤ n. Next vary the
configuration of the set of observations arbitrarily. This way we shall be able to
generate the sequences {ai} and {bi} independently of each other if d ≥ 2. This
follows by simply solving λ

∼
′

1

x
∼i

= ai and λ
∼
′

2

x
∼i

= bi for 1 ≤ i ≤ n. Now by the

first two inequalities in (5.8) we have a(r) + b(r) ≤ C +D ≤ a(n−r+1) + b(n−r+1).
Hence

(a + b)(r) ≤ a(n−r+1) + b(n−r+1). . . . (5.9)

However by matching a(1), · · · , a(r−1) with b(n−r+2), · · · , b(n) and b(1), · · · , b(r−1)

with a(n−r+2), · · · , a(n) respectively and then making an−r+2), · · · , a(n),
b(n−r+2), · · · , b(n) sufficiently large while keeping the other order statistics mod-
erate we can violate (5.9) unless r ≤ n − 2(r − 1). In other words we must
have

r

n
≤ n + 2

3n

=
1
3

+
2
3n

.

Hence the theorem follows.
It is noteworthy that Donoho and Gasko (1992) obtained a similar result

from Tukey’s halfspace median. Because the halfspace median is not a unique
point (in general this is true for other affine equivariant medians such as Oja’s
simplex median Oja (1983)) it is virtually impossible to establish directional
monotonicity for this median. However one can intuitively realize that an ap-
propriate directional monotonicity holds for Tukey’s halfspace median. Also
by (5.7) we have an interesting relationship between any affine equivariant, di-
rectional monotonic statistic and the order statistics of the projected data in
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various directions. The halfspace median T is computed in such a way that r is
maximized in a ‘minimax’ way. It seems that (5.7) should serve as the building
block for constructing a large class of affine equivariant, directional monotonic
measures of location with high breakdown.
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