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SUMMARY. In the clinical trial randomized play-the-winner (RPW) rule is used with a goal

of allocating more patients to the better treatment in course of sampling. The present paper

provides an application of RPW sampling scheme in the presence of prognostic factors. Both

the cases of non-stochastic and stochastic prognostic factors are discussed. Some decision rules

are provided for comparing two treatments. Limiting proportions of allocations by the two

treatments are obtained.

1. Introduction

The problem of comparison of two treatments A and B, say, in a clinical trial
is considered recently by many authors. Most of the available works in the
literature are based on equal number of patients to the two treatments. But
if the patients enter in a system sequentially then the problem of allocation of
the entering patients among the two treatments gets much importance. If the
subjects are human beings, then from ethical point of view, it is required to
carry out the decision making procedure with the smallest possible number of
patients being treated by the worse treatment in course of sampling. Several
data-dependent adaptive designs are used for this purpose.

Zelen (1969), for this purpose, introduced a concept called play-the-winner
rule for dichotomous responses in clinical trials. As a modification of Zelen’s
play-the-winner rule, Wei and Durham (1978) and Wei (1979) introduced the
idea of randomized play-the-winner (RPW) rule. Further works in this direction
are due to Wei, Smythe and Mehta (1989), Wei (1988), Begg (1990), Bandyopad-
hyay and Biswas (1996, 1997a, 1997b), among others. Some real life applications
of RPW rule are done by Bartlett et al. (1985) and Tamura et al. (1994).
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In all the above works and in almost all the works available in the literature
on clinical trials it is assumed that the entering patients are homogeneous. But,
in practice, there may be many prognostic factors like age, sex, blood pressure,
heart beat, blood sugar etc. Treatment allocation problem in the presence of
prognostic factors are considered by Begg and Iglewicz (1980). They use op-
timum design theory to suggest a deterministic design criterion, which is then
modified for computational convenience. Presence of prognostic factors is also
considered by Atkinson (1982) to use optimum design theory to provide a pro-
cedure of the biased coin type for an arbitrary number of treatments.

In the present paper we want to incorporate the presence of prognostic factors
to introduce an adaptive RPW rule, abbreviated as ARPW rule. We consider
both the cases where the prognostic factors are non-stochastic and stochastic.
A decision making procedure is indicated. We find the exact and limiting (pro-
portion of) allocations to the two treatments.

Note that, if a distribution is assumed on the prognostic factors, the proposed
scheme fits into a generalization of the framework of Wei et al. (1990), and some
subsequent works by Smythe and Rosenberger (1995) and Smythe (1996). But in
those works also, the authors have not thought about the possibility of prognostic
factors.

2. Decision Rules Using ARPW Scheme of Sampling

In this section we assume that there is only one prognostic factor C, which
is non-stochastic, and the corresponding variable is either discrete or can be
easily transformed to a discrete variable with (G+1) ordered grades 0, 1, · · · , G,
defined by consulting a clinician. Grade 0 is for the least favourable condition
and grade G for the most favourable condition. Clearly, the response of the i-th
patient depends not only on the treatment (A or B) by which it is treated, but
also the grade ui ∈ {0, 1, · · · , G} of the i-th patient. Using this prognostic factor
C and its (G + 1) grades, we now introduce an APRW rule using an urn model.

Start with an urn having two types of balls A and B, α balls of each type.
For an entering patient of grade uj we treat him by drawing a ball from the urn
with replacement. If success occurs we add an additional (G − uj + t)β balls
of the same kind and ujβ balls of the opposite kind in the urn. On the other
hand, if a failure occurs we add an additional (G− uj)β balls of the same kind
and (t + uj)β balls of the opposite kind in the urn. Thus, for every entering
patient, (G + t)β balls are added in total, Gβ for the grade and tβ for a success
or failure. For a given (α, β, t) we denote this by ARPW(α, β, t).

Suppose we are interested to accept any one of the following decisions:

H1 : A Â B, H2 : B Â A, . . . (2.1)

where ‘Â’ means ‘better than’. Suppose we have a sequential chain of patient’s
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entrance upto a maximum of n patients. Corresponding to the i-th entering
patient with grade ui we set a pair of indicator variables {δi, Zi} as follows:

δi = 1 or 0 according as the treatment A or treatment B is applied following
an ARPW(α, β, t) procedure, and

Zi = 1 or 0 according as the i-th patient response is a success or failure.
Here we make the following assumption:

P (Zi = 1|δi = h, ui) = p2−haG−ui , h = 0, 1, . . . (2.2)

where a ∈ (0, 1), called the prognostic factor index, is either known from past
experience or can be estimated from past data and p1, p2 ∈ (0, 1), the success
probabilities by treatment A and B respectively at grade G, are unknown. It is
easy to check that, under equivalence of treatment effects (i.e., when p1 = p2 =
p), δi’s are identically distributed Bernoulli (1/2), and Zi’s are independently
distributed with P (Zi = 1) = 1−P (Zi = 0) = paG−ui , and δi’s are independent
of Zi’s. Under H1, we have p1 > p2. Define the statistics

TAn =
n∑

i=1

auiZiδi, TBn =
n∑

i=1

auiZi(1− δi),

NAn =
n∑

i=1

δi = Number of allocations by treatment A,

NBn =
n∑

i=1

(1− δi) = Number of allocations by treatment B,

and hence
gkn = Tkn /Nkn, k = A,B. . . . (2.3)

For a particular treatment, Tkn not only accounts for the total number of suc-
cesses, but also the grades from which the successes have occurred as aui is
inversely proportional to the success probability at grade ui. Then, we set our
decision rules as follows:

Rule 1 : This is a terminal decision rule. The rule is:

Accept H1 if gAn > gBn and H2 if gAn < gBn.
If gAn = gBn, accept H1 with probability 1/2.

. . . (2.4)

Rule 2 : This rule is obtained by modifying Rule 1 with the provision of early
stopping. For this we consider the random variables:

Pks(v) =
Tks + v

Nks + v
, Qks(v) =

Tks

Nks + n− s− v
, k = A,B,

where v = 0, 1, · · · , n − s. In case Nks = 0, we take Pks(0) = Qks(n − s) = 0.
Here Pks(v) represent a possible value of gkn where among the future (n − s)
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incoming patients (after the s-th one) exactly v patients each of grade 0 will be
treated by treatment k and for all of them the result will be success. Similarly,
Qks(v) is a possible value of gkn where among the (n − s) remaining patients
(n − s − v) will be treated by treatment k and for each of them the result will
be failure. We then stop sampling and accept A or B at the s-th stage if

min
v

(QAs(v)− PBs(v)) > 0 or min
v

(QBs(v)− PAs(v)) > 0.

Let p̃i+1 be the conditional probability of δi+1 = 1 given all the previous assign-
ments {δ1, · · · , δi}, and all the previous responses {Z1, · · · , Zi}. Then, it can be
easily shown that

p̃i+1 =



α + β


2t

i∑

j=1

δjZj +
i∑

j=1

(uj + t)−
i∑

j=1

(t + 2uj −G)δj

−t

i∑

j=1

Zj








/
(2α + i(G + t)β), i ≥ 1.

. . . (2.5)

From the urn model it is clear that p̃1 =
1
2
. Now, from (2.5), the marginal

distributions of δi’s are obtained successively as:

P (δ1 = 1) =
1
2
, . . . (2.6)

and for i ≥ 1,

P (δi+1 = 1) =
1
2
− di+1, . . . (2.7)

where, by the method of induction,

di+1 =
β

2α + i(G + t)β
t(p2 − p1)

i∑

j=1

aG−uj

(
1
2

+ dj

)

+
β

2α + i(G + t)β

i∑

j=1

[
2tp1a

G−uj − (t + 2uj −G)
]
dj .

. . . (2.8)

Now we consider some performance characteristics. First we take the risk
function, denoted by R(θ), the probability of a wrong decision. Note that, if the
two treatments are equivalent, i.e., p1 = p2, then there is no loss of accepting
any one as the winner, and hence R(θ) = 0 in this case. For the second decision
rule the average sample number (ASN) of patients required to get a decision is
also used as a performance characteristic. We denote it by S(θ). It is noted
that for both the decision rules risk function are the same. Now, as our initial
goal of this sampling design is to allocate more patients to the better treatment,
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the number of patients treated by treatment A in course of sampling is also
used as a performance characteristic. This is denoted by SA(θ) and is given by

SA(θ) =
n∑

i=1

(
1
2
− di) for Rule 1 and SA(θ) = E(

N∑

i=1

δi) for Rule 2, where N is

the ASN-value. The computations of R(θ), S(θ) and SA(θ) by simulations at
different θ = (p1, p2) are given in Table 2.1. 9998 simulations are done. Here we
take n = 50, α = β = 1, t = 5, G = 3 and a = 0.8. Here uj ’s are generated in
such a way that in the long run we have same frequencies for all 4 grades of the
prognostic factor.

Table 2.1 : Performance characteristics of the proposed decision rule
(p1, p2) R(θ) SA(θ) for Rule 1 S(θ) for Rule 2 SA(θ) for Rule 2
(0.6,0.2) 0.0022 31.0360 42.2254 25.4354
(0.6,0.3) 0.0176 29.7075 43.7292 25.3381
(0.6,0.4) 0.0904 28.4016 45.4718 25.0690
(0.6,0.5) 0.2566 26.7577 47.0236 24.0690
(0.7,0.2) 0.0004 32.8633 40.0889 25.4944
(0.7,0.3) 0.0032 31.6096 41.4368 25.5380
(0.7,0.4) 0.0270 30.3311 43.1578 25.4758
(0.7,0.5) 0.0839 28.7135 45.1888 25.2447
(0.7,0.6) 0.2473 27.1899 46.9676 24.6663
(0.8,0.2) 0.0000 35.0540 37.5166 26.1909
(0.8,0.3) 0.0008 33.9924 39.3959 26.0184
(0.8,0.4) 0.0024 32.6281 41.0039 25.9704
(0.8,0.5) 0.0188 31.0232 42.8368 25.8317
(0.8,0.6) 0.0742 29.3081 45.1680 25.8013
(0.8,0.7) 0.2351 27.3159 47.0506 24.9902

From the above table it is clear that Rule 2, as it requires fewer sample obser-
vations, is definitely better than Rule 1.

3. Some Asymptotic Results

We first make the following assumptions:

(i)
1
n

n∑

j=1

uj → u, as n →∞. . . . (3.1)

(ii)
1
n

n∑

j=1

aG−uj → a0, as n →∞. . . . (3.2)

(iii)
1
n

n∑

j=1

auj → a1, as n →∞. . . . (3.3)
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Now we have the following Lemmas:
Lemma 3.1. As n →∞,

1
n

n∑

i=1

δi
P→ µ∗, . . . (3.4)

where µ∗ ∈ (0, 1).
Proof. See the appendix.

Corollary. When p1 = p2, we have µ∗ =
1
2
.

Lemma 3.2. As n →∞, under p1 = p2,

1
n

n∑

i=1

auiδi
P→ a1

2
. . . . (3.5)

Proof. Note that aui is bounded by 1 and hence the follows from Lemma 3.1.

Now we find the asymptotic distribution under equivalence. Here we have
the following theorem:

Theorem 3.1. Under equivalence (i.e., when p1 = p2 = p), as n →∞,

n1/2
(
gAn − paG

) d= n1/2
(
gBn − paG

) d→ N
(
0, σ2

)
,

where
σ2 = 2paG

(
a1 − paG

)
.

Proof. ‘ d=’ part of the theorem is trivial. For the other part we rewrite TAn

as

TAn =
n∑

i=1

auiZiδi =
n∑

i=1

Ui,

where Ui = auiZiδi. Note that, for each n and under equivalence, the conditional
distribution of Ui given δ = (δ1, · · · , δn) are independent and δi is distributed
independently of Zi. Hence, since δs

i = δi, s = 1, 2, · · ·, we get, as in Hajek and
Sidak (1967, p. 194),

mni = E(Ui|δ) = δipaG,
s2

ni = V (Ui|δ) = δia
G+uip

(
1− paG−ui

)
,

. . . (3.8)

and hence

s2
n =

n∑

i=1

s2
ni = paG

n∑

i=1

δia
ui − p2a2GNAn ≥ a2Gp(1− p)NAn. . . . (3.9)
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Then, for every ε > 0, we have

s−2
n

n∑

i=1

∫

|u−mni|>εsn

(u−mni)2dP (Ui < u|δ)

≤ 1
ε2s4

n

n∑

i=1

E
[
(U −mni)4|δ

] ≤ 1
ε2a4Gp2(1− p)2

NAn

N2
An

,

. . . (3.10)

which, by Lemma 3.1, converges to zero in probability, as n →∞. Hence, using
Lemmas 3.1, 3.2 and Hajek and Sidak (1967, ch. V, pp. 194-195), we have

n1/2

σ

(
gAn − paG

) P'

(
TAn

NAn
− paG

)

√√√√ paG

N2
An

(
n∑

i=1

δiaui − paGNAn

)
d→ N(0, 1), . . . (3.11)

which completes the proof.
Next we find the limiting value of the risk function. Here we prove the

following theorem:
Theorem 3.2. For any θ = (p1, p2) : p1 6= p2, R(θ) → 0 as n →∞. Proof.

Suppose, θ : p1 > p2. If p1 < p2, the proof follows similarly. Then

R(θ) = Pθ{gAn < gBn}+
1
2
Pθ{gAn = gBn}. . . . (3.11)

It is always possible to have two sequences of positive integers {νAn} and {νBn}
such that, as n →∞,

νkn →∞, k = A,B, and
νAn

n
→ µ∗ and

νBn

n
→ 1− µ∗. . . . (3.12)

Then, by Lemma 3.1, we have

Nkn
P'νkn, k = A,B, . . . (3.13)

and hence

gkn = Tkn /Nkn
P' Tkn/ νkn = g∗kn (say), k = A,B. . . . (3.14)

Now

E (g∗kn) = EE (g∗kn|δ) = p1a
GE

(
NAn

νAn

)
. . . (3.15)
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and

V (g∗kn) = EV

(
NAn

νAn

∣∣∣∣ δ

)
+ V E

(
NAn

νAn

∣∣∣∣ δ

)

=
1

ν2
An

E

[
paG

n∑

i=1

δiaui − p2a2GNAn

]
+ p2a2Gν−2

AnV (NAn)

≤
(

n

νAn

)2
[
paG 1

n2

n∑

i=1

aui + V

(
NAn

n

)]
.

. . . (3.16)

By (3.12) and Lemma 3.1, as n → ∞, the right hand members of (3.15) and
(3.16) converge respectively to p1a

G and 0. This, by (3.14), implies

gAn
P→ p1a

G. . . . (3.17)

Similarly, we get

gBn
P→ p2a

G. . . . (3.18)

Then, using (3.17) and (3.18) in (3.11), R(θ) tends to 0 as n →∞.
The initial goal of our sampling design was to allocate a larger number of

patients to the better treatment in course of sampling. Now we are intended
to find the limiting proportions of allocations by the two treatments if ARPW
is advocated for a large number of patients. Here we note that for any θ, the
sequence {di, i ≥ 1} is either increasing or decreasing depending on the values
of p1 and p2 (see the appendix) and it is bounded above and below (as 0 ≤
1
2
− di ≤ 1 ∀ i). Hence writing limi→∞ di = d, we have by Toeplitz’s lemma,

E

(
1
n

n∑

i=1

δi

)
=

1
2
− 1

n

n∑

i=1

di → 1
2
− d, . . . (3.19)

which shows that NAn/n converges to
1
2
− d, and this is the limiting proportion

of patients treated by treatment A. To find d, using assumptions (3.1) and (3.2),
we have

1
n

n∑

j=1

ujdj − ud =
1
n

n∑

j=1

uj(dj − d) + d


 1

n

n∑

j=1

uj − u


 ,

which tends to zero, as n →∞. This implies,

1
n

n∑

j=1

ujdj → ud, as n →∞. . . . (3.20)
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Similarly, we get,

1
n

n∑

j=1

aG−uj dj → a0d, as n →∞. . . . (3.21)

Using (3.1), (3.2), (3.20) and (3.21) we get from (2.8),

d =
t

G + t
(p2 − p1)

(a0

2
+ a0d

)
+

1
G + t

[2tp1a0 − (t + 2u−G)]d,

which gives

d =
t(p2 − p1)a0

2[2(t + u)− t(p2 − p1)a0 − 2ta0p1]
. . . . (3.22)

It is interesting to note that the limiting proportions do not depend on the choice
of α and β, but it depends on t. If a0 = 1 and u = 0 (which implies the absence
of prognostic factor), we get the limiting proportions of allocations in an RPW
scheme of sampling (see Wei (1979)).

4. Discussions

So far we have assumed the prognostic factor to be non-stochastic. Now we
consider the case when it is stochastic. Suppose the variable U corresponding to
the prognostic factor has the distribution function (d.f.) H(u), u = 0, 1, · · · , G.
If we write ψl(a) = E

(
aG−U .U l

)
(provided it exists) and PU (w), the probability

generating function (p.g.f.) of U , then the marginal distribution of δi’s can
be obtained from (2.6)-(2.8) by replacing aG−uj .ul

j and aG−uj respectively by
ψl(a) and aGPU (a−1) at every stage. Subsequent analysis can be similarly done.
We consider the simplest case where G = 1. Then U follows a Bernoulli (q)
distribution. In this case we have E(aG−U ) = (1− q + qa) and E(aG−U .U l) = q
for each l.

All the analyses in this paper are done by considering only one prognostic
factor. If there are more than one prognostic factors we can proceed in the
following direction. Suppose there are s prognostic factors C1, C2, · · · , Cs with
grades 0, 1, · · · , Gl for the l-th factor. First, we consider G + 1 =

∏s
l=1(Gl + 1)

factor combinations. We can arrange these G+1 combinations according to the
favourable conditions as 0, 1, · · · , G and carry out the same procedure discussed
in this paper. If G is moderately large the revised grading may be a difficult
job as it involves combination of different grades. In that case for an entering
patient with grade ulj of the factor Cl, l = 1(1)s, we have

P (Zj = 1|δj = h, ulj , l = 1(1)s) = p2−h

s∏

l=1

aGl−uls

l , h = 0, 1, . . . (4.1)
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where we have ideas about the prognostic factor indices a1, a2, · · · , as from the
past experience. Then the same procedure can be carried out. However, it
requires more modeling and knowledge about parameters. This is actually a
routine generalization and hence we are not proceeding for further study.

In section 2, (2.2) is proposed heuristically. Actually this, at least in theory,
could be built up starting from more basic data. Suppose the responses are
continuous which are converted to dichotomous responses by setting a threshold
response c ∈ (0,∞). Let, for grade u, the response variable Xi (for δi = 1) have
the d.f. Fu, u = 0(1)G. Writing F̄u(x) = 1− Fu(x), we assume that

F̄u(c)
/
F̄u+1(c) = a. . . . (4.2)

Note that success probability by Xi with grade u is F̄u(c). Then denoting
p1 = F̄G(c), we have

F̄u(c) = aG−uF̄G(c) = p1a
G−u.

Similarly, P (Zi = 1|δi = 0, ui) = p2a
G−u can be established. Note that the

relationship (4.2) is satisfied by the Weibull family and hence by the exponential
distribution as a special case. If Fu(x) = 1 − e−(G+1−u)x, we have a = e−c.
Clearly a ∈ (0, 1).

Acknowledgment : The authors would like to thank the referee for detecting
a mathematical mistake. The authors thank the referee and an associate editor
for making some constructive suggestions which lead to the present improved
version over some earlier versions of the manuscript.

Appendix

Result 1. The sequence {di} is bounded and is either increasing or decreasing
depending on the values of (p1, p2, α, β, G, t).

Proof. It is easy to note that for (p1, p2) : p2 > p1, we have

d1 = 0 and d2 > 0. . . . (A.1)

As the choice of design parameters (α, β, t) is in the experimenter’s hand, we
can choose them in such a way that

d2 ≤ D(0), D(1), · · · , D(G),

where

D(j) =
t(p2 − p1)aG−j

2[2(t + j)− t(p1 + p2)aG−j ]
.

Here we will prove the result by the following steps :
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1. di+1 > 0 ∀ i ≥ 2.
2. The sequence {di} is bounded.
3. di+1 ≥ di ∀ i ≥ 2.

Step 1. From (2.11) we can write for i ≥ 2,

di+1 =
β

2α + i(G + t)β
t(p2 − p1)

i∑

j=1

aG−uj

(
1
2

+ dj

)

+
β

2α + i(G + t)β

i∑

j=1

[
2tp1a

G−uj − (t + 2uj −G)
]
dj ,

which implies

(2α + i(G + t)β)di+1

= βt(p2 − p1)
i∑

j=1

aG−uj

(
1
2

+ dj

)
+ β

i∑

j=1

[
2tp1a

G−uj − (t + 2uj −G)
]
,

=



βt(p2 − p1)

i−1∑

j=1

aG−uj

(
1
2

+ dj

)
+ β

i−1∑

j=1

[
2tp1a

G−uj − (t + 2uj −G)
]
dj





+βt(p2 − p1)aG−ui

(
1
2

+ di

)
+ β

[
2tp1a

G−ui − (t + 2ui −G)
]
di

= (2α + (i− 1)(G + t)β)di

+βt(p2 − p1)aG−ui

(
1
2

+ di

)
+ β

[
2tp1a

G−ui − (t + 2ui −G)
]
di,

implying

di+1 =
(

2α + (i− 1)(G + t)β
2α + i(G + t)β

)
di

+
β

2α + i(G + t)β
t(p2 − p1)aG−ui

(
1
2

+ di

)

+
β

2α + i(G + t)β
[
2tp1a

G−ui − (t + 2ui −G)
]
di,

. . . (A.2)

and hence

di+1

di
=

2α + β
{
(i− 1)(G + t) + t(p2 − p1)aG−ui + 2tp1a

G−ui − (t + 2ui −G)
}

2α + i(G + t)β

+
βt(p2 − p1)aG−ui

2α + i(G + t)β
1

2di
. . . (A.3)
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=
2α + β

{
(i− 2)(G + t) + t(p1 + p2)aG−ui + 2(G− ui)

}

2α + i(G + t)β

+
βt(p2 − p1)aG−ui

2α + i(G + t)β
1

2di
.

. . . (A.4)

Using (A.1), it is easy to observe that for i ≥ 2,

di+1/di > 0,

implying
di+1 > 0 ∀ i ≥ 2.

Step 2. For i ≥ 2,

di ≤ D(ui) =
t(p2 − p1)aG−ui

2[2(t + ui)− t(p1 + p2)aG−ui ]
⇐⇒ [

2α + β
{
(i− 2)(G + t) + t(p1 + p2)aG−ui + 2(G− ui)

}]
di

≤ t(p2 − p1)aG−ui

2[2(t + ui)− t(p1 + p2)aG−ui ]
[2α + β {(i− 2)(G + t)

+t(p1 + p2)aG−ui + 2(G− ui)
}]

=
1
2
t(p2 − p1)aG−ui

[
2α + i(G + t)β

2(t + ui)− t(p1 + p2)aG−ui
− β

]

⇐⇒
(

2α + β
{
(i− 2)(G + t) + t(p1 + p2)aG−ui + 2(G− ui)

}

2α + i(G + t)β

)
di

+
βt(p2 − p1)aG−ui

2(2α + i(G + t)β)
≤ t(p2 − p1)aG−ui

2[2(t + ui)− t(p1 + p2)aG−ui ]

⇐⇒ di+1 ≤ t(p2 − p1)aG−ui

2[2(t + ui)− t(p1 + p2)aG−ui ]
.

. . . (A.5)
As ui is a variable, it can take any of the values 0, 1, · · · , G. Hence for j =
0, 1, · · · , G,

d2 ≤ D(u2 = j) ⇐⇒ d3 ≤ D(j).

In a similar manner we can obtain

di ≤ D(0), D(1), · · · , D(G), ∀ i ≥ 2.

Step 3. From (A.4), we get,

di+1

di
≥ 1 ⇐⇒ di ≤ D(ui) =

t(p2 − p1)aG−ui

2[2(t + ui)− t(p1 + p2)aG−ui ]
,

where the RHS is ensured by Step 2 for all possible values of ui.
Remark. Note that if we write

P (δi = 1) =
1
2
− di for (p1, p2) = (a, b),
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and

P (δi = 1) =
1
2
− d∗i for (p1, p2) = (b, a),

then d∗i = −di, as the roles of treatments A and B are interchanged. Thus
Result 1 can be easily proved for p1 > p2, as in that case we are to deal with
the sequence {−di, i ≥ 2}.

If p1 = p2, then from (2.8), in a recursive manner it can be easily seen that

di = 0 ∀ i.

Result 2. As n →∞,

1
n

n∑

i=1

δi
P→ µ∗,

where µ∗ ∈ (0, 1).
Proof. It can be easily shown that

P (δi+1 = 1|δi = 1) =
1
2
− β

2α + i(G + t)β
t(p2 − p1)

i−1∑

j=1

aG−uj

(
1
2

+ dj

)

− β

2α + i(G + t)β

i−1∑

j=1

[
2tp1a

G−uj − (t + 2uj −G)
]
dj

− β

2α + i(G + t)β

[
1
2
(t + 2ui −G)− tp1a

G−ui

]

=
1
2
− d̄

(i)
i+1 (say),

. . . (A.6)

P (δi+2 = 1|δi = 1)

=
1
2
− β

2α + (i + 1)(G + t)β
t(p2 − p1)

×



i−1∑

j=1

aG−uj

(
1
2

+ dj

)
+ aG−ui+1

(
1
2

+ d̄
(i)
i+1

)


− β

2α + (i + 1)(G + t)β




i−1∑

j=1

(
2tp1a

G−uj − (t + 2uj −G)
)
dj

+
(
2tp1a

G−ui+1 − (t + 2ui+1 −G)
)
d̄
(i)
i+1

]

− β

2α + (i + 1)(G + t)β

[
1
2
(t + 2ui −G)− tp1a

G−ui

]

=
1
2
− d̄

(i)
i+2 (say),

. . . (A.7)
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and, in general, for i < k,

P (δk = 1|δi = 1)

=
1
2
− β

2α + (k − 1)(G + t)β
t(p2 − p1)

×



i−1∑

j=1

aG−uj

(
1
2

+ dj

)
+

k−1∑

j=i+1

aG−uj

(
1
2

+ d̄
(i)
j

)


− β

2α + (k − 1)(G + t)β




i−1∑

j=1

(
2tp1a

G−uj − (t + 2uj −G)
)
dj

+
k−1∑

j=i+1

(
2tp1a

G−uj − (t + 2uj −G)
)
d̄
(i)
j




− β

2α + (k − 1)(G + t)β

[
1
2
(t + 2ui −G)− tp1a

G−ui

]

=
1
2
− d̄

(i)
k (say).

. . . (A.8)
Here, for each i, it can be easily shown that, as k →∞,

d̄
(i)
k − dk → 0.

Hence,

P (δk = 1|δi = 1)− P (δk = 1)

=
β

2α + (k − 1)(G + t)β
t(p2 − p1)

k−1∑

j=i+1

aG−uj

(
dj − d̄

(i)
j

)

+
β

2α + (k − 1)(G + t)β

k−1∑

j=i+1

(t + 2uj −G)
(
d̄
(i)
j − dj

)

− β

2α + (k − 1)(G + t)β

[
1
2
(t + 2ui −G)− tp1a

G−ui

]

≤ β

2α + (k − 1)(G + t)β
t|p2 − p1|

k−1∑

j=i+1

aG−uj |dj − d̄
(i)
j |

+
β

2α + (k − 1)(G + t)β

k−1∑

j=i+1

|t + 2uj −G||dj − d̄
(i)
j |

+
β

2α + (k − 1)(G + t)β
|1
2
(t + 2ui −G)− tp1a

G−ui |
= cik (say),

. . . (A.9)

which, by Toeplitz’s lemma, tends to zero as k →∞.

Thus, as P (δi = 1) =
1
2
− di ≤ 1

2
for p2 > p1, we have
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V

(
1
n

n∑

i=1

δi

)

=
1
n2

n∑

i=1

V (δi) +
1
n2

∑

i6=k

cov(δi, δk)

=
1
n2

n∑

i=1

(
1
2
− di

) (
1
2

+ di

)

+
1
n2

∑

i 6=k

P (δi = 1)(P (δk = 1|δi = 1)− P (δk = 1))

≤ 1
4n

+
1
n2

n∑

k=1

(k − 1)β
2α + (k − 1)(G + t)β

t|p2 − p1|
k−1∑

j=i+1

aG−uj |dj − d̄
(i)
j |

+
1
n2

n∑

k=1

(k − 1)β
2α + (k − 1)(G + t)β

k−1
j=i+1|t + 2uj −G||dj − d̄

(i)
j |

+
1
n2

(k − 1)β
2α + (k − 1)(G + t)β

|1
2
(t + 2ui −G)− tp1a

G−ui |,

. . . (A.10)

which, by Toeplitz’s lemma, tends to zero as n → ∞. Hence the result follows
using the fact that the sequence {di} is monotonic and bounded.
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