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SUMMARY. Determining the shape of a point pattern on the real plane is a problem
of considerable practical interest and has applications in many branches of science. Set esti-
mators of a nonparametric nature which may also be used as shape descriptors should have
several desirable properties. The more important ones among them are the following: (a) The
estimator should be consistent, i.e. the Lebesgue measure of the symmetric difference of the
actual region and the set estimator should go to zero in probability as the number of sample
points increase arbitrarily; (b) it should be computationally efficient; and (c) it should be
automatic, in the sense that the method should be able to detect the number of independent
disjoint components making up the true region and should not depend on this number being
known. None of the currently known estimators combine all these properties.

Ray Chaudhuri et al. (1997) has introduced a shape descriptor called s-shape in the
context of perceived border extraction of dot patterns. In this paper we develop a related idea
to construct a class of set estimators which have all the three properties stated above. The
emphasis of the paper is on establishing the consistency results of the proposed set estimator.
It is shown that the s-shape is a consistent estimator not just under the uniform distribution,
but also when the points are drawn according to any continuous distribution.

The method is illustrated with several examples, and the role of §, the only parameter
controlling the structure of the s-shape is discussed. Values of § which appear to be intuitively
and experimentally justified are proposed. A bound for the order of error is computed. Possible

directions for future research are also mentioned.

1. Introduction

From an early stage of human endeavour one problem of interest is to find
the shape of a point pattern. From astronomical studies to various application
domains such as exploration of natural resources, urban planning, biomedical
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imaging, etc., the structural analysis of point set and shape recovery play an
important role (R. Laurini and D. Thompson, 1992, J.C. Russ, 1995, J. Taylor,
1977). In IR? or IR? one can perceive the shape of the point set if the points are
clearly visible as well as fairly densely and more or less evenly distributed. Such
a point set is referred to as a reqular dot pattern. Intuitively speaking, shape of
a point pattern is the bounded region that generates the point pattern. In 1997,
Ray Chaudhuri et al. has introduced a shape descriptor called s-shape in the
context of perceived border extraction of dot patterns. The impression behind
the s-shape is as follows: Let the pattern plane be partitioned by a lattice of
square grids of ‘appropriate’ length. Consider the union the of grids containing
points of the dot pattern. If the grid-length s is properly selected, this union
or a ‘smooth’ version of this union approximates the underlying region of the
pattern.

The shape description issue may be viewed as an associated problem of the
more basic question of set estimation from a finite number of sample points
drawn from the set. One major problem of interest in set estimation is con-
sistency. An estimator is called consistent if it converges (in some appropriate
sense) to the original set A as the number of points drawn from A tends to infin-
ity. In this paper the theoretical properties of the s-shape as a set estimator for
sets in IR? are studied. The spirit of the procedure is nonparametric in nature.

The paper is organized in the following order. In Section 2, we define consis-
tency of a set estimator and discuss the existing results. Thereafter, the s-shape
and its derivatives are formally defined. In Section 3.1, we establish the con-
sistency of s-shape when the point set is generated by an uniform distribution
on A. In Section 3.2 this result is extended to general continuous distributions
under appropriate conditions via another theorem. In Section 4, our methods
are applied to illustrate the effectiveness of s-shape as a set estimator. A general
discussion on the proposed estimator is presented in the last section (Section 5).
The advantages of s-shape and the directions for future work are also pointed
out.

2. Definitions and Existing Results

2.1. Set estimation and consistency. In the following we discuss the existing
results in the context of a point set in the 2-dimensional case.

DEFINITION 2.1. Let X1, Xo,...., X, be 2-dimensional independent and iden-
tically distributed (i.i.d) random vectors from a distribution which is supported
on aset « C IR?. Let a* C IR? be an estimate of a based on X1, X, ...., X,,.
Then «f, is said to be a consistent estimator of a (denoted «, — «) if

lim E[A(a)Aa)] =0 ...(2.1.1)

n—o0
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where A is the 2-dimensional Lebesgue measure, A represents symmetric differ-
ence and F represents expectation.

THEOREM 1. (Grenander’s Theorem). Let « C IR? be a bounded Borel set
whose boundary has Lebesgue measure 0. Let {(e,,) be a sequence of positive num-
n

bers such that as n— 00, €, — 0 but ne2 — co. Let ) = U{X* | X; — X ||
i=1

< €n} where X1, X, ...., X, are i.i.d random vectors from a uniform distribution
o over a. Then limp_oo E[A(a),Aa)] = 0 where X is the Lebesque measure on
IR? and |||’ represents the Euclidean norm (U. Grenander, 1975).

Note that there are infinitely many different sequences of such ¢,’s with the
property that n — oo,€e, — 0 and ne% — oo. Since the choice of €, does not
depend on X1, Xs, ...., X,,, Grenander’s class of estimators do not have the scale
equivariance property.

Another consistent set estimator based on the Minimum Spanning Tree
(MST) is due to Murthy (1988). In this case, the radii €,’s are made func-
tions of X1, X», ...., X, in the context of compact regions (T.M. Apostol, 1971)*.

THEOREM II. (Murthy’s Theorem) Let X1, X, ...., X, be i.i.d random vec-
tors from a uniform distribution which is supported on a compact region .
l
Let 1,, denotes the length of the MST(X1,Xs,...., X,) where h, = {/—. Let
n
n
af = U{X* || X; — X [|< hn}. Then o is a consistent estimator of a.
i=1
The above result is true for any continuous distribution. However, the result
can not be extended to the case of union of multiple compact regions unless the
number of disjoint components is known.
Note that the above two theorems basically take the union of certain circular
neighborhoods centering every sample point (in Theorem I) or points over the
MST of sample points (in Theorem IT) as an estimate of the original set «.

2.2 The s-shape. Let S, be a dot pattern containing n points in real plane.
Let W, be the optimal rectangle (rectangle with smallest area) with horizontal
and vertical sides parallel to the rectangular coordinate axes of reference covering
S, i.e.S, C W, C IR% For agiven grid side-length s,,, let F(s,,) denote a lattice
of square grids on the real plane, with sides parallel to the coordinates axes.

Letting g € F(s,) denote a generic grid, define

Glsw) = {g| 9" W # 6}
Glsn) =Ulg| g € G(sn)) } -+ (22.1)

YA set @« C IR? is said to be a compact region if a is path-connected, compact,
cls(int(a))=a, and 8(a) consists of finitely many rectifiable curves. (cls, int and 8 denote
respectively closure, interior and boundary).
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H(sn) ={9 19N S, # ¢}
Hsn)=Ulg |9 € Hlsn) } - (222)

Note that G(s,) denotes the set-union of grids over W,, while H (s,) denotes
the subset of G(s,) by joining the grids each of which contains at least one
point. Let P denote the number of grids in H(s,). Then the area of H(s,) is
MH(sy)) = PH x 2.

DEFINITION 2.2. The induced hull H(s,) with grid-length s, is said to be
an s-shape of Sy,.

By starting from the left-upper most grids, let the grids of G(s,) be ordered
in a 2-dimensional array. Then G(s,) induces a binary digital image whose (i,5)-
th location (pixel) represents the grid situated at é-th row, j~th column position.
The foreground of this binary image is then generated by the grids of H(sy).
(For the definition of binary digital image etc., see the Appendix). As there is
a one-to-one correspondence between the foreground and H(s,,), the foreground
is also denoted by H(sy).

Let this foreground be morphologically operated by a binary closing (R.M.
Haralick, S.R. Sternberg and X. Zhuang, 1987) where the 3x3 structuring ele-
ment having all entries equal to 1 and center of reference at the middle position
is used (for definitions etc., see the Appendix). Let the resulting morphologically
closed set which is superset of H(s,,), be denoted by H(s,,).

Let H (sy,) denote the union of all grids whose corresponding (i,j)-th position
belong to #(s,). Note that the closing ‘smoothes’ the set H(s,) from outside.
Consider all holes as well as cusps (concavities on the boundary region) of H(s,,)
resulting from the empty grids. Among these, grids that can not be a part of
3x3 a lattice of grids completely in the background, are merged in H(s,) due
to closing. For example, an empty grid having 5 non-empty grids in its 8-
neighbours (east, north-east, north, north-west, west, south-west, south, south-
east) becomes a part of H(s,).

DEFINITION 2.3. H(sy,), which is a superset of H(sy) is said to be the
smoothed induced hull of the latter.

In the next section, the consistency of H(s,,) is first analyzed under an uni-
form distribution. Regarding the choice of s, a data driven procedure is pro-
posed and the range where H(s,) remains consistent is established. The result
is thereafter generalized to the case of arbitrary continuous distributions.

3. Counsistency of the s-shape

3.1 Points from a uniform distribution. Consider any region «, a finite union
of connected subregions in IR2?, each of which is bounded by a closed curve
of finite length. Assume that the interior of a has a positive Lebesgue measure
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while its boundary has Lebesgue measure 0. Also let W be the optimal (smallest
area) rectangle with sides parallel to the coordinate axes such that « lies in the
interior of W. Without loss of generality let the area (Lebesgue measure) of
be p, (0 < p <1) and the area of W be 1.

Let n points be chosen at random under the uniform distribution over the
region a and the set of points be denoted by S,,. Let W, be the optimal rectangle
which covers this set of n points, with area A,, < 1. Consider the lattice of square
grids F(s,) on IR? with sides parallel to the coordinate axes where the grid side-
length is, s, = n"%/4,, 0 < § < 1. Then there are approximately n?® grids in
the sublattice G(sy) which consists grids of F(s,) intersecting W,,. For clarity
of presentation, the following notations are used:

i. PT' = # of grids in F(s,) intersecting a (some of them may not contain
points of Sy).

ii. T,, = union of the above P! grids intersecting a.

iii. PI = # of grids among P! completely in the interior of a.

iv. I,, = union of the above P! grids completely in the interior of a.

v. ny = # of points from S, in the interior of I,,.

vi. PB = # of grids in F(s,) intersecting the boundary of a.

vii. B, = union of the above P2 grids intersecting the boundary of a.

viii. ng = # of points from S,, in the interior of B,.

xi. PH = # of grids in F(s,) containing at least one point from S,,.

x. H, = union of the above P non-empty grids.

Notice that I, C « C T},, By, = T,,/1,, and ng + n; = n, while H,, is in fact
s-shape of S,,. If s,, is chosen as above, we will show that the Lebesgue measure
of the symmetric difference of H,, and a goes to 0 in probability as n tends to
oo for appropriate choices of §.

By the strong law of large numbers (SLLN) any subregion of a with positive
Lebesgue measure eventually has a point chosen from it in S,, with probability
1 (w.p.1). Thus, as n — oo, we have in the sense of (2.1.1),

W, — W ...(3.1.1)

while with probability 1,
A, —1 ...(3.1.2)

To prove (o N H,) —0 in probability (H,, denotes the complement of H,,)
we first look at the proportion of empty grids among the P! grids intersecting
the region «.

Since B,, approximates a one dimensional region with Lebesgue measure 0
(the boundary in question), and since the interior of a has positive Lebesgue
measure (=p, the measure of «) we have

lim A\(B,)=0 w.p.1. ...(3.1.3)

n—oo
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In fact,
AN CABa)
nh_}rr;o NTh) 1, and nh_}rr;o T =0 wpl ...(3.14)
Similarly,
lim =1  wpl ... (3.1.5)
n—oo n

Let n;y = na, where lim,,_,-, a, = 1 w.p.1. By the above results, it is easily
established that

P,
lim —~=p wp.l. ...(3.1.6)

0
Suppose that n balls are thrown at random in P, = n boxes, 0 < 0 < 2,

a
where a is a finite positive constant. Then the probability that a particular box

remains empty is
P,—1\" 1\" a\"
=({l1—-—) =(1-— .. (3.1,
< P, ) < Pn> ( n") (3.1.7)

Since the balls are thrown at random, this also represents the expected pro-
portion of empty boxes. It is a standard result of calculus that

an e ® 6=1
lim (1 - —0) o 6<1 ...(3.1.8)
noree n 1, 1<6<2

Now, the expected proportion of empty grids among the P! grids in the
interior of the region « is

1\"™*" n2 1 \""
1- — =11- —— ... (3.1.
( P,{> ( Pl n> (3.1.9)
246

1
Since lim — = — w.p.1, the limit of expression in the right hand side of
n— o0 PT{

the above equation becomes e if 6 = 0.5; equals 0 if § < 0.5; and equals 1 if
0.5<d <1

Thus, for any choice of § < 0.5, the expected proportion of empty grids
among the grids completely in the interior of the region a goes to 0 as n becomes
arbitrarily large. Since the proportion of empty grids is a non-negative random
variable, the proportion of empty grids also goes Et;o 0 in probability by Markov’s

P,
inequality. Also, by equation (3.1.4) as lim P—’;, =0 w.p.1, the proportion of
n— 00
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H
empty grids among P! is also 0 in the limit. Hence, lim P—”T =1 w.p.1 and
n—o00
H,, eventually covers a in probability. That is,
A (a N Hn) 4 0 in probability. ...(3.1.10)

Conversely, A\(H,Na&) < A(BpoUIL,)Na) = A(Byna)+A(I,Nna) <
A (By).
Taking limit on both sides,

lim A(H,Na&) < lim A(B,) =0 w.p.l ...(3.1.11)
n—0o0 n— o0
Combining (3.1.10) and (3.1.11) it is established that A (H,A«a) — 0 in proba-

bility.
Since the above symmetric difference is a bounded random variable, from the
above result the following theorem is established:

THeEOREM III. Let Xy, Xo,...., X, be i.i.d random wvectors drawn under a
uniform distribution over the region a, a finite union of connected subregions in
IR?, each of which is bounded by a closed curve of finite length. Let W, be an
optimal rectangle covering Xy, Xs,...., X,, with area A,. If s, = n"°/A,,(0 <
0 < 0.5) then the s-shape H (s,) = Hy, is a consistent estimator of a.

3.2 Points from arbitrary continuous distributions. Let f (> 0) be the con-
tinuous density function of the random variable over the two dimensional region
«a which is defined as in Section 3.1. Without loss of generality let the area
(Lebesgue measure) of a be p’, (0 < p’ < 1) and the area of W be 1.

Let p(Q) be the probability of any subregion @ of « under the density f. Let
n points be chosen from the region a at random under p and the set of points
be denoted by S,.

Consider any ¢ > 0. Then one can choose a large number m such that

Aam) >p' — % where

am:{w|w€a,%<f(m)<m}. ...(3.2.1)

Let g () = p. We assume that the boundary of the set a,, has Lebesgue
measure 0. The other notations and terms used in the previous theorem are also
used in this case with the only alteration that in (i.)-(v.) « is replaced by ay,.
Let Hp,,n (C Hy) denote the union of non-empty grids intersecting ay,.

As justified in the last theorem, we have as n — oo, in the sense of (2.1.1),
W, > W ...(3.2.2)

while with probability 1,
A, =1 ...(3.2.3)
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Let a (sample) point Z be drawn from «. Then
P(Zel,) = / f(z)dz <mX(I,) ...(3.24)
I,

For a given grid g among P!,

P(Zeg) _ mA(
P(Z €I, ~ mPIX

n

P(Zeg|Zel,) = g() !

= ...(3.2.5
g) m’P] (3:25)

If n; points are drawn from I,, then an upper bound of the probability of g
to be empty can be found by the following equation.

1 "
By strong law of large numbers,
lim L — p  w.p.l ...(3.2.7)
n—oo N,

Let ny = na, where lim,,_,, a, = p w.p.1.

For i = 1,2, ..., PL let the characteristic function y; be defined as

1 ifi-th grid is empty
Xi= 0 otherwise ... (3.2.8)
PI
As proportion of empty grids among Py is #, the ezpected proportion
n

of empty grids among P! is

== < (1) = ()
... (3.2.9)

By (3.1.8) and (3.2.7) the limit of the expression in the right hand side of the
above equation becomes e TR if § = 0.5; equals 0 if § < 0.5; and equals 1
if0.5 <6 <1.

Thus for any choice of § < 0.5, the proportion of empty grids among the
grids completely in the interior of the region «,, goes to 0 for a sufficiently large
n. Thus, as in Section 3.1,

PI
Zi:"1 Xi

E
Py

A (H'mm N am) 5 0 in probability . ... (3.2.10)
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As B, the union of the PB grids which intersect the boundary of a, approx-
imates a one dimensional region with Lebesgue measure 0 (the boundary in
question) and interior of « has positive Lebesgue measure, we have

lim A(B,) =0 w.pl . (32.11)

n—o0

For any given € > 0 and 0 < t < 1, by (3.2.1), (3.2.10) and (3.2.11) we can
choose M and N such that whenever m > M, n > N and § < 0.5

P(|>\(f1nma) |<e) P(|>\(Iirnmam) |<§)
P(|A(Hm,nmam) < 5) >1-t.

As this is true for arbitrary € and ¢, and since A (H,, N &) — 0 in probability,
A (H,Aa) — 0 in probability.
Thus from the above result the following theorem is established.

v

..(32.12)

Y%

THEOREM 1V. Let X1, X5, ..., X, be i.i.d random vectors from a distribution
o such that its density function f is positive and continuous. Let the support of
© be a, a finite union of connected subregions in IR?, each of which is bounded
by a closed curve of finite length. Let W, be an optimal rectangle covering
X1, Xo, ..., Xy, with area A,. If s, = n=%/A,, (0 < § < 0.5) then the s-shape
H (s,) = Hy, is a consistent estimator of a.

In general due to absence of small holes as well as sharp concavities, the
smoothed induced hull H (s,) is a better representation than H (s,) (see figures
in Section 4). Since H (s;) is a superset of H (s,), to establish the consistency
of H (s,) we have to concentrate only on the boundary error (limiting Lebesgue
measure of H (s,) in the complement of «). However, as A (H (s,) Na&) <
9 x A (H (sn) N @), the boundary error may increase at most 9 times than that
of H (sy,). Thus, the consistency of the smoothed hull also follows.

3.3. Error Rate. It is crucial that the experimenter has an idea of the order
of error (in terms of the Lebesgue measure of the symmetric difference) when
the procedure is terminated at a particular value of n and the corresponding
estimate o, has been determined. Here we provide an upper bound to this error
when the points are drawn under a uniform distribution. We consider the grids
in the interior and boundary of a separately.

The error in the interior Ey, related to the proportion of the empty grids, is
equal to

1 can
Er = X(I,) x (1 - 01W> ...(3.3.1)
where ¢; and ¢y are positive constants.

1 can
By taking the logarithm of the R.H.S of (3.3.1), expanding log <1 —c W) ,

and exponentiating back the leading term is found to be 036_”(1725) where c3 is
a positive constant.
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The error in the boundary Ep, satisfies

length of 9 («)

EBSPann—”§< -
-

) xn~2 < kyn=° ...(3.3.2)

where k; is a positive constant.
Note, the error in the boundary dominates that in the interior. Thus, the
error in estimation is of order O (n"j) or smaller.

4. Experimental Results

4.1. Digital Domain Implementation. For visualizing the effectiveness of
our proposed consistent estimators in practice, we have implemented s-shape
in digital domain. In the absence of isolated object pizels, the foreground in
a digital image (for definitions see the Appendix) might be considered as «.
Random samples of n object pixels are taken. Their s-shapes H (s,,), constitute
a; for different values of n. The area of a, A («) is measured by the total number
of object pixels in .

In Fig.1(a) we have illustrated a binary digital image where the foreground
has a fish like shape. The cardinality of this foreground is 63900. We draw sam-
ples of point sets [Fig.1(b), (c), (d)] for n = 100 (~ 0.0015 x #«), 1500 (=~ 0.023
x#a) and 3000 (= 0.047 X #a) respectively. For § = 0.45, their s-shape are in
Fig.2(a)-(c) and their smooth versions in Fig.2.(d)-(f). Corresponding figures
for 6 = 0.49 are shown in Fig.3.

A(aAal)

The plots of o)
observations for § = 0.45 and 0 = 0.49 are presented in Fig.4(a) and Fig.4(b)
respectively. The asymptotic convergence of o, is readily understood in spite of
the limitation due to quantization effect and finite state computation. As the
smoothed induced hull H(s,) is in general, a better representation of the shape
of a dot pattern than the ordinary s-shape (A. Ray Chaudhuri, B.B. Chaudhuri
and S.K. Parui, 1997), we have also plotted the same for a¥ = H(s,). The
asymptotic convergence of o for a = H(s,) and its behavior with different
values of § is another interesting problem. Notice that this smoothing leads to

a substantial improvement for the case § = 0.49, but not for § = 0.45 (Fig.4).
Fig.5 and Fig.6 present two other examples where our estimator is applied.
The disconnected components as well as the hole are correctly recovered. The
number of points in the samples of the respective images are 300 and 1500.

These figures represent smoothed s-shapes with ¢§ fixed at 0.49.

4.2 Choice of §. It is clear that the choice of § has considerable impact on the
resulting s-shape (see Fig.2 and Fig.3). For smaller values of 4, the boundaries of
a2 are cruder — so much so that the s-shapes for d in the range (0, 0.45) appear
to be of little practical utility. For larger values of §, on the other hand,

where o = H(s,) against the number of sample
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Figure 1
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Fig. 5 Fig. 6
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the figure exhibits larger number of inconsistent holes (compare Fig.2 and Fig.3).
In the particular case § = 0.5, the proportion of the area formed by the union
of these holes with respect to the area of the region under estimation converges
to a fixed non-zero constant so that consistency fails to hold. This suggests
that ‘smoothing’ may be more useful for s-shapes obtained with values of § close
to 0.5. For a given n, it also appears that the larger values of ¢ lead to small
values of A (af N @) and smaller values of § lead to small values of A (& N a)-
i.e. values of ¢ near opposite ends of the allowable range are more efficient in
reducing opposite components of the symmetric difference.

We have experimentally found that [0.45, 0.50) can be considered as the
allowable range for §. On the whole, it appears that when single values of § have
to be recommended, then values of § around the center of the allowable range or
closer to 0.5 should be chosen (this is because larger values of ¢ reduce the error
in the boundary, the dominant error). When coupled with smoothing, values of
d close to 0.5 should be chosen.

5. DIsScuUSSION

The effectiveness of s-shape as a set estimator has been illustrated in the
above examples and results in fair detail. From these examples it can be seen
that the smoothed version of the s-shape can be viewed as a descriptor of the
shape of the underlying region.

Our proposed consistent set estimator is totally different from the existing
consistent estimators. As mentioned earlier, Grenander’s consistent estimator as
well as Murthy’s consistent estimator are constructed by dilating sample points
itself or the edges of MST of the sample points by a certain structuring disk.
In our case, the optimal rectangular zone covering the sample set is partitioned
by a lattice. The union of grids of the lattice which are non-empty in terms of
sample points, is taken as a,.

A major advantage of our estimators is their computational efficiency. It is
linear in terms of cardinality of the point set. That is, for n observations the order
of computational complexity is O(n). The derivation is straight forward (Ray
Chaudhuri, 1997). Note that for the other MST based computable estimator,
the sole construction of the MST takes O(nlog n) provided sophisticated data
structures are used. Thereafter, the MST has to be dilated by a structuring
disk.

The proposed estimator is fully unsupervised. The disconnected components
are correctly detected and estimated as n increases. But the MST based estima-
tor fails to do so. It needs prior knowledge about the number of disconnected
components in a.

With a comparable consistent estimator in practice, one needs to have an
idea of the order of error (in terms of the Lebesgue measure of the symmet-
ric difference) when the procedure is terminated. We have provided an upper
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bound to this error which may be used by practitioners as a guiding measure in
determining a stopping criterion. Note that stopping criteria are unavailable for
other existing estimators.

The consistency of s-shape based class of set estimators in higher dimensions
(IR*) will be established in a sequel paper. This extension, while not entirely
straightforward, proceeds in similar lines to the present proofs. For example,
the grid-size has to be chosen in the order of k-th root of the volume of optimal
hyper-rectangle covering the dot pattern. In addition, the dependence of the
error rate on dimensionality £ will also be studied.

Appendix

Consider a compact bounded region R in Euclidean space IR?. A set E in
discrete integer lattice 72 is said to be the binary digital image of R if E =
T?/E, ECRand ENR = ¢.

An object (non-object) pizels corresponds to a discrete location (3,j) contain-
ing a value of 1(0) in the image. The set of object (non-object) pixels is referred
to as foreground (background). A binary image can be uniquely defined by the
foreground (background).

Mathematical morphology is a methodology for image analysis (Haralick et
al., (1987, J. Serra, 1982). The principle of all basic operators is to probe the
image under study with a structuring element. The structuring element is a set
of points on which an origin is defined. To evaluate the results of a morphological
operation on a image point, the structuring element is translated in such a way
that its origin coincides with this image point. There are two basic operations
in binary Mathematical Morphology: dilation and erosion. other operators are
derived from these two operations.

Let A and B be any two bounded compact subsets in a normed space I and
let ¢ be a point in I (In our application, I is the discrete digital plane 72).
Here B by which A is morphologically operated is considered as the structuring
element.

The dilation and erosion of A and B, denoted by A® B and A© B respectively,
are defined as

AeB={pel|p=a+b;(ac A)AN(be B)}
A0B={pel|(p+b)e A Vbe B}

Note that the dilation is the Minkowski addition of A by B; whereas the
erosion is the Minkowski subtraction of B from A. (B is the reflection of B i.e.
B={p|-peB})

A set of transformation ¥(x) is said to be a morphological filter if for any
two sets A and A’ in the domain of transformation,

ACA = U(A) CY(A") (Increasing)
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U (¥(A)) =P(A) (Idempotence)

The closing of A by B, denoted by Ae B is defined as Ae B= (A® B)OB is
a morphological filter which is also extensive in the sense that A C A e B. All
background structures that can not contain the structuring element are added
to the set by the closing. In this sense the closing operator ‘smoothes’ the set
from outside.
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