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SUMMARY. A hazard rate λ(t) is assumed to be of the shape of the “first” part of a

“bathtub” model, i.e., λ(t) is non-increasing for t < τ and is constant for t ≥ τ . The isotonic

maximum likelihood estimator of the hazard rate is obtained and its asymptotic distribution

is investigated. This leads to the maximum likelihood estimator and a confidence interval for

a new version of the change point parameter. Their asymptotic properties are investigated.

Some simulations are reported.

1. Introduction

Let F be an absolutely continuous distribution function (d.f.) on [0,∞) with
density f , and let X1, X2, . . . , Xn be a random sample of size n from F . The
failure rate function, or hazard rate, of F is denoted by λ, i.e., λ(t) = f(t)/F̄ (t),
where F̄ (t) = 1− F (t) for t ≥ 0.

We assume that λ has the shape of the “first” part of a “bathtub” model.
More precisely, assume that
for some τ > 0

λ is nonincreasing , λ(t) > λ0 for t < τ and λ(t) = λ0 for t ≥ τ, . . . (1.1)

where λ0 > 0 is a constant.
τ is sometimes called the change point of the failure rate function (see for
example Basu, Ghosh and Joshi, 1988). In reliability and survival analysis
τ is an important parameter. Typically, just before τ , the hazard rate is very
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high and after τ it is constant, or in other words, it has reached its infimum.
Estimating τ , or a point which has an interpretation similar to τ , is an important
problem. In a reliability setting, for example, a burn-in period to, or beyond τ ,
maximizes the expected residual life of a device. Since implementing a longer
burn-in costs more, one has traditionally searched for the minimum burn-in that
produces the desired result. The length of this burn-in period is τ . Problems
such as this have motivated much recent research into changepoint problems.
In this paper we define the change point more realistically as below.

For a fixed ε > 0 let τε be such that

τε = Supremum {t : λ(t) ≥ (1 + ε)λ0}. . . . (1.2)

For small ε, τε has an interpretation similar to that of τ . Under (1.1), a burn-in
to time τε will result in an expected residual lifetime of no less than (1 + ε)−1

that of a burn-in to time τ : E[(X − τε)|X ≥ τε] ≥ (1 + ε)−1E[(X − τ)|X ≥ τ ].
This allows us to obtain most of the benefit of a burn-in while providing us with
a quantity which, as we shall see, is easier to estimate.

An additional benefit of our definition of the change point is that it is robust
to small departures from the model (1.1), such as a model where λ(t) slowly
decreases after τε to an asymptote λ0 > 0. Such departures often arise when
populations are mixtures. While the failure rate has not reached its infimum at
τε, it is only slightly higher than this infimum: τε is finite while τ = ∞.

For many practical problems, we find τε to be a more compelling definition
of a changepoint than τ . To use it, we advocate the choice of the largest ε such
that a multiple of the hazard rate of (1+ε) and a reduction in expected residual
life by a factor of (1 + ε)−1 are judged relatively unimportant. In this paper we
investigate the problem of inference for τε.

Muller and Wang (1990) also have an alternative approach to the change
point problem. Their parameter of interest is the point of maximum change in
the hazard rate, and their estimation procedure involves the use of the estimated
derivative of the hazard rate.

Consider the model

λ(t) =
{
a for t < τ,
b for t ≥ τ

. . . (1.3)

This simple model for the hazard rate can be taken as an approximation to
situations where λ of model (1.1) decreases to λ0 rapidly. Though it is simple,
it unnecessarily introduces the problems arising out of the discontinuity in the
density, and represents a strong parametric assumption. A nonparametric ap-
proach avoids these difficulties while still allowing the constraints of model (1.1).
The model (1.3) has been considered by many authors; see for example Loader
(1991) who discusses inference based on the likelihood process and Ghosh et al.
(1992) and (1996) for a Bayesian analysis.

The model of (1.1) was also considered by Ghosh et al. (1988). They have
proposed consistent estimators for τ . One of their estimator, namely τ̂1, is
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based on the idea of estimating the hazard rate by a simple histogram type
estimate and then to use it to locate the change point. When one is estimating
a monotone hazard rate, it is natural to demand that the estimate should also
be monotone. In this paper we use the isotonic maximum likelihood approach
to inference for our version of the change point, namely τε.

For the model (1.1) it is reasonable to assume the knowledge of an upper
bound for τ , say T1. We obtain the nonparametric maximum likelihood estima-
tor λ̂? of the hazard rate λ under the restrictions (see Theorem 3.1 )

C1 : λ is nonincreasing, and
C2 : λ is constant from T1 on.

For some of the results we will impose the following extra condition that ensures
the unique definition of λ̂?

C3 : X(n) ≥ T1.
This estimator of λ leads naturally to the profile maximum likelihood esti-

mator of τε (see Corollary 3.1),

τ̂ε = Supremum {t : λ̂?(t) ≥ (1 + ε)λ̂?(T1)}. . . . (1.4)

The asymptotic distribution of λ̂? is investigated by proving a result similar to
Theorem 7.1 of Prakasa Rao (1970) (see Theorem 3.2). The consistency of τ̂ε
is established (see Remark 3.2) and a confidence interval for τε is derived (see
Theorem 3.3 ).

If instead of T1, only an upper bound p0, 0 < p0 < 1, for F (τ) is known,
one can get an isotonic estimate of λ by replacing T1 by sample p0 th quantile
and as in (1.4) an estimate τ̂m,ε (say), of τε can be defined. Asymptotic results
mentioned above also hold for these estimates. (see Remark 3.4).

Simulations were carried out for the model where the density is a mixture
of two exponential densities. In Section 4 we report results of our simulation
study comparing a version of τ̂m,ε, to the parametric m.l.e. of τε. We also have
compared a version of τ̂1 of Basu, Ghosh and Joshi (1988) and unrestricted
isotonic m.l.e. of τε. τ̂m,ε compares quite well with the parametric m.l.e. The
performance of the other two estimates is very poor.

2. Definitions and Preliminaries

Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the ordered sample and let X(0) = 0. Let
Fn be the sample d.f. Let k be such that

X(k) < T1 ≤ X(k+1).

Several of the proofs of results that follow rely on a specific implementation of
the pool the adjacent violators algorithm (PAVA) representation of the isotonic
m.l.e. Barlow et al. (1972) provide an excellent discussion of this algorithm.
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Let ρ̂ and ρ̂? be defined by

ρ̂(t) = 1/(n− i)(X(i) −X(i−1))
for X(i−1) < t ≤ X(i) and undefined for t > X(n),

and
ρ̂?(t) = ρ̂(t) for t ≤ X(k)

= (n− k)/TTTA(X(k)) for t > X(k)

where
TTTA(t) = total time on test after t

=
∑

(Xi − t)I(Xi > t).

Let λ̂ be the m.l.e. of λ under the restriction C1 alone (see Section 5.3 of
Barlow et al., 1972). Then λ̂ is the result of applying PAVA to ρ̂. λ̂?, derived in
Theorem 3.1, is the m.l.e. of λ under restrictions C1 and C2. It is later noted
(see Remark 3.1) that λ̂? can be obtained by applying PAVA to ρ̂?.

For proofs of our results we need to study the intermediate steps involved in
the applications of PAVA. Towards this end we need some more definitions.

Let ρ̂(0)(t) be the result of applying PAVA to ρ̂(t), first for t in (0,X(k)]
and then for t in (X(k), X(n)]. The resulting ρ̂(0)(t) is a step function which is
nonincreasing on (0,X(k)] and on (X(k), X(n)], but which may not be monotone
on the entire interval (0, X(n)]. Let X(k) = X(1) > X(2) > X(3)... be the points
to the left of T1 at which ρ̂(0)(t) has steps.

We define a finite set of estimators ρ̂(i) for i = 1, . . . , I. The estimator ρ̂(i),
defined only if the previous estimator, ρ̂(i−1), is not monotone on (0, X(n)], is
obtained by applying PAVA to ρ̂(i−1) on the interval (X(i+1), X(n)]. For this
i-th stage X(i+1) is defined analogously. This application either produces an
estimator that is monotone on (0, X(n)], or it forces the violation of the mono-
tonicity condition one step to the left, to X(i+1). Thus, while ρ̂(0) represents
the initial estimator, ρ̂(I) = λ̂, the isotonic estimator, and the intermediate ρ̂(i)

represent intermediate stages of our specific implementation of PAVA. More for-
mally, for i > 0, ρ̂(i) is defined only if ρ̂(i−1)(X(i)) < ρ̂(i−1)(T1). In that case,
ρ̂(i)(t) = ρ̂(i−1)(t) for all t ≤ X(i+1) while for t > X(i+1), ρ̂(i) is the result of the
application of PAVA to ρ̂(i−1) on (X(i+1), X(n)]. For i = 0, 1, 2, . . . , I∗, ρ̂?(i)(t)
is obtained analogously.

Several properties of the estimators ρ̂(i) and ρ̂?(i) should be noted:
(a) ρ̂(i)(t) = ρ̂?(i)(t) for t ≤ X(i+1),
(b) ρ̂(i)(t) = ρ̂(i)(T1) for X(i+1) < t ≤ T1,

and
(c) ρ̂?(i)(t) = ρ̂?(i)(T1) for t > X(i+1).

These properties follow from the sequential application of PAVA to the estima-
tors.
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3. Main Results

This section contains the main theoretical results of the paper. First, we de-
rive the maximum likelihood estimator of the hazard under conditions C1 and
C2. This is then extended to provide the profile maximum likelihood estimator
of τε, where the hazard is treated as a nuisance parameter. Second, we obtain
the asymptotic distribution of λ̂?(t) for an arbitrary fixed time point t < τ . We
then construct a confidence interval based on this asymptotic distribution.

Theorem 3.1. Let C1 and C2 hold. Then if X(n) ≥ T1, the maximum
likelihood estimator of λ is given by

λ̂?(t) = max
k≥v≥i+1

v=n

min
u≤i

{(v − u)/
v−1∑
j=u

(n− j)(X(j+1) −X(j))}

for tε(X(i), X(i+1)] and i = 0, 1, . . . , k − 1, and

λ̂?(t) = min
u≤k

(n− u)/
n−1∑
j=u

(n− j)(X(j+1) −X(j)) for t > X(k).

If X(n) < T1, any maximum likelihood estimator of λ must satisfy

λ̂?(t) = max
v≥i+1

min
u≤i

{(v − u)/
v−1∑
j=u

(n− j)(X(j+1) −X(j))}

for t ε (X(i), X(i+1)] and i = 0, 1, . . . , n− 1.
In this latter case, the m.l.e. may be extended beyond X(n) in any fashion

that is consistent with the monotonicity and constancy assumptions above.

Proof. The derivation of the maximum likelihood estimator of λ, subject to
the restrictions provided in the assumptions is similar to the argument needed
under condition C1 alone. The argument involves two parts. The first part
shows that the m.l.e. must be constant between order statistics. The second
part finds the estimator that maximizes the likelihood within this smaller class
of estimators.

Consider any estimator, λ?, of the hazard that is non-increasing and constant
on [T1,∞). The log-likelihood of the data under this hazard is given by

l(λ?) =
n∑

i=1

log(λ?(Xi))−
n∑

i=1

∫ Xi

0

λ?(t)dt.

Replace λ? by λ?? where λ??(t) = λ?(X(i)) for tε(X(i−1), X(i)], and note that,
for every t, λ?(t) ≥ λ??(t). Then the difference between the log-likelihoods,

l(λ??)− l(λ?) =
n∑

i=1

∫ Xi

0

λ?(t)dt−
n∑

i=1

∫ Xi

0

λ??(t)dt
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=
n∑

i=1

∫ Xi

0

(λ?(t)− λ??(t))dt

is the sum of non-negative components. Hence, if a hazard exists that satis-
fies the assumptions above and maximizes the likelihood, it must be piecewise
constant on the intervals (X(i), X(i+1)] for i = 0, . . . , n− 1.

Now, assume that λ? is constant on the intervals (X(i), X(i+1)] for i =
0, . . . , n − 1. Let X(k) denote the largest order statistic that is less than T1,
and define λ?

i = λ?(X(i)) for i = 1, . . . , k. Also define λ?
0 = λ?(X(n)). The

maximization of the likelihood over the values of λ?
1 ≥ λ?

2 ≥ . . . ≥ λ?
k ≥ λ?

0

coincides with the standard isotonic maximization. See, for example, Marshall
and Proschan (1965).

Remark 3.1. The estimator λ̂? is an isotonic estimator. As such, PAVA
(see Barlow et al. (1972)) may be used to obtain λ̂?. There are k + 1 initial
groups, the first k of which have weight 1 and the last of which has weight
n− k. The initial values for the “solution blocks” are (n− i)(X(i+1) −X(i)) for
i = 0, . . . , k − 1 and

∑n
j=k+1(X(j) − X(k)) for the last block. Applying PAVA

with these initial conditions provides an estimate of λ−1.

Corollary 3.1. The profile maximum likelihood estimator of τε under (1.2)
and conditions C1 through C3 is

τ̂ε = Supremum {t : λ̂?(t) ≥ (1 + ε)λ̂?(T1)}.

Proof. Consider the maximization of the likelihood over the parameters
(τε, λ), subject to the constraints C1 through C3. The likelihood does not
depend directly on τε. Instead, τε specifies an additional restriction on λ. τ̂ε
defined above satisfies

λ̂?(τε) ≥ (1 + ε)λ̂?(T1) . . . (3.1)

Let l2 represent the likelihood as a function of both parameters τε and λ,
and note that

l2(τ̂ε, λ̂?) = sup
λ/(3.1),C1-C3

l(τ̂ε, λ) = sup
λ/C1-C3

l(λ),

and so τ̂ε is a profile m.l.e. of τε. To see that τ̂ε is the unique profile m.l.e. of τε,
notice that λ̂? does not satisfy (1.2) for any other value of τε. Since l(λ̂?) > l(λ)
for any other λ satisfying C1 and C2, l2(τ̂ε, λ̂?) > l(λ) for any λ satisfying C1,
C2 and (3.1) with τε 6= τ̂ε.

We next turn to the derivation of the asymptotic distribution of λ̂?(t) for
t < τ . The result itself is presented in Theorem 3.2. Its proof relies on three
lemmas and the eventual application of a theorem from Prakasa Rao (1970).
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Prakasa Rao’s theorem provides the asymptotic distribution of λ̂. To derive the
asymptotic distribution of λ̂?, we investigate the relationship between λ̂ and λ̂?.
The first pair of lemmas prepare the way for Lemma 3.3.

Lemma 3.1. Assume C3. For any t < T1, if λ̂?(t) = λ̂?(T1), then λ̂(t) =
λ̂(T1).

Proof. We first establish that whenever both ρ̂(i) and ρ̂?(i) are defined,
ρ̂(i)(T1) ≥ ρ̂?(i)(T1). Consider the following mean time on test representation
for ρ̂(i) on the interval (X(i+1), X(n)]. Let t1, . . . , tm−1 denote the steps in ρ̂(i)

on this interval; set t0 = X(i+1) and tm = X(n). Partition the interval into
subintervals (tj−1, tj ] for j = 1, . . . ,m. Let Aj denote the total time on test
over the jth subinterval, and let nj denote the number of failures in this inter-
val. Then ρ̂(i)(tj) = nj/Aj for j = 1, . . . ,m with n1/A1 > . . . > nm/Am. Now
ρ̂?(i) is constant on (X(i+1), X(n)], and so ρ̂?(i)(t) =

∑m
j=1 nj/

∑m
j=1Aj for any

t in the interval. Hence ρ̂(i)(t1) ≥ ρ̂?(i)(t1), with equality only when m = 1.
Finally, note that T1 < t1.

Since ρ̂(i)(t1) ≥ ρ̂?(i)(t1), if ρ̂?(i) violates the monotonicity condition for the
intervals (X(i+2), X(i+1)] and (X(i+1), X(i)], then ρ̂(i) also violates the condi-
tion. This implies that whenever ρ̂?(i) is defined, ρ̂(i) is also defined. As a
consequence, if ρ̂?(i)(t1) = ρ̂?(i)(T1) then ρ̂(i)(t1) = ρ̂(i)(T1), implying the con-
clusion of the lemma.

Lemma 3.2. Assume C3. For any t < T1, if λ̂(t) 6= λ̂(T1), then λ̂(t) =
ρ̂(0)(t). Also, if λ̂?(t) 6= λ̂?(T1), then λ̂?(t) = ρ̂?(0)(t).

Proof. Assume that λ̂(t) 6= ρ̂(0)(t). This will only happen if ρ̂(i)(t) 6= ρ̂(0)(t)
for some i. In turn, this will only happen when the interval containing t is pooled
with another interval when PAVA is applied to ρ̂ to obtain λ̂. Since ρ̂(i) is con-
stant on (X(i+1), T1] for each i, this implies that the interval containing t is
pooled with the interval containing T1, and hence that λ̂(t) = λ̂(T1). Thus
we have established the contrapositive of the first assertion. The proof of the
second assertion in the lemma mimics this proof of the first with λ̂? in place of
λ̂ and ρ̂? in place of ρ̂.

The final lemma needed for the derivation of the asymptotic distribution of
λ̂? is given below. It shows that the two estimators λ̂ and λ̂? are asymptotically
equivalent for those t < τ with λ(t) > λ0.

Lemma 3.3. Let (1.1) hold, and further assume that λ(t) > λ0 for t < τ .
Then for each t < τ ,

P (λ̂(t) = λ̂?(t)) −→ 1.
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Proof. Fix a t < τ . Relying on Lemmas 3.1 and 3.2 when C3 is satisfied,
we have that λ̂(t) 6= λ̂(T1) implies both λ̂(t) = ρ̂(0)(t) and λ̂?(t) = ρ̂?(o)(t). If
in addition t < X(k), then ρ̂?(o)(t) = ρ̂(o)(t) and so λ̂?(t) = λ̂(t). Since X(k) is
defined to be the largest order statistic less than T1,

P (X(k) > t) −→ 1.

Also,
P (X(n) > T1) −→ 1.

Further noting that λ̂ is consistent for λ (see Theorem 4.1 of Marshall and
Proschan (1965)) implies that

P (λ̂(t) 6= λ̂(T1)) −→ 1,

completing the proof.

In view of the above lemma it is clear that for t < τ , the asymptotic be-
haviour of λ̂?(t) can be studied using that of λ̂(t). Before presenting the asymp-
totic distribution, we need some more notation. Let a(·) be the p.d.f. of the
asymptotic distribution obtained in Theorem 7.1 of Prakasa Rao (1970) (see
Appendix for more details). Let ∆ be a random variable having p.d.f. a(·) Let

ϕ(t) = −
{

F̄ (t)
λ′(t)λ(t)

}1/3

The following theorem is an easy consequence of Lemma 3.3 and Theorem 7.1
of Prakasa Rao (1970).

Theorem 3.2. Let (1.1) hold, and further, for t < τ let λ′(t) < 0. Then

n1/3ϕ(t)(λ̂?(t)− λ(t)) d−→ ∆. . . . (3.2)

Theorem 3.2 would lead directly to an asymptotic hypothesis test for τε = τε0
for an arbitrary τε0 < T1, and hence to a confidence interval for τε–if only we
knew the values λ(τε) = (1+ε)λ0 and ϕ(τε0). Unfortunately, this is not the case.
Instead, we show in the upcoming Lemma 3.4 that λ̂?(T1)−→λ0 in probability
with a rate quicker than n−1/3. Consequently, when we replace λ0 with λ̂?(T1),
the asymptotic properties of the test and interval remain unchanged. With the
addition of a consistent estimator of ϕ(τε), and noting that ϕ(t) is near ϕ(τε)
when t is near τε, we obtain a hypothesis test and the corresponding confidence
interval for τε. The remainder of this section presents this argument. The proof
of Lemma 3.4 is rather technical, and so is deferred to the appendix.
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Lemma 3.4. Let (1.1) hold and further assume that for some t1 < τ

λ(t1) > λ0 . . . (3.3)

Then √
n(λ̂?(T1)− λ0) is Op(1).

Remark 3.2. To investigate the consistency of τ̂ε, begin with consistency
(under condition C1) of λ̂ for λ at all points of continuity of λ. Then use Lem-
mas 3.3 and 3.4. Conclude that τ̂ε is consistent for τε unless λ(t) = (1 + ε)λ0

for an open interval of t.

Remark 3.3. The estimator τ̂ε is robust to a violation of C2. If λ(t)
continues to decrease beyond T1, then λ̂?(T1)−→E[X|X ≥ T1]−1. In this case,
τε may be defined as a multiple of this limiting term rather than as a multiple
of the infimum of the hazard, and τ̂ε will be consistent for this newly defined τε.

In order to continue the argument, we need a consistent estimator of ϕ(τε).
There are many consistent estimators of ϕ(t). One such estimator is

ϕ̂1(t) = −

{
F̄n(t)

λ̂′(t)λ̂?(t)

}1/3

where λ̂′(t) is as in (2.2) of Muller and Wang. Using Polya’s Theorem and
supposing the conditions necessary for (2.7) of Muller and Wang (1990), we
may take ν̂ = ϕ̂1(τ̂ε), obtaining a consistent estimator of ϕ(τε). With ν̂ in place
of ϕ(τε), at τε the level of the test based on (3.2) goes to α. For any other value
of t, λ(t) 6= λ(τε), and so the asymptotic power of the test is 1. Similarly, the
100(1-α) confidence interval obtained through the inversion of the hypothesis
test has an asymptotic coverage probability of 1-α.

To formalize the preceeding paragraphs, we define a confidence interval Cn,α

for τε, “centered” at the m.l.e. τ̂ε and based on the m.l.e. λ̂? of λ and a consistent
estimator ν̂ of ϕ(τε) in the following way.

Cn,α = {t : λ̂?(t)ε[(1 + ε)λ̂?(T1)−n−1/3ν̂∆1−α/2, (1 + ε)λ̂?(T1) +n−1/3ν̂∆α/2]}.

Theorem 3.3 follows easily from the above discussion and Lemma 3.4.

Theorem 3.3. Let (1.1) hold. Further, assume that λ′(τε) < 0 and that ν̂
is a consistent estimator of ϕ(τε). Then

P (τε ∈ Cn,α) −→ 1− α.

Remark 3.4. Suppose we do not know an upper bound T1 for τ but instead
we know an upper bound p0 for F (τ) where 0 < p0 < 1. We may replace T1

by the pth sample quantile ˆξp0 and define λ̂? accordingly and then get τ̂m,ε. Of
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course they will not be the m.l.e.’s of λ and τε respectively but it can be checked
that lemmas 3.1, 3.2,3.3 and 3.4 hold good and hence theorems 3.1, 3.2 and 3.3
follow.

4. Simulations

This section describes a simulation study that investigates the accuracy of
various estimates of the changepoint. The type of model that we are most
interested in is one in which the hazard rate may never reach its infimum. In
this instance, estimators which are designed to consistently estimate τ will tend
to ∞, or to some upper bound which has been specified for the changepoint. In
order to make a relatively fair comparison of various estimation strategies, we
have created a set of estimators of τε. These estimators are briefly described
below.

The simulation is based on a density which is a mixture of two exponential
densities. For some α > 0, β > 0 and 0 < p < 1 (with q=1-p ), let the density
be given by

f(x, α, β, p) = pαexp(−αx) + q(α+ β)exp(−(α+ β)x).

(α+β)/α represents the relative hazard rate of the two exponentials. Note that

λ(t) = α + qβ/(p exp(tβ) + q)).

Thus the hazard rate decreases to an asymptote at α, the lesser of the two
hazard rates. Further assume that β > αε/q so that

τε = β−1log(q(β − αε)/pαε) > 0.

Assuming α and p to be known and β to be the unknown parameter, the
m.l.e. of β and then that of τε was obtained. Numerical maximization was
required to calculate the m.l.e. Note that under the assumption of known α
and p, f(x;β) is a regular family in the sense that Cramer-Rao type conditions
hold and hence the m.l.e. of β and hence that of τε is asymptotically normal.
(see e.g. Serfling (1980) pp. 144). We call this estimate the parametric m.l.e..

We obtained the unrestricted isotonic m.l.e. of the hazard rate, and us-
ing this obtained the lower endpoint of the step at which it just goes above
(1+ε)×(its infimum). We call this estimate the unrestricted isotonic m.l.e.

Assuming p0=0.5, (see Remark 3.4 ), λ̂m
?

is obtained by replacing T1 by
the sample p0 th quantile. Whenever the step of λ̂m

?
either equal or just above

(1 + ε)λ̂m
?
( ˆξp0) had more than one observation, we took the median of these

observations as our estimate. We call this estimate, a slight modification of
the restricted isotonic m.l.e. that is motivated by robustness concerns, the
nonparametric m.l.e.
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We modified the estimate τ̂1 of Basu, Ghosh and Joshi (1988) so that it
estimates τε instead of τ . We call this estimator BGJ1. For sample size n, the
window length hn was taken to be n−1/4; the same as there. εn was taken to
be 0.01. The choice of εn=0.05 was also investigated, but this value resulted in
poorer performance. The choice of the other estimate of Basu, Ghosh and Joshi
(1988), namely τ̂2, is not amenable to such a modification.

Table 1. COMPARISONS OF THE NONPARAMETRIC M.L.E. (NP M.L.E.),
PARAMETRIC M.L.E. (P M.L.E.), BGJ1 AND UNRESTRICTED ISOTONIC M.L.E. (UI

M.L.E.) OF THE CHANGE POINT FOR SAMPLES OF SIZE 50.

α β p τε F (τε) NP m.l.e. P m.l.e. BGJ1 UI m.l.e.
λ(0)

0.5 15 .85 .3107 .2711 .3600 .3670 .1393 .863
2.75 (.0496) (.0634) (.0561) (3.262)

0.5 20 .85 .2474 .2480 .3489 .2945 .1341 .734
3.50 (.0589) (.0418) (.0400) (2.642)

0.5 25 .85 .2069 .2328 .3385 .2600 .1229 .725
4.25 (.0669) (.0370) (.0332 ) (2.665)

0.5 15 .9 .2799 .2162 .3783 .3305 .1313 .794
2.00 (.0697) (.0717) (.0513) (2.936)

0.5 20 .9 .2243 .1945 .3643 .2854 .1175 .776
2.50 ( .0803 ) (.0619) (.0385) (2.954)

0.5 25 .9 .1884 .1801 .3550 .2566 .1101 .769
3.00 ( .0892) ( .0557) ( .0327) (2.992)

1.0 15 .85 .2644 .3453 .2039 .2735 .1105 .443
3.25 (.0157) ( .0224) (.0425 ) (.783)

1.0 20 .85 .2127 .3112 .1955 .2390 .1014 .434
4.00 (.0120) ( .0187) ( .0305) ( .781)

1.0 25 .85 .1791 .2880 .1893 .2092 .0957 .371
4.75 ( .0122) (.0158) (.0233) (.632)

1.0 15 .9 .2335 .2851 .2120 .2410 .1092 .413
2.50 (.0167) (.0259 ) (.0387) (.718)

1.0 20 .9 .1896 .2536 .2046 .2150 .1023 .409
3.00 (.0161 ) (.0225 ) (.0299 ) (.732)

1.0 25 .9 .1606 .2320 .1957 .1952 .0964 .401
3.50 ( .0168) (.0195) (.0251) (.680)

1.5 15 .85 .2372 .4015 .1492 .2145 .0902 .285
3.75 ( .0135) (.0113) (.0336) (.272)

1.5 20 .85 .1924 .3607 .1416 .1980 .0813 .301
4.50 ( .0079) (.0093 ) (.0231) (.357)

1.5 25 .85 .1629 .3322 .1352 .1816 .0769 .295
5.25 ( .0060 ) (.0086) (.0178) (.357)

1.5 15 .9 .2064 .3363 .1462 .1795 .0825 .305
3.00 ( .0110 ) (.0139 ) (.0286) (.359)

1.5 20 .9 .1693 .2992 .1360 .1654 .0760 .257
3.50 ( .0075) (.0116 ) (.0209) ( .281)

1.5 25 .9 .1444 .2730 .1379 .1570 .0746 .298
4.00 ( .0069) (.0099) (.0172) (.367)

The simulation itself considered several values of α, β and p. In all cases,
ε was taken to be 0.05. For each combination of parameter values, sample
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sizes of 50 and 100 were investigated. 1000 data sets were generated for each
combination of parameter values and sample size. Table 1 contains the results
for sample size 50 and Table 2 for sample size 100. In these tables we report
τε, means, and mean square errors (in paranthesis) of the above estimates. We
also have given values for λ(0), and F at τε.

Table 2. COMPARISONS OF THE NONPARAMETRIC M.L.E. (NP M.L.E.),
PARAMETRIC M.L.E. (P M.L.E.), BGJ1 AND UNRESTRICTED ISOTONIC M.L.E. (UI

M.L.E.) OF THE CHANGE POINT FOR SAMPLES OF SIZE 100.

α β p τε F (τε) NP m.l.e. P m.l.e. BGJ1 UI m.l.e.
λ(0)

0.5 15 .85 .3107 .2711 .3603 .3407 .1565 1.3529
2.75 (.0427) (.0290) (.0479) (6.097)

0.5 20 .85 .2473 .2479 .3412 .2843 .1403 1.240
3.5 (.0512) (.0225) (.0363) (5.795)

0.5 25 .85 .2069 .2378 .3263 .2305 .1195 1.142
4.25 (.0565) (.0114) (.0263) (5.218)

0.5 15 .90 .2798 .2162 .3560 .3438 .1328 1.258
2.0 (.0547) (.0542) (.0474) (5.840)

0.5 20 .90 .2243 .1944 .3408 .2855 .1224 1.142
2.5 (.0628) (.0455) (.0367) (5.410)

0.5 25 .90 .1883 .1807 .3344 .2271 .1072 1.187
3.0 (.0754) (.0231) (.0231) (5.914)

1 15 .85 .2644 .3452 .2215 .2849 .1328 .6725
3.25 (.0117) (.0147) (.0350) (1.458)

1 20 .85 .2127 .3111 .2029 .2388 .1142 .6308
4.0 (.0105) (.0116) (.0258) (1.355)

1 25 .85 .1791 .2879 .1915 .2045 .1047 .6196
4.75 (.0107) (.0086) (.0211) (1.369)

1 15 .90 .2335 .2851 .2085 .2528 .1154 .6902
2.5 (.0141) (.0206) (.0342) (1.598)

1 20 .90 .1896 .2536 .1912 .2201 .1023 .5825
3.0 (.0128) (.0173) (.0267) (1.252)

1 25 .90 .1601 .2320 .1851 .1833 .0829 .6977
3.50 (.0129) (.0127) (.0214) (1.765)

1.5 15 .85 .2372 .4015 .1566 .2365 .1001 .356
3.75 ( .0110) (.0075) (.0302) (.473)

1.5 20 .85 .1924 .3607 .1474 .2044 .0899 .357
4.50 ( .0067) (.0066) (.0214) (.501)

1.5 25 .85 .1629 .3322 .1452 .1827 .0900 .339
5.25 ( .0047) (.0059) (.0160) (.495)

1.5 15 .90 .2064 .3363 .1421 .1985 .0882 .323
3.00 ( .0102) (.0118) (.0272) (.462)

1.5 20 .90 .1693 .2992 .1386 .1804 .0771 .317
3.50 ( .0066) (.0093) (.0195) (.452)

1.5 25 .90 .1444 .2730 .1286 .1639 .0730 .311
4.00 (.0054 ) (.0082) (.0167) (.451)

Our nonparametric m.l.e. is always below the p0 th sample quantile ˆξp0 .
In order to have a fair comparison all the rest of the estimates were truncated
above at ˆξp0 . In all samples ˆξp0 was observed to be greater than τε and thus
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truncation, if at all, had only a positive effect on their performances.
Substantial biases are sometimes present. In all the cases the unrestricted

isotonic m.l.e. tends to overestimate τε wheras BGJ1 tends to underestimate it;
both by a wide margin. The nonparametric m.l.e. and the parametric m.l.e. do
not show a pattern of either positive or negative bias.

As expected, in most of the cases the parametric m.l.e. performs very well.
Its performance is aided by the assumption of known values for α and p. Surpris-
ingly, however, the nonparametric m.l.e. is often comparable to the parametric
m.l.e., and is ofttimes better. This is particularly true for samples of size 50
with a ratio of (α + β)/α smaller than 31. With samples of size 100 and these
lower hazard rate ratios, neither estimator shows a clear pattern of dominance.

When the nonparametric m.l.e. is compared to BGJ1, we find a clear pat-
tern. For larger (α + β)/α (over 31) BGJ1 has smaller mean square error; for
smaller (α+β)/α (under 31) the nonparametric m.l.e. has smaller mean square
error. These results hold true for both sample sizes investigated.

As an overall conclusion, we find the nonparametric m.l.e. to be an effective
estimator of our robust version of the changepoint. It compares quite favorably
to its natural competitor, BGJ1 (which we had to create in this work) when the
decline in hazard rates is not too precipitous. Remarkably, it is often competitive
and sometimes beats the parametric m.l.e., computed with additional knowledge
about the density. Additional simulations under a model of the form (1.3), not
reported here, also support the choice of the nonparametric m.l.e.

While the nonparametric m.l.e. performs well in the simulations, we believe
that the real strengths of the estimator are twofold. Its nonparametric nature
removes the necessity of assuming a parametric model, and the principle of
maximum likelihood provides a strong motivation for the estimator.

Appendix

Define (see Prakasa Rao (1970))

ψ(t) =
1
2
Ux(t2, t)Ux(t2,−t)

where u(x, z) = P [W (t) > t2 for some t > z | W (z) = x] is a solution of
the heat equation 1

2Uxx = −Ux subjrct to the boundary conditions (i) u(x,z)=1
for x ≥ z2 and (ii) u(x, z)−→ 0 as x−→ − ∞. Here Ux denotes the partial
derivative of u(x,z) w.r.t. x and W(t) is the Wiener process on (-∞, ∞).
Then the density a(·) is given by

a(·) =
1
2
ψ(

1
2
x).

Regarding Lemma 3.4. To prove this lemma we need some more notation.



isotonic mle for change point of hazard rate 405

If X(n) ≤ T1, define S1n(t) = S2n(t) = 1 for all t. If X(n) > T1, define S1n(t)
and S2n(t) at t = X(i) by

S1n(t) = ΣI(Xj > t)/n

and
S2n(t) = Σ(Xj − t)I(Xj > t)/n.

For t > X(1) define

Sin(t) = Sin(X(1)),

and for all other t’s Sin(t) is defined by linear interpolation.

Let hi(t) = ESin(t),
Win(t) =

√
n(Sin(t)− hi(t)),

h(t) = h1(t)/h2(t),
Sn(t) = S1n(t)/S2n(t), and
Wn(t) =

√
n(Sn(t)− h(t))

We also rely on another lemma, Lemma A.1.
Lemma A.1. As a process in C[t1, T1], Wn(t) w−→ G(t) where G(t) is a

zero mean Gaussian process.
Proof of Lemma A.1. The proof of Lemma A.1 is similar to the proof

of Lemma 2.1 of Ghosh and Joshi (1992), and so we provide only the following
sketch of a proof: Note that the weak convergence of the finite dimensional
distributions of W1n and W2n can be proved easily by the multivariate central
limit theorem. Tightness (and hence the weak convergence) of W1n follows from
an application of Theorem 13.1 of Billingsley (1968). Tightness of W2n (and
hence the weak convergence) can be proved by checking the moment condition
(12.51) and applying Theorem 12.3 of Billingsley (1968). Thus

Wn(t) =
√
n(Sn(t)− h(t))

=
√
n(
S1n(t)
S2n(t)

− h1(t)
h2(t)

)

= a1(t)W1n(t) + a2(t)W2n(t) +Rn(t),

where
a1(t) = 1/h2(t), a2(t) = −h1(t)/h2

2(t)

and
sup

[t1,T1]

Rn(t) P−→ 0.
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Now note that weak convergence of the finite dimensional distributions of Σai(t)Win(t)
can be proved easily, and that the tightness follows from the tightness of W1n(t)
and W2n(t) and the continuity of a1(t) and a2(t). Thus the weak convergence
of Wn(t) is established.

Proof of Lemma 3.4. Note that using Lemma A.1 we have for a given
δ > 0 that there exist A1 > 0 and n0 such that

P{ inf
[t1,T1]

√
n(Sn(t)− h(t)) > −A1} ≥ 1− δ for all n ≥ n0.

Now note that h(t) ≥ λ0 and hence

P{ inf
[t1,T1]

Sn(t) > λ0 − n−
1
2A1} ≥ 1− δ for all n ≥ n0. . . . (A.1)

Now using (3.3), Lemma 3.3 and the consistency of λ̂(t1), we have that for
η = (λ(t1) + λ0)/2,

P (λ̂?(t1) > λ0 + η) −→ 1. . . . (A.2)

Notice that λ̂? is obtained by applying PAVA to ρ̂? and hence the extent to
which it can be “below” ρ̂? is “controlled” by Sn(t). When λ̂?(t1) > λ0 + η, we
find λ̂?(T1) ≥ inf [t1,T1] Sn(t). Thus

λ̂?(t1) > λ0 + η

and
inf

[t1,T1]
Sn(t) > λ0 − n−

1
2A1

imply
λ̂?(T1) > λ0 − n−

1
2A1.

The proof of the lemma is completed by using (A.1) and (A.2).
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