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SUMMARY. Simpson (1987) considered minimum Hellinger distance estimation in count
data models. Unlike many other robust estimators, the minimum Hellinger distance estimator
is simultaneously robust and first order efficient. In particular Simpson provides appealing
arguments for the robustness of the minimumn Hellinger distance estimator, as well as attractive
breakdown results for it. In this paper we show that Simpson’s arguments for the Hellinger
distance can be extended to a particular subclass of the Cressie-Read (Cressie and Read 1984)
family of divergences where the corresponding estimators enjoy similar breakdown properties,
and the estimating equations have a very simple weighted likelihood interpretation providing a
nice diagnostic tool. The results of Lindsay (1994) provide further justification of the robustness
of the estimators. Some numerical results are provided to illustrate the possible improvements
in the performance of the estimators and the corresponding test statistics when an empty cell

penalty is appropriately applied.
1. . Introduction

Minimum Hellinger distance and related methods have been the source of
considerable interest in recent statistical literature (Beran 1977; Tamura and Boos
1986; Simpson 1987, 1989a, 1989b; Eslinger and Woodward 1991; Lindsay 1994;
Basu and Lindsay 1994; Basu and Harris 1994; Basu and Sarkar 1994a,b; Markatou
et al. 1997). While such methads require a nonparametric estimate of the true
density, it is relatively simple in count data models since one can use the ‘empirical’
density for this estimate (Simpson 1987).

In this paper we identify a particular family of minimum divergence meth-
ods which generalizes the estimating equation of the minimum Hellinger distance
estimator in such a way that a single parameter controls the contribution of the
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model component and the data component in the estimating equation — and henee
the degree of robustness of the corresponding estimator. It turns out that this
family is a particular subclass of the Cressie-Read family of divergences. The
methods are all first order efficient, and the breakdown results of Simpson (1987)
presented in the context of the minimum Hellinger distance estimator can actually
be extended to this family of divergences,

One of the reasons for the continued interest in the minimum Hellinger dis-
tance and related methods is that many of these procedures combine the property
of robustness with asymptotic efficiency — unlike the robust M- estimators. Al-
though asymptotically equivalent to maximum likelihood at the model, some of
these more robust minimum divergence procedures may have substantially infe-
rior performance compared to the former in small samples, limiting their practical
applicability. In this paper we also discuss a correction for these procedures which
has been observed to recover much of their lost efficiency in small samples.

'The rest of the paper is organized as follows. The generalized Hellinger diver-
gence is introduced in Section 2, and the weighted likelihood approach is discussed
in Section 3. Sections 4 and 5 study the influence funetion and the breakdown
properties of the estimators respectively. An example is considered in Section 6,
and the connection of our procedures with other methods is investigated in Sec-
tion 7. The empty cell penalty is the subject of Section 8, and tests of hypotheses
are discussed in Section 9.

2. The Generalized Hellinger Divergence Family

Suppose that we have a random sample Xi, X3, ..., X,, from a parametric
model {Fy; 8 € Q}, where Q is a subset of KP; assume that the family of distribu-
tions { Fy} is dominated, and that fy represents the corresponding density for Fy.
In density-based minimum divergence estimation one minimizes an appropriate
measure of discrepancy between a nonparametric density estimate d(z) obtained
from the data and the model density fy(x). For count data models, where the
sample space X = {0, 1,...}, one can take d(z) to be the empirical density function

d(x) =

H

Ny
n

where N, is the frequency of z among X;,..., X,,. The minimum Hellinger dis-
tance estimator (M H DE) of § minimizes

> (@2 (@) - £ @) =21 = Y dV3(@)f, (@), (2

T

Alternatively therefore the M HDE maximizes ¢, = .. dl/z(a:)f;/z(:l:). Let
V represent the gradient with respect to 8, and ug(z) = V fa(2)/fo(x) represent
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the score function, the gradient of logfs(x). The corresponding (standardized)
estimating equation has the form

b 2 d/(2)fy * (2)us(z) = 0, .(2:2)
as opposed to the maximum likelihood estimating equation

Y " d(x)us(z) = 0. . (2.3)

A moments reflection shows that while the estimating equations agree in the limit
under the model, the effect of a large deviation from the model at a point z is
severely downweighted in (2.2), since the expectation in (2.2) is with respect to
the density qﬁ;bdl/z(z)f;/z(x), unlike (2.3) where the expectation is with respect
to d(z). This appealing argument for the robustness of the M HDE relative to
the maximum likelihood estimator (M L) was presented by Simpson (1987).

In this paper we consider generalizations of the above idea in defining a class
of robust estimators for count data models. Consider the family of divergences

Da(d, fo) = Ka(1 =Y _ d*(z)f)=°(z)), a€(0,1), . (2.4)

where ‘K, is an appropriate nonnegative standardizing constant to be considered
later. Note that for @ € (0,1), the minimizer of Dy(d, fs) does not depend
on the value of K,. The minimum Hellinger distance estimator corresponds to
o = 1/2. We denote the family defined in (2.4) as the generalized Hellinger
divergence family, indexed by the parameter o. Let bnoa = 3., d¥(z)fy " "(2);
then én,,,, the minimum generalized Hellinger divergence estimator with index o
(MGH D, estimator) maxirmizes ®n.0,o over B € 2. It can be easily verified that
the estimating equation of the MG H D, estimator has the form

3 (@) £ (2)us(2) = 0, ...(2.5)

so that the smaller the value of @, higher is the degree of downweighting applied
to an observation inconsistent with the mogdel - for values of « smaller than 1/2
a stronger downweighting effect relative to the M H DE is exerted on such obser-
vations. The limiting case a = 1 actually corresponds to maximum likelihood.

3. Weighted Likelihood Equation: Diagnostics

Consider the generalized Hellinger estimating equation given in (2.5), which

we can rewrite as
Y do(2) i (2)ug(x) = 0. ..(8.1)
z:d(x)#£0
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By writing d*(z)f,*(z) = (fe(z)/d(2))!~*d(z) = w(z)d(z), and by rewriting
the sum over z as a sum over 4, (3.1) can be expressed in the equivalent weighted
likelihood equation form

l ko)

n -
=1

w(X:)us(X:) = 0, ..(32)

where w(X;) = (fo(X;)/d(X;))!*. For a cell with an unusually large frequency
relative to the model, larger downwelghtmg will be provided for smaller values
of @. One can then use the final values of the fitted weights as diagnostics for
the aberrant cells. On the other hand, the weights all converge to 1 as n — oo
when the model is correct. Thus the weighted likelihood estimating equation
has the property that it downweights observations discrepant with the model,
but asymptotically behaves like the maximum likelihood score equation when the
model is correct. Other weighted likelihood estimating equations having the same
property have been discussed by Markatou et al. (1997), where the weights are
based on the residual adjustment functions defined by Lindsay (1994).

The weighted likelihood estimating equation (3.2) can itself be solved by us-
ing an iterative reweighting algorithm similar to the iteratively reweighted least
squares. One can start with an initial approximation to the unknown 8, and create
the weights w; the next approximation to f can then be obtained by solving the
estimating equation (3.2) treating the weights as fixed constants. This process
can be continued till convergence.

4. Influence Function and Standard Errors

In this section we determine the influence function of the MGH D, estimator
for the true density given by g(z). For £ € X, let x¢(z) represent the indicator
function for £. We denote the ¢ contaminated version of the density g as

) = (1 = g(a) + xe().

Let G and G, represent the distribution functions corresponding to g and g.. For
a functional T(-) defined on the space of distributions, we define its influence
function by

oT(G.
7€) = s

The functional 7' is Fisher consistent if T(Fy) = 6. From their doﬁnition it 1s clear
that the MG H D, functionals arc Fisher consistent.

A straightforward differentiation of the estimating equation of the MG H Dy
estimators establishes the following result.



ROBUST MINIMUM DIVERGENCE PROCEDURES 15

THEOREM 4.1. For the MGHD, functional T,(-), the influence functions
defined above has the form 17 () = J7'D,, where

Do = oaus-(€)g* 1 (€)f47%(€),
Jo = =[(1=0)d g™(2)f3*(z)upe (2)ube (2 +Zg z)up. (x)],

and 0* = T,(G) 1s the MGH D, functional at G. D, is a p x 1 vector, and Jq
is a p X p matriz. Also, uj.(zr) is the p x p matriz of second partial derivatives of
logfs(z) evaluated at § = 6*.

As an immediate corollary of the above result we note that if G is a model point
Fy, then To(G) = 6 for all a € (0,1), and the influence function of the MGH D,
functional reduces to I='(0)ug(£), I(#) being the Fisher information about 8; as
this is identical to the influence function of the maximum likelihood estimator,
the above result suggests that the MGH D, estimators are asymptotically fully
efficient at the model.

On the other hand, being equal to the influence function of the maximum likeli-
hood estimators, the influence function of the MG H D, estimators are potentially
unbounded. Several authors (Beran 1977; Tamura and Boos 1986; Simpson 1987;
Lindsay 1994) have shown that the M H DE and some other density-based min-
imum divergence estimators have strong robustness properties in spite of this,
exhibiting the limitation of the influence function approach in this case. Lindsay
has argued that the first order approximation of the bias of the estimator under
contamination can be very inaccurate for some minimum distance estimators, and
higher order approximations are more appropriate. This in fact turns out to be
the case for the MGHD, estimators as well this will be further discussed in
Section 7.

Although they are not useful for assessing the robustness of the estimators, the
influence functions may be used for the estimation of the standard errors of the
estimators. Note that by using the above form of the influence function, we have
an explicit formula for the asymptotic variance of the estimators, as a function of
the true unknown density g(x). This can then be consistently estimated by using
the empirical density d(z) in place of 9(#). For a random sample X, ..., X,, let
Vi, be the quantity D, in the above theorem evaluated at ¢ = X; and ¢(-) = d(.),
with 6* being the M G H D, estimator; let J,, represent the corresponding estimate
of the matrix J, in Theorem 4.1. Also let V, be the P X p matrix

n
> v
Vial; .-
n—1] 4 alia
i=1

Then the standard error of (y/n times) the MG H D, estimators can be estimated
as JW,J70.




16 AYANENDRANATH BASU, SRABASHI BASU AND GOPAL CHAUDHURI

5.  Breakdown Results

One of the standard measures of the robustness of an estimator is the break-
down point of the estimator when the true distribution is contaminated by some
arbitrary distribution (Donoho and Huber 1983). For the MGHD, estimator,
we obtain a general lower bound for the breakdown point at a distribution G.
Following Simpson (1987), we consider the contaminated model

H, =(1—-¢)G+€K,, ...(b.1)
where {K,, } represents a sequence of contaminating distributions. For any two dis-
tributions H and K with densities k and k, we define ¢o(H, K) = 5, h*(z)k' ~*(z).

Let ¢, = maz{d4(G, F;),t € Q} and suppose that the maximum occurs in the
interior of ; let ¢}, = limpg oo sup|e|>m Ga(G, Fr).

THEOREM 5.1. Let A
(¢ —82)"°
L+ (e - 607"
Then there exists no sequence of the form (5.1), for which |To(Hn)—Tu(G)| — oo,

as n — oo, where T, represents the MG H D,, functional.

ProoF. Note that

¢a(anF5) Z (1 - €)a¢y
and
Qscx(Hn: FG,.) < (1 - C)a¢a(G, Fe,.) + Ca,

where 6 = To(G) and 0, = T,(H,). The result is then a simple modification of
Simpson (1987, Theorem 3). O

When the true distribution is Poisson and the model {Fy : 8 € Q} is the
Poisson family, then ¢, = 1 and ¢> = 0, so that the asymptotic breakdown point
of the MGH D, estimator is 1/2 for all a € (0, 1).

6. An Example

In this section we consider a chemical mutagenicity data analyzed previously
by Simpson (1987). Details of the experimental protocol are given in Woodruff et
al. (1984). In the sex-linked recessive lethal test in drosophila (fruit flies), groups
of male flies are exposed to different doses of a chemical to be screened. Each male
is then mated with unexposed females. Sampling 100 daughters from each male
(roughly) one observes the number of daughter flies carrying a recessive lethal
mutation on the X chromosome. One then looks at the frequencies of frequencies,
of males having 0, 1, 2, .. ., recessive lethal daughters. See Simpson and Woodruff
et al. for more details of the experiment.
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TABLE 1. THE DROSOPHILA DATA, AND ESTIMATES OF THE
MEAN PARAMETER UNDER A POISSON MODEL USIING
MAXIMUM LIKELIHOOD ESTIMATION (ML), AND MAXIMUM

LIKELIHOOD WITH OQUTLIER DELETION (ML + D).

Recessive lethal count [’}

Day 0O 1 2 3 4 25 ML ML+ D
27 258 4 0 0O 0O 0 0.138 0.138
28 23 3 0 1 1 0 0.357 0.115
177 27 7 3 0 0 1(91) 3.059 0.394

We consider three particular experimental runs, those on days 27, 28 and the
second run of day 177 (for our purpose we will refer to them as the first, second
and the third experimental runs). There is one exceptionally large count in the
third experimental run, where one male is reported to have produced 91 recessive
lethal daughters. For each run Poisson models are fit to the data using MGH D,
estimation. ‘The data are presented in Table 1, together with the M LFE of the
mean, as well as the maximum likelihood estimator from the cleaned data after
an outlier detection scheme (Simpson 1987, Section 5) is applied to detect and
delete outliers. For the second run the two largest observations (3 and 4), and for
the third run the largest observation, 91, are thus deleted.

TABLE 2. ESTIMATES OF THE MEAN PARAMETER UNDER A
POISSON MODEL USING MGHDa AND MPGHD, ESTIMATION

FOR THE DROSOPHILA DATA

Day 27 Day 28 Day 177 (2)
o MGHD. MPGHD, MGHD, MPFPGHD., MGHD, MPGHD,
0.10 0.0741 0.1369 0.0677 0.1222 0.2763 0.3737
0.20 0.0964 0.1370 0.0879 0.1245 0.3173 0.3760
0.30 0.1089 0.1372 0.1008 0.1280 0.3390 0.3783
0.40 0.1172 0.1373 0.1121 0.1338 0.3532 0.3806
0.50 0.1230 0.1374 0.1252 0.1437 0.3637 0.3829
0.60 0.1275 0.1375 0.1446 0.1614 0.3719 0.3851
0.70 0.1309 0.1376 0.1767 0.1926 0.3786 0.3874
0.80 0.1337 0.1377 0.2271 0.2403 0.3844 0.3896
0.90 0.1360 0.1378 0.2912 0.2986 0.3894 0.3918
0.99 0.1377 0.1379 0.3507 0.3515 0.4481 0.3937
0.999 0.1379 0.1379 0.3565 0.3566 2.5115 2.5122
0.9999 0.1379 0.1379 0.3571 0.3571 3.0025 3.0026
0.99999 0.1379 0.1379 0.3571 0.3571 3.0532 3.0532
0.999999 0.1379 0.1379 0.3571 0.3571 3.0582 3.0583

In ‘Table 2, the first column for each day represents the MG H D, estimates.
Note that the estimator corresponding to a = 1/2 represents the M HDE. The
following points deserve mention: a) for all the experimental runs, the MGH D,
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estimates converge to the MLE as a — 1; b) in the third experimental run,
the large count of 91 fails to corrupt the procedure even for an « as high as 0.99,
beyond which there is an apparent breakdown in the process (recall the breakdown
result in Section 5); c) all the estimates are fairly close to the outlier deleted
maximum likelihood estimator in the first experimental run; d) in the second run,
where the two largest values are much more difficult to diagnose as outliers there
is a more gradual deterioration in the estimate compared to the sharp breakdown
observed in the third run; e) the estimates corresponding to very small values of
a, while clearly resistant against outliers, are somewhat different from the outlier
deleted maximum likelihood estimator, or even the M HDE, indicating perhaps
a larger variance and/or bias of the estimators in finite samples under the model.

In the context of these data it can therefore be said that the M G H D, estimates
have exhibited strong outlier resistance property for values of a in the range
between 0 to approximately 0.7, with smaller o leading to greater robustness.
However, it will clearly be helpful if there is a correction possible which makes
the estimates corresponding to smaller values of a closer to maximum likelihood
when the data roughly follow the model, without compromising the robustness
properties of these estimators. We will introduce this in Section 8, where we will
discuss the rest of Table 1.

7.  Connection with other Minimum Distance Methods

Consider the form of the generalized Hellinger divergence defined in equation
(2.4). A little algebra shows that one can write this divergence equivalently as

~K, ;d(z) [(;((n;))y"l _ 1] .

Comparing with the power divergence family of Cressie and Read (1984) given by

o= st S| (5) 1]

where p and g are two specific densities, we see that the generalized Hellinger
divergences represent a subclass of the Cressie-Read divergence, with o = A +1,
and ko = [a(1—a)]~!; since a € (0, 1), this essentially represents the Cressie-Read
family restricted to A € (—1,0). See also Simpson (1989b).

Harris and Basu (1995) have shown that one can write the Cressie-Read di-
vergence in the equivalent form

12 pi\ 1
Z{“—A(l ) [(q—) - 1} N "’i)}’
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the advantage of this form being that each term in this sum is nonnegative, unlike
the Cressie-Read form. The second term in the above expression sums to zero, so
does not change the divergence. We can therefore write our generalized Hellinger
divergence in the form

_ diz) |(d)\*7" ||, Ge@ —d@)]|
ua(d,fe)v%:{a(a_l) l(h(z)) ] _a } €(0,1).

. (7.1)
For @ = 1/2, the corresponding divergence is 25" _(d'/?(z) — f;/z(:r))z, which is
minimized by the M HDE. Also, by using L’Hospital’s rule, and taking the limit
as o — 0 or 1, the limiting divergences are

Do(d, fo) = Y _[fa(z)log(fs(z)/d(x)) + (d(x) — fo(z)],

Di(d, fo) = Sld(e)oa(d(z)/ o(a)) + o) = d(2))]

Note that the minimizer of D;(d, fy) is the maximum likelihood estimator of 4.

Lindsay (1994) has considered a subclass of minimum divergence estimators
called minimum disparily estimators, where a typical disparity p, some measure
of discrepancy between the empirical density d(z) and the model density fy(z),
has the form

d(z)
fo(x) b

p(d, f5) = ZG (5(2) fo(z), b(z)= . (7.2)

where the function G(6) is convex, thrice differentiable, and satisfies G(0) = 0.
The class of Cressie-Read divergences belongs to the class of disparities, and con-
sequently so does the class of geyeralized Hellinger divergences, with the corre-
sponding (7(6) functions having the form
G(8) = B+D"—(6+1) _“6__
a(a—1) o

For each minimum disparity estimator, there is an associated estimating equation

of the form
ZA(«S NV fo(z) = ..(7.3)

where the function A(-), typical to the disparity in question, satisfies A(0) =
and A’(0) = 1. In particular for the maximum likelihood estimator, A(6) = 6,
and for the minimum Hellinger distance estimator A(é) = 2[(6 + 1)*/? — 1]. Since
the estimating equations are otherwise identical, the function A(), called the
residual adjustment function of the disparity by Lindsay, controls the theoretical
properties of the corresponding estimator. As large outlicrs correspond to large

0,
)
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positive values of §, one would expect the residual adjustment functions of the
more robust minimum disparity estimators to shrink the effect of such residuals
closer to zero relative to maximum likelihood. The residual adjustment function
of the generalized Hellinger divergence with index « has the form

5+1)* 1
A(6) = (_+,,,)_ - =
43 [0 4
[
—— alpha=1
............ alpha=0.9
_____ alpha=0.7
o ———- alpha=0.5
—_—— alpha=0.3
== alpha=0.1 -7
<+ -
g
@
2
<< N
o
C}l p

Figure 1. Residual adjustment functions for the

generalized Hellinger family

In Figure 1 we represent the residual adjustment functions of several members
of the generalized Hellinger family including the boundary cases o = 0, and a = 1
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(maximum likelihood). The graph clearly shows that for smaller values of a, there
1s a stronger downweighting effect on large é outliers.

Lindsay also showed that one of the indicators of the robustness of the mini-
mum disparity method is the second derivative of the residual adjustment function
evaluated at 6 = 0 (denoted by A,). For maximum likelihood A; = 0, which in
fact is a sufficient condition for the second order efficiency of the method in the
sense of Rao (1961), and larger negative values of A5 correspond to greater robust-
ness. It can be casily seen that for the generalized Hellinger family, Az = o — 1,
as a function of «. Clearly, the smaller the value of a, the larger is the value
of Ay in negative magnitude, indicating greater robustness for smaller values of
«. Note that large negative values of A; often guarantee that the second order
approximation to the bias function of the estimator under contamination can be
substantially smaller than the first order approximation (Lindsay 1994; Proposi-
tions 3 and 4), illustrating the limitation of the influence function approach in
assessing the robustness of the estimators.

In addition, the minimum disparity estimators have certain outlier stability
properties against any point mass contamination of the true distribution if A(§) =
O(6'/?) (Lindsay 1994; Proposition 14, Corollary 156). From the form of the
residual adjustment function of the M G H D,, estimators we see that all estimators
within the generalized Hellinger family corresponding to a > 1/2 satisfy this
condition. We have in fact shown a stronger breakdown result in the Poisson
model for the generalized Hellinger divergence family (Section 5).

8. A Penalized Divergence

It is a simple corollary of Theorem 33 (Lindsay 1994), that all the MGHD,, o €
(0,1) estimators are asymptotically fully efficient under the model; if fo(z) repre-
sents the true density, then in the notation of Section 2, n'/2(f,, , — 8) converges
to a normal distribution with mean.vector zero and covariance matrix given by
I71(6) for all &« € (0, 1). Thus the MGH D, estimators have the same asymptotic
distribution as the maximum likelihood estimator under the model. This was in
fact suggested by the influence function analysis of Section 4.

This asymptotic analysis, however, gives little indication of the possible differ-
ence in the performance of the estimators in small samples under the model. It
has been noted before (Harris and Basu 1994; Park, et al. 1995; Basu et al. 1996)
that at the model mnore robust minimum disparity estimators often perform sub-
stantially poorly compared to the maximum likelihood estimator if the sample size
1s small. While a well established theoretical result is lacking, empirical evidence
suggests that a part of this inferior small sample performance can be attributed

to the disproportionately large weight that these robust disparities attach to the
empty cells.
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In the context of the generalized Hellinger divergence, one can have an intuitive
feeling of such a phenomenon by investigating the form of the divergence given in
(7.1). By writing the divergence as a sum of two components, we see that it has
the form,

B d(z) d(z) a_l_
D.(d, fs) = Z {a(a-—l) [(fo(m)) :

z:d(z)#0

+é Yo i),

z:d(z)=0

_|,_

(folz) = d(z))}

...(8.1)
so that for o close to zero, the weight attached to the empty cells, i.e. a™!
2 zdiz)=0 J6(x) becomes extremely large compared to the corresponding weight
in D;(d, fg), which generates the maximum likelihood estimator. In terms of the
residual adjustment function A(-) defined in the previous section, this corresponds
to a very sharp dip in the left tail of the graph (note that the empty cells cor-
respond to & = —1). This is unfortunate, since these estimators are otherwise
desirable, as they have good robustness properties against outliers.

An alternative therefore is to consider the corresponding penalized version of
the gencralized Hellinger divergence

_ d(z) d(z) a_l_
Dy, p(d, fy) = Z {a(a— 1) [(fo(m)) 1

z:d(z)£0

+ Y fala).

r:d(z)=0

+

(folz) - d(z))}

...(8.2)
The only difference between equations (8.1) and (8.2) is that the weight of the
term . 4cpy=0 fo(2) has been changed to 1 from 1/a, ie. for all a the new
penalized divergences put the same weight on the empty cells as Dy(d, fs). We
will refer to the minimizers of the divergences Dy, 5(d, fo) by MPGHD,. This
penalty does not affect the asymptotic distribution of the estimators; neither
does it significantly affect the robustness of the estimators, as it only modifies
the weight of the empty cells, not the outlying ones. In addition, Dy, »(d, fg) is
always nonnegative, and is equal to zero if and only if d = fy. We will denote the
MPGHD, estimates by én’mp‘ '

The following numerical study illustrates the possible gains due to the afore-
mentioned penalty. Data are generated from a Poisson distribution with mean
5, sample size being 20. Number of replications used is 1000. For each sample
we calculate the MGHD, and MPGHD, estimates for different values of a.
Then we compute the observed mean square error of the estimates against the
true value of 5. The results, presented in Table 3, show that while for small o
the MGH D, estimates may behave quite poorly at this moderately small sample
size, the M PGH D, estimates may be able to recover much of their lost efficiency.
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TABLE 3. COMPARISON OF THE MGHD. AND MPGHDq
ESTIMATORS IN TERMS OF THE ATTAINED

MEAN SQUARE ERROR FOR DIFFERENT «

Mean Square Error

o MGHD, MPGHD,
0.1 0.6892 0.3020
0.2 0.5272 0.2949
0.3 0.4246 0.2908
0.4 0.3668 0.2843
0.5 0.3250 0.2781
0.6 0.2976 0.2722
0.7 0.2792 0.2667
0.8 0.2668 0.2619
0.9 0.2591 0.2580
0.99 0.2556 0.2556

Improvements of roughly similar magnitude were noticed when the experiment
was repeated over several underlying distributions within the Poisson and the Ge-
emelric family (which we have not presented here for brevity). It is to be observed,
however, that while applying the penalty makes intuitive sense, a completely gen-
eral statement of the possible improvements due to the penalty is difficult to make
since a rigorous theoretical result is unavailable. Also, not unexpectedly, the effect
of the penalty becomes less and less noticeable as the sample size increases.

Application of this penalty to the example of Section 6 produces extremely nice
results (see Table 2). In this case, the estimates corresponding to small values of
a do not differ by quite as much from the outlier deleted maximum likelihood
estimator. For the first experimental run, the estimates are practically uniform
over the whole range of «; it is the same in the third run, except in the range where
it breaks down; in the second run, the estimates are slightly more discrepant, but
clearly much more uniform compared to the non penalized version. The results
indicate that the penalty is not compromising the robustness of the estimators,

but is perhaps making the estimates closer to maximum likelithood when the data
fit the model.

9. Tests of Hypotheses

The minimum divergence ideas considered in this paper can be utilized to
construct robust tests of hypotheses and confidence intervals in discrete parametric
models. Simpson (1989a) considered the Hellinger deviance test. A generalization
to the class of disparities was given in Lindsay (1994). An extension in the case
of multiple sample problems was provided by Sarkar and Basu (1995).

Under the notation of Section 2, consider the simple null hypothesis Hy :
f = 6. Tt can be checked easily that 1'Sy = 2n[D;(d, fo,) — D1(d, f;)] equals

the negative of twice log likelihood ratio, where # represents the MLE; it is
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well known that this converges to a x?(p) distribution under the null hypothesis
(e.g. Serfling 1980). Simpson showed that the Hellinger deviance test statistic,
TS\j2 = 2n[Dyj2(d, fo,) — Dija(d, fé.. 1/2)] is asymptotically equivalent to T'S;
under the null hypothesis. It follows from the results of Lindsay (1994) that 7'S, =
2n[Da(d, fo,) — Da(d, f;_ )] have the same asymptotic chi-square distribution
under the null hypothesis for all a € (0,1).

TABLE 4. COMPARISON OF TSa AND T'Sap
TESTS FOR DIFFERENT «

Nominal Level
o 10% 5% 1%
0.1 TSa 0.561 0.510 0.371
TSe p 0078 0.041 0.006

0.2 TSa 0.394 0.306 0.179
TSo p 0082 0040 0.006

03 TSa 0.204 0.198 0.100
TSa, p 0.083 0.044 0.007

04 TSa 0.212 0.138 0.055
TSa, » 0.085 0044 0.008

05 TSa 0.160 0.108 0.030
TSa, p 0.086 0.044 0.008

06 TSa 0.139  0.085 0.022
TSa, p 0088 0048 0.008

0.7 TSa 0.126 0.074 0.016
TS4, p 0.093 0049 0.008

08 TSa 0109 0.067 0.012
TSa, p 0094 0050 0.008

09 TSa 0.106 0.060 0.009
TSa, p 0097 0052 0.008

099 TS, 0.110 0.061 0.009
TSe, p 0.104 0061 0.009

The T'S, test statistics corresponding to smaller values of a can generally
perform much better than the likelihood ratio test T'S; in keeping the level and
the power of the tests stable under contamination. In particular the Hellinger
deviance test T'Si/3 have been studied by several authors (Simpson 1989a; Lind-
say 1994, Basu and Sarkar 1994b; Basu et al. 1996) which demonstrate the
desirable robustness properties of this test. For small samples, the chi-square
approximation for this test statistic under the null hypothesis, however, can
be quite inaccurate, with the observed levels being considerably inflated com-
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pared to the nominal levels; consequently, the confidence intervals obtained by
inverting the test statistic has a true confidence coefficient lower than the nom-
inal one. Basu et al (1996) considered the use of the penalized Hellinger dis-
tance [, , in constructing robust tests of hypothesis, and showed that the chi-
squarc approximation works substantially better for the penalized test statistic
TS1y2, p = 2n[D1y, p(d, fa,) — Dy, p(d,fé"'l/“)], without compromising the ro-
bustness properties of the test.

Here we introduce the family of test statistics obtained by applying the empty
cell penalty to the family of generalized Hellinger divergences. Accordingly we
define the penalized family of test statistics

TSa, p = 20[Da, p(d, fo,) = Da, p(d. f5, )]

Note that the families 'S, and TS, , have the same asymptotic distribution
under the null hypothesis since they differ between themselves only in the cmpty
cells. Consequently, it follows from Lindsay (1994, Theorem 6) that the T'S,,
statistics have an asymptotic x%(p) distribution under the null hypothesis.

We perform a modest simulation study to demonstrate the effects of the
penalty on the levels of these test statistics. Data are generated from a Poisson
distribution with mean 5; here we test the hypothesis 0 = 5, assuming a Poisson(0)
model. The sample size was 20, and the number of replications was 1000. The
results, obtained by using the chi-square critical values, are presented in Table 4.
The numbers clearly show that compared to T'S,, the tails of the T'Sa, p statistic
are much better approximated by the chi-square distribution. For smaller a val-
ues the chi-square approximation is totally unsuitable for the former. For these
values of a, the observed levels of the T'S,, , statistic slightly underestimate the
nominal levels, but the difference 1s negligible compared to the performance of the
TS, statistic. Further calculations show (numbers are not presented here) that
as the sample size increases, the levels of penalized test statistic quickly approach
the nominal values, whereas the ordinary test statistic needs an extremely large
sample size for the chi-square approximation to be reasonable.

The testing procedures described in this section extend straightforwardly to
the case when the null hypothesis is composite, using the techniques of Serfling
(1980). The tests based on T'S, , again have the same asymptotic distribution
as the likelihood ratio test under the null.
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