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Abstract: Macroscopic spacetime (or its underlying mesoscopic or micro-
scopic substratum) has been shown to emerge from a more fundamental con-
cept, a cellular network. A NetLogo model of spacetime that self-organizes from
such a microscopic cellular network is described here. This will shed new light
on understanding spacetime at the Planck scale.
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1. Introduction

Recent developments in quantum gravity (see [4]) and string theory (see [13])
have raised lots of debate about the very concept of spacetime and causality
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at Planck scale. The length and time at Planck scale are the smallest length
{(10~#¢m) and smallest time( 10~ *sec) below which no measurement is possible.
The Planck length and Planck time can be expressed as

L, = \/hG [c?

ty =\ hG[cP

respectively, where h, (3, ¢ are the Planck constant, the gravitational constant,
and the speed of light. The very concepts of space, time and causality lose their
meaning below this scale. Spacetime behaves discretely at Planck scale. The
metaphor that Nature behaves discretely at the Planck scale is not at all clear
to 21-st century scientists. One of the present authors (SR) along with Re-
quardt [10] described how macroscopic spacetime or its underlying mesoscopic
substratum emerges from a more findamental concept, a fluctuating cellular
network around the Planck scale. Henceforth, we shall call it the RR model of
spacetime after Requardt and Roy. It is generally believed that no physical laws
that are valid in continuum spacetime will be valid below or near the Planck
seale. RR proposed that geometry emerges from a purely relational picture a
la Leibniz. The discrete structure at the Planck scale consists of elementary
nodes which interact or exchange information with each other via bonds, that
play the role of irreducible elementary interactions.

and

Essentially, the BR model is a two-level system. The microscopic level, QX,
is a dynamical cellular network of nodes and bonds. The macroscopic level, ST,
that self-organizes from (X is another cellular network, in which the nodes, or
supernodes, are the cligues (that is, maximal fully connected subgraphs) of a
graph, G(t), of the QX level, bound in a network by superbonds. The system of
BE ends with a metric space, but we wish to advance to a macroscopic cellular
network embedded in Euclidean space. Even though an isometric embedding is
not possible, we will try to approximate one using neural network technology.

First we will model the dynamical cellular network, QX, with its cellular
antomaton-like dynamics, as described in BR. We introduce an extension of
the theory by interpolating one step. Rather than defining the emergent su-
pernodes directly as the cliques of a graph /() of QX, we derive from G(t)
the permutation graph of a permutation, P(t). We then define the supernodes
of the emergent 5T as the cliques of the permutation graph of P(t), rather
than those of G(t). The purpose of this extension is to achieve a manageable
computational task.

Spatial geometry is going to evolve from the dynamics of the QX network.
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For the emergence of spatial organization we use a neural network approach,
based on the differences of finite sets, rather than the random metric of RR
based on fuzzy sets. This process is intended as a preliminary step, that even-
tually will lead to an implementation and simulation of the BER scheme. We
intend to go on to the emergence of a temporal geometry in a subsequent paper.

2. The QX Model

Let N = 1 be an integer. We consider a set of N nodes, n;,i € N = {1,--- N}
The linear indexing scheme for the nodes is meant as a convenience for pro-
gramming, and not as a spatial lattice.

2.1. Notations

Nodes have internal node states, s; € 4.2, where ¢ is a positive real number, the
quantum of information. For each i, k € N, with i < k, we have a link or bond,
bik, having an internal bond state, Ji € {—1,0,+1}, which might be interpreted
as outgoing, off, or incoming, respectively [4, 5, 6]. In this approach, the bond
states are dynamical degrees of freedom which, a fortiori, can be switched off
or om. The wiring, the pure geometry of the network, is also an emergent,
dynamical property and is not given in advance. Consequently, the nodes and
bonds are not arranged in any regular way, e.g., a lattice, and there is no fixed
near; far order. This implies geometry will become to some extent a relational
{Machian) concept and is not an a priori element of our formalism.

2.2. Local Dynamical Law

The node and bond states are to be updated in discrete steps of clock time,
t =21,z € Z, where 7 € B* is an elementary interval of clock time. While
various local dynamical laws might be contemplated, we are going to use just
one, which is Definition 2.1 of Requardt and Roy [10]. Assume two critical
parameters given, 0 < A; < Agq. Then these are the rules:

gt + 1) — 5;(t) =q.EJ(t) (1)
Ji(t +7) =0 1f [5,(2) — spe(t)] =: |sanlt)] > Az, (2)
Jip(t+7) = £1if 0 < £5;() < Ay, (3)

it + 1) = Ji(t) if 55(t) = 0. (4)
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And if A1 < £silt) < Ag, then,
Jie(t + 1) = £1if Ji(t) # 0 else Jy(t + 1) = 0. (5)

Of course, we must have initial conditions, s;(0) and .J;;(0) in order to begin
a dynamical trajectory of the cellular network.

2.3. Graphical Displays

Our model will begin with random values for the node and bond states, and
then evolve with discrete steps of clock time according to the rules above.

Our first display will show the instantaneous state of the bonds of QX
Note that there are no bonds Jy(t), i = k. Also, our bond states £1 may
be interpreted as arriving or departing directed links in a directed graph, or
digraph. Hence Jy(t), i # k comprise a skew-symmetric matrix, and we need
only display the case i < k. So our display will be an N x N upper semi-diagonal
matrix of bond trivalues, which we may indicate with the color code: green for
+1, red for —1, and vellow for (. The colors are shown in gray-scale in Figure
I - Figure 4.

We use the diagonal of the triangular matrix to show the node-states with
colors: red, orange, yvellow, or green, for decreasing values of node-state, s;,
which is the current charge on the i-th node. Alternatively, we may show the
node-weights on the diagonal. This is the number of links at a node in the
graph view.

A second display shows the node-diffs, or relative potentials, s;, = 5; — 5
in a convenient color code. Here we are regarding the node-state s; as a sort of
charge density, that increases by a receipt of charge when Ji = 1, and decreases
when Jy = —1.

A third display shows the digraph as follows. For any (i, k).i # k, the
corresponding position in the display is illuminated if there is a directed link
from the i-th node to the k-th.

The fourth and final display is the simple undirected graph underling the
digraph, shown as a symmetric matrix.

3. The ST Model

The process by which the ST network self-organizes from X, as described
in [10], uses, as supernodes, the cliques of the graph G(t) that underlies the
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Figure I: The NetLogo graphics Figure 2: The NetLogo graphics
window showing bond-states and window showing node-diffs and
node-weights. node-weights.

Figure 3: The NetLogo graphics Figure 4: The NetLogo graphics
window showing the digraph and window showing the graph and
node-weights. node-weights.

digraph D{t) of the dynamical cellular network described above. We find this
inconvenient as the computation of cliques for a general graph is notoriously
difficult, see [9]. Meanwhile, it is relatively easy to compute the cliques of a
permutation graph. So we are going to modify the prescription of Requardt
and Roy by the addition of an intermediate step, as follows. The graph & is
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Figure 5: Permutation graph for Figure 6: Permutation graph for
Example 1 (one cligue). Example 2 (two cligues).

given to us with an arbitrary ordering of its nodes. S0 we have a sequence of n

nodes, [Qo, ..., Qn).
3.1. The Supernodes

We define the it node-weight of a node as the number of its adjacent nodes,
that is, the number of links attached to it. Let w; denote the weight of the
i-th node, ¢};. Next, we form, for the i-th, node, the pair (i, u;), and collect
all of these in a sequence of pairs, A. Now we sort this sequence of pairs in
order of decreasing weights, obtaining a new sequence of pairs, B. Finally, from
B, we extract the sequence of first members, obtaining the n-permutation, PP,
We may now easily compute the cliques of the permutation graph of I as the
supernodes for the 5T network.

One may object that the cliques of the graph of P are not intuitively mo-
tivated, but we feel that they are at least as meaningful as the cliques of . In
fact, if we were to try to identify the cliques of ¢ by hand, we would probably
start with the nodes of highest weight.

Our NetLogo model includes a button “show permutation™ that prints out,
when pressed at time ¢, the permutation, P(f}. Our intention is to export this to
an external program, such as Combinatorica, to compute the cligues, and then
to submit these to a further NetLogo model (or self-organizing map software)
to obtain the ST model.
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3.2. The Clique Computation

The cliques of a permutation graph are just the inverse sequences of its permuta-
tion, which may be found by inspection, or by software such as Combinatorica.
We explain by considering a few examples. Here we will follow [7; pp. 69-T1]
closely, except that we use parentheses rather than brackets for vectors, that
is, sequences of natural numbers.

Example 1. Let 7 be the permutation (6,5,4,3,2,1) of the sequence
{(1,2,3.4,5,6). Then the inversion vector of w is the 5-vector v = (5,4, 3,2, 1).
The permutation graph of «, ¢, consists of the six nodes with a link from ¢
to j only if they are inverted, that is, ¢ < j while w(#) = w(j)}. In this case, all
nodes of G, are linked: 6+ 5/2 = 15 links.

In [9], the clique of a graph is a subset of vertices which are totally con-
nected. We say a clique is marimal-size if no node may be adjoined without
destroying the clique property of total connection. In [10], a cligue is always
maximal-size, and we shall use this convention throughout. So in this example,
there is just one cligue: the entire graph is totally connected. The unique clique
is the set, {1,2 3,4,5,6}. This is a set of nodes (indices) of G, not of values
of the permutation, .

Example 2. Let 7 be the permutation (3,2,1,6,5,4). Then the permuta-
tion graph, G, has six links, for the inversions: (1,2) as w(1) =3 > w(2) = 2,
and similarly (2,3), (1,3), (4,5), (5.6), and (4,6). There are two cliques, each
of the same size, 3, which are disjoint. The permutation graph is the disjoint
union of the two cliques, {1,2 3} and {4,5,6}.

Note that the cliques of &, correspond to maximal decreasing sequences
of s, and these are observable in reading « from left to right. It is easiest to
reverse the sequence of 7, and read its maximal increasing sequences. In this
case, Reverse(r) = (4,5,6,1,2,3) from which we read immediately the two
cliques, {4,5,6} and {1, 2 3}

Example 3. Let m be the permutation (3,6, 2,5, 1.4}, In this case, Reverse(r) =
(4,1,5,2,6,3) from which we read immediately the two cliques, {4,5,6} and
{1,2.3}, as before.

Example 4. Let m be the permutation (4, 1, 2, 3,6.5). In this case, Reverse(r) =
(5,6,3,2 1,4) from which we read immediately the four cliques, (5,6), (3,4).(2.4),
(1,4).
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Figure 7: Permutation graph for weight of entanglement of two
Example 4 (four cligues). sefs.

3.3. The Superbonds and Weights

Given a permutation arising from our simulation of the QX cellular network,
we are going to define its cliques as the nodes of our ST graph. So we now need
to connect these clique nodes with links, the superbonds of our scheme. It is
here that we diverge from RR, and follow our path to precise sets and weights
of entanglement, rather than fuzzy sets and random metric distances. We will
use Example 4 above to illustrate the concepts.

Given a finite set of natural numbers, 8, define its span by the interval of
natural numbers,

span (S) = [min(S), max(S)],
and its length as the natural number,
length (S) = card (span (S)) = max(S) — min(S) + L
Note that the empty set has length zero.

Next, given two finite sets of natural numbers, 5 and T, define their lap by
the set,

lap{S,T") = span (S) Nspan (T'),
and their lapsize by the natural number,
lapsize (S, T'}) = card (lap (S, 7)),
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that is, the cardinality of their lap. Note that if the two sets are disjoint, then
their lapsize is zero.

Similarly, we define their span by the set,
span (S, T') = span (S U T),
and their spansize by the natural number,
spansize (S, T') = card (span (S, T'}).

Finally, we define the weight of entanglement of the pair (S,T) (not both

empty) by the ratio,
weight (S, 1") = 1 — lapsize (S, T') /spansize (S, T).

Note that the weight of two sets with disjoint spans is one. Also, if span (S) =
span (1), then weight (S, T) = 0.

We may wish at this point to modify the definition of weight in the case of

two sets with disjoint spans, so that the weight may be greater than one, and
actually measure the distance between the two spans.

Now let us compute the weights of pairs of the cligues of Example 4 above.
Let K7 = (5,6), K2 = (3,4), K3 = (2,4), and K4 = (1,4). We will compute
the symmetric matrix W = [u;; = weight (K;, K;)]. Note that all the diagonal
elements are zero.

We begin with wyo. But this is one as K and Ky are disjoint. Similarly with
wg and wyq, s0 we have only three weights to compute from the definitions.
Here we go:

wyy = weight (K3, K3) = 1 — lapsize (Ky, K3) /spansize (K, K3),
lap(Ka, K3) = span (Ks) Nspan (K3) = {3,4} N {2,3,4} = {3,4},
lapsize ( Ky, K3) = card (lap (K, K3)) = card ({3,4}) = 2,
spansize (Ky, K3) = card (span (K, U K3)) = card ({2,3,4}) = 3,
s0 finally,
wpy = 1—-2/3=1/3.
Similarly, we compute .y,
lap (Ky, K1) = span (Ky) Nspan (K,) = (3,4} 1 {1,2,3,4} = (3.4},
lapsize (Ko, K4) = card (lap (K5, Ky)) = card ({3,4}) = 2,
spansize (K4, K;) = card (span (K5 U K,)) = card ({1,2,3,4}) = 4,
s0 finally,
wyy =1-2/4=1/2
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Finally, we compute g,
lap (K3, K4) = span (K3) Nspan (K4) = {2,3,4} N {1,2,3,4} = {2,3,4},
lapsize (K3, K1) = card (lap (K3, K4)) = card ({3,4}) = 3,
spansize (K3, K4) = card (span (K3 U Ky)) = card ({1,2,3,4}) = 4,
so finally,
wy =1-3/4=1/4.
Displaying all our weights in matrix form, we have,
M 1 1 1

1 0 1/3 1/2
1 1/3 0 1/4
1 1/2 1/4 0

4. The Spatial Organization

The above simulations are preliminary to the emergence of spatial organisation.
In the RB framework, the emergence of spatial organization has been formulated
as a random metric space [8, 9]. Instead, we will seek an isometric embedding
of our cligues and their entanglement weights. We now have our cliques and
weights, but notice that the triangle inequalities are not satisfied.

4.1. The Isometric Embedding Problem

Even were the distances to satisfy the triangle inequalities, an isometric em-
bedding into a Euclidean space of a given dimension might not be possible.
For example, consider the pyramid or tetrahedron, the simplest of the Platonic
solids. This is a system of four nodes with all six weights equal. We may iso-
metrically embed in Euclidean 3-space, but not in the plane. As in our case,
we may have a cellular system with millions of nodes and wish to embed as
isometrically as possible in 3-space or the plane, so we must adjust a random
embedding by a dynamical process.

S0 we propose to regard the nodes and weights as a neural network, and
try to embed the nodes in Enclidean space (of dimension two or three) such
that the distances at least approximate the weights as well as possible. One
technigue for this process is the neural network method of self-organizing maps
[3]. A simpler method, easily implemented in NetLogo, is a multidimensional
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variant of least squares, as follows [2]. Let us begin with a random map of
the nodes into Euclidean space. Then, sum up the squares of the differences
between the internodal distances and the weights, and integrate the negradient
of this sum function to minimize it.

4.2. The Method of Least Squares

We will illustrate this simpler method for the special case described in detail
in the preceding section. This case has four nodes. As above, let wio = wg =
g = 1, wwg = 1/3, waeq = 1/2, and waq = 1/4. We are going to try to embed
these four nodes in the Euclidean plane, as isometrically as possible. We begin
with an arbitrary map of the nodes into the plane, assuming only that all the
positions are distinct.

Let py = (zi,y;) denote the current position of node K; in the Cartesian
plane, i = 1,2, 3,4, and d;; the Euclidean distance between K; and K;. Then
there is a contribution e;; = (di; —wy;)? to the square error we wish to minimize.
Let E denote the total error, that is, the sum of the six pair errors, e;;, for pairs
if =12,13,14, 23, 24, 34. We regard F as a function of the eight real variables,
(1,41, s Ta,ya). We will adjust the positions so as to minimize this function,
that is, to find the most nearly isometric positions. In fact, we will integrate
the negradient of £ by the Euler algorithm.

S50 we must now compute symbolically the partial derivatives of E with
respect to each of the eight coordinate variables. Note that E is the sum of six
square terms. For any one of the eight coordinate variables, there are three of
the six square terms that yvield zero. For example, the square term involving p,
and pa, €12 = (d12 — -ung}"’._ has nonzero partial derivatives only with respect to
the four variables, xq, y1. x2, yo.

The partial of £15 with respect to x; is
12 = dp (dia — H?m}g = 2(d12 — una )iy, diz
while
Oz dra = 8, [(x1 — 22)* + (11 — )12 = (11 — 22)/ a2,
and thus
Oz €12 = 21z — wi2)(x1 — T2) fdr2 = 2(1 —wna /dr2 (71 — T2)

as dyo # 0. Note that if dys = wqe, which is the result we would like, then
;212 = 0. Likewise, if x; = x,.

All of the partial differentiations of £ with respect to the eight coordinates
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are very similar to this first case, we must only take care with the signs.

Thus we find the eight new coordinates, (X1, ..., ¥3), by the Euler algorithm
applied to the negradient of the error, E, as follows. For the first of the eight
coordinates of the adjusted configuration,

X1 =111 — (0, E)At,
where At is chosen suitably small. Using the above template for all three
NONZEro terms,

31'1E = 31'1 (EI‘E + e+ EH} .
we have,
Xy =z — 2{+(1 —wyg/dia)(zy — 23) + (1 — wya/dia)(z) — 73)
+ (l — M4 I.":il,,}{rrl = .T]}}ﬁf ¥
The other seven adjusted coordinates are found similarly,
Y1 =y — 2{+(1 —wya/dya)(y1 —ya2) + (1 — wia/dia)(y1 — vs)
+ (1 —wi/dig) (1n — a) AL,
KXo =10 — 2{—(1 —una/dia){xy — x2) + (1 — was/dog ){x2 — x3)
+ (1 — waq fdaa)(z2 — x4) J AL,

Yo = g2 — 2{—(1 — wia/di2) (1 — y2)} + (1 — waa /daz)(y2 — 3}

+ (1 — war/daa) (2 — ya) } AL,
X3 =mz3 — 2{—(1 —uns/diz)(z1 — xa) — (1 — wos/dn)(x2 — x3)

+ (l — a4 Iz’d:ﬂ}{m,q == .'T|}}£lf‘ 1
Ys=y3— 2{—(1 —wng/diag)(y1 — ya) — (1 — woa /daz)(y2 — u3)

+ (1 — way fdaq ) (ys — ya) J AL,
Xi=x4— 2{—(1 —wua/dra){z1 — x4) — (1 — waq/dog ){z2 — 34)

— {1 — T34 I.'rdjﬂ}(ﬂta = .']"1}}&?‘ ’

Yi = ya— 2{—(1 — wra/dra) (1 — ya) — (1 — wos/daa)(y2 — 1)
— (1 — war/daa) (3 — ya) AL
Notice the pattern of signs: +++,— ++,— — +, — — —.
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5. Possible Implications

The validity of the postulates of geometry has been questioned around or below
Planck scale during the development of modern physics in the late twentieth
century. It is worth mentioning that Riemann [11] in 1854 discussed similar
issnes in connection with the validity of metrical relations in indefinitely small
regions. Here, we have started with a working hyvpothesis that a type of cellular
network exists at the nltimate level of the universe from which the usual space-
time emerges. On the other hand, the people working on non-commutative
geometry [5] started with the proposition that space is pointless and a kind of
non-commutativity of algebra exists at the ultimate level. However, they also
discussed the concept of fuzzy space at Planck scale. In our present work, we
have shown the emergence of spatial organization using agent based simulations.
Our next goal is to generate spatiotemporal organization, i.e. four-dimensional
spacetime, starting with cellular networks and their evolution. This will shed
new light not only on understanding the postulates of geometry at small scale,
but also on the evolution of the universe and the theory of gravity.
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