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Ahstract

We consider the extension of the (2 + 1)}-dimensional bosonization process in noncommutative (NC) spacetime. We show that the large mass
limit of the effective action obtained by integrating out the fermionic fields in NC spacetime leads to the NC Chern—Simons action. The present
result is valid to all orders in the noncommutative parameter &. We also discuss how the NC Yang—Mills action is induced in the next to leading
order.

1. Introduction

Field theories in odd (2 + 1)-dimensional spacetime [1,2] provide interesting features that are linked to the presence of the
Chern-Simons three form. 1t is known that even if one does not include such a term from the beginning, it gets induced as a result
of quantum (one loop) effects [2.3]. This, in essence, is the phenomenon of bosonization in (2 + 1) dimensions [4.5] since the
Chern-Simons tenm appears in the effective theory as one computes the fermion determinant in large mass limit. This last point
differenuates between bosonization in (1 4+ 1) dimensions [6] where the fermion determinant is exactly solvable and its (2 + 1)-
dimensional counterpart, that can only be determined locally as a power series in inverse fermion mass.

In this Letter we discuss the issue of bosonization where the undedying fermion model lives in a noncommutative {NC) space-
time, with the coordinates obeying

[-r;h-rulzf'-':-'lm'- (1)

The noncommutativity parameter 8, 15 a constant antisymmetric object. In recent years NC guantum field theories have captured
the interest of theoretical physics community ever since their presence was established [ 7] in certain low energy limits of open string
theory in background field. In particular NC theories in (2 + 1) dimensions bear a special interest since if one is only restricted w0
spatial NC with fy; = 0 {as is generally the case), the minimal spatial dimensionality has 1o be two. In fact the prototype of NC
theories is the Landau problem which deals with planar motion of charged particles in a strong magnetic field.

A few years back a number of articles appeared [8-10] that attempted to extend the well-known duality, either in the Lagrangian
[11] or Hamiltonian [ 12] formulations, between Maxwell-Chern-Simons theory and Seli-Dual theory to their respective NC gen-
eralizations. The issue was not conclusively setted mainly for two reasons: firstly, computation of the NC fermion determinant was
not considered and the duality was studied between the NC extended Maxwell-Chern—Simons theory and Self-Dual theory. Sec-
ondly, for an explicit comparison one had 1o exploit the Seiberzg—Witten map [7] that connects NC fields 1o their normal counterpart
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in the usual gauge theory. This makes the previous analysis [8—10] perturbative in nature and only ({#) effects were taken into
account since at higher orders the Seiberg-Witten map itself is not unigue.

In this perspective the present work becomes significant since we have been able w rectify both the above mentioned drawbac ks
in a single stroke. We have computed the (2 + 1)-dimensional NC fermion deternminant that is valid to all orders in the NC parame-
ter #. Obviously our NC extended result is also valid in the long wavelength (large fermion mass) limit. We have followed the idea
proposed in [ 13] where NC fermion effective actions in {34 1) dimensions were considered. 1t was demonstrated in [13] that it is
in fact enough to consider the existence of an exact Seiberg—Witten map, valid to all orders in &, in a formal way and the explicit
form of the map is not required. As far as calculating the fermion effective action is considered, the above procedure captures the
NC effects in a non-perturbative way. This makes the present analysis, i.e., NC bosonization, exact o all orders in 8.

To be more specific, we compute to all orders in &, the one loop effective action in the large mass limit, that is obtained by
integrating oul the fermionic matter sector in the NC gauge theory. Due to the peculiarities of (2 + 1) dimensions, the large mass
limit of the effective action wrns out to be finite. In the leading order, (2(m"), this is precisely the NC Chern-Simons action. We
also discuss, how in the next wo leading f‘_':'{m_l}l order, the NC Yang—Mills term can be oblained.

Our analysis shows that, in spite of the complexities of NC spacetime, the one loop effective action (in the large mass limit)
yields exacty the NC extension of the commutative space result. 1t might be recalled that the later was also obtained in the large
mass hmit [4.5].

2. The effective action
In NC spacetime, the action for the fermionic fields, in the fundamental representation, in the presence of an external non-Abelian
zauge polential, is given by
5=fd3x[~i: «iy D, W — m¥ o W], (2)
where (D )y r = dp 58, — (A, )y g+ and the star product 1s defined as.,

,-‘:' 'ilnil

(A B)(x) = lim e FA(x)B(y). (3

The one-loop effective action is defined as

. i det[d +im —rg'i*l
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The operator (# 4+ im)~"! giw:s the propagator for the fermions

r{;.‘a+m}l p—iply—x)

+im)~x - ]
v Yy = {J} P e i )
which 15 identical 0 the commutative space expression. Hence,
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Note that the effect of the star product in (4) is manifested in (7) through the exponential phase factor with,
bi X pj =Hdﬂpu']u Piig- (8)

The consistency of this formalism in NC spacetime and the fact that there is no UV/IR mixing can be justified by exploiting
the Seiberg—Witten map that connects the NC field variables to their commutative counterpart and vice versa [13]. As we have
emphasized before, only a formal definition of the exact Seiberg—Witten map is needed in this process.

The above two Egs. (6), (7) form the basis of our caleulations. Furthermore, for the sake of notational simplicity, we have not
wrillen down the i e lerms in the propagators and it is to be understood that they exist.
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We now explicitly compute the effective action in the long wavelength (i.e., large m) limit. This is done to the leading O(m")
and next o leading {m~") orders. In the leading order there are only two contributions that arise from the two-A and three-A
terms in (6). The other pieces drop out due o the peculiarities of three-dimensional spacetime and the trace properties of gamma
matrices. In the next to leading order {m~"), apart from the contributions coming from the two- A and three- A terms, there is also
a piece from the four- A term. Eqg. (6) is now explicitly evaluated order by order in the background fields. The term with one gauge
ficld vanishes because of the racelessness of the group matrices. Next, the effect of the two- A term is considered.

3. Contribution l'rom two- A terms

First, we compute the odd parity contribution. The relevant expression is obtained from (6),

ir[Ad]= fd-‘-xld-"szr[Amm}Am{x:}]r“”‘![xl.xzi, (9)
with
L [ dp dp: 5
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where,
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In what follows we will concentrate on the g integral and its explicit evaluation. The trace can be performed using the identities
provided in Appendix AL We thus get
o _ f g 26" ¢+ 01" a2+ 4" p) +842 " — g - p1 — @) + mprae™)
) @np g + p1)? — m2)lg2 — m?) :
Here we take the leading enm in the large mass imit. In this limit the g#'%2 term and the last term contribute. Using the integral
Eq. (B.1) in Appendix B, the odd panty contribution is given by,

(12)
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Substituting Egs. (13) and (10) in Eg. (9) we get
m f_f.lfj_flzlfi_"u

ilNAA|l=——
lm| 8=

fd xrd 22 Te[ Ay, (x1) Ay, (32) |8528 (1 — x2). (14)

In deriving the above result we have performed both the p integrations in (10} that has yielded the delta function. Performing an
integration by parts and neglecting the surface terms we get the final form,

" (_,.'n'l

irfAA]l=+ fd-‘x Tr[ A, (x)d, Ar(x)]. (15)

im| 87

1t should be mentoned that the effect of the phase factor in (7) twivializes so that no star product oceurs in (15). This is expectled
because of the special property

fﬂ'lx{,—i* Bix)y= fdlx{AE}{.r}. (16)

Ohserve that (15) is precisely the two-A part of the NC Chern-Simons action, which is of (2(m").
We now consider the normal parity part in (12). This is essentially the next o leading order (m ~") contribution.
Using the integrals given in Appendix B, one obtains,
i1
sz — R 2 R ) m‘l b1
16 ) 17 ]

Futﬁng the above result in Eg. (10, we obtain,
i 1 d* Pl ipyixg—xap p st 2 pypia 7
53_,! I._”I| {--_.!::I f‘ o -[pl]PJ;. s X ] (1 ::'

which in wrn 15 utilized in Eq. (9) 1o yield,

ra iz, x)=
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iF[AA]= 2n)

27 ,mu
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Writing the momenta as derivatives, performing the py integral to yield a delta unction, and finally doing an integration by parts,
the effective action simplifies to,

; : : ‘ ( 2 P .
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The above is the two-A tenm of the NC Yang-Mills action.
4. Contribution from three-A terms
The contribution of the three- A term in the effective action is oblained from (6),
ir[AAA] =fdlxldlxgdlngr[Am{.rl}Am{x:}lflﬂ_,.{.r;}l]r"li“'!”“[x[,.rz,.l'_ll. (21)
where
L [ d*p d*pr dp3
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In the present case

s _ d*q ulld + 5 +m)y" g+ m)y*2 g —pa +m)y™] (23)
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As before, we first compuie the odd parity terms. These are basically the leading order ((m") pieces. The integrand is simplified
as,
2im[e 2 (g2 gy + " pra — Py Pra) + €5 (@ pr + P P — 0 0)
— "M (Pl 1o + g ge) + mzf-m“”‘-"]. (24)

The terms we are interested in are the ones independent of the p’s and the last term of the above expression. Using (24) and the
integrals provided in Egs. (B .2) and (B.3), we obtain from (23),

s m et
I = M el (23)
Substituting Eqgs. (25) and (22) in Eq. (21), and using the definition (3) of the star product on a chain of fields,
2 2 dk; i
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we obtain the final result,
AR = 28 f::-‘x T Ay () Au(x) » 43 ()], @7
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where the star product now appears explicitly. Combining Eqgs. (15) and (27) we get the complete NC Chern-Simons action.

In a similar way it is possible to compute the nommal parity coniribution associated with the three- A term. In the order Q(m— ')
expansion this yields the three- A piece in the NC Yang-Mills action. Furthermore, there is an analogous (2(m~') contribution
from the four-A term in (6). Taking the two-A piece explicitly computed in (20}, one obtains the complete structure of the NC
Yang-Mills action.
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In the present work we have studied the noncommutative extension of the bosonization phenomenon in (2 + 1) dimensions.
We have derived the noncommutative (NC) Chern-Simons action by integrating out the fermionic matter in the one loop effective
action in the long wavelength limit. This result is valid to all orders in the NC pammeter 8. Moreover the limit # — 0 is smooth so

that the NC expressions reduce o their commutative versions and we recover the bosonization in commutative spacetime.

Finally we return to the ambiguity [8-10] surrounding the issue of duality in noncommutative Maxwell-Chern—Simons theory
and Self-Dual theory and point out that the analysis of [8] holds as far as the duality of the noncommutative versions of the above
two bosonic theores are concemed. However, if one wants to tie up the bosonization of the noncommutative fermion theory as well,
(as is true in the commutative spacetime), the present work shows that one needs to consider the noncommutative Chem-Simons

theory [9,10].

Appendix A. Some trace identities

We consider a Hermitian representation of the 2 x 2 gamma matrices satisfying p " p" = g"" + ie#" 7 This implies the

following trace identities in (2 + 1) dimensions:
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Appendix B. Some important integrals
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g P
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We also need the following forms of the integrals [14]. Note that the results presented below hold in the large mass limit, i.e.,

m—s 00
d*g 1 i
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