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Abstract

We have studied the entanglement of ientical fermions in two spatial regions
in terms of the Berry phase acquired by their spins. The analysis s done
from the viewpoint of the geometneal interpretation of entanglement, where a
fermion is visualieed as a scalar particle attached to a magnetic lux quantum.
The guantification of spin entanglement in erms of their Berry phases is novel
and generalizes the relationship between the entanglement of distinguishable
spins and that of delocalized fermions.

PACS numbers: 03.65.Ud, 03.65.Vf

1. Introduction

Quantum entanglement 15 a specific feature which distinguishes between the classical and
quantum workd. The role of entanglement is also important in different branches of quantum
information science such as quantum communication [1], quantum computation [ 2], qguantum
cryptography [3] and quantum teleportation [4]. Entanglement for two distinguoishable qubits
has been well studied and a measure of the degree of entanglement can be quantfied in terms
of von Neuman entropy and concurrence [5-8].  However, entanglement of two identical
fermions has not yet been well understood. In systems of identic al fermions, a proper measun:
of entanglement should take mio account multiple occupancy of states [9-13], the effect of
exchange [ 14] and mutual repulsion. Recently, Ramsak ef al [15] have considered the problem
and formulated several expressions for the concurrence of two indistinguishable delocalized
spin-1/2 particles. In a recent paper [16], it has been pointed out that the concurrence for
the entanglement of two distinguishable spins can be formulated in erms of the Berry phase
acquired by the spins when cach spin s rotated about the guantization axis (z-axis). In
fact, when a spinor 1s visualized as a scalar particle attached w a magnetic flux, guantum
entanglement of spin systems 15 caused by the deviation of the internal magnetic flux line
associted with one particle in the presence of the other. This helps us to consider the measure
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of entanglement namely concurrence, in lerms of the Berry phase acquired by the motation of
the spin around the z-axis induced by the internal magnetic field of the other particle. This
picture 15 potentally vseful to study the entanglement of dentical fermions in two spatial
regions in terms of the Berry phase acquired by their spins. Indeed in this formalism, the spin
entanglermnent through magnetic coupling is associated with the spatial entanglement between
fermions at different spatial regions and entanglement can be viewed as a consequence of
Fermi statistics [14]. Therefore, just ke in distinguishable spin systems, the concurmence
associated with the entanglement of identical fermions in different spatial regions can also
be expressed in terms of the geometrical phase. The phase 1s acquired by the spin of one
particle in one spatial region, when it moves around the z-axis in the presence of the other
particle, in another spatial region. In the present paper, we shall study the entanglement of
two delocalized electrons in two spatial regions from this viewpoint.

2. Concurrence and Berry phase

For an entangled state, the Berry phase acquired by a spin may be analysed by considering
that, under the influence of the inlemal magnetic field associated with the other electron, the
spin of an electron rotates adiabateally with an angular velocity ey around the z-axis under
an angle &.

The instantaneous eigenstates of a spin operator in the direction n{d, 1) where n is the
unit vector depicting the magnetic field Bit) = Bni#, ) in the o.-basis are given by

[ta: th = cos H;I t.)+sin g | .}
& H H ir;l"J {1}
oai £ = sin E|T:}+L'{}SEC ez}

After cyclic evolution for the interval T = ff‘ cach eigenstate will pick up a geometric
phase (Berry phase) apant from the dynamical phase [17]

Dy = 7l Feosd) (2)
where @ g (D gy ) comesponds to up (down) state. The angle 8 represents the deviation of the
spin from the quantization axis (z-axis) under the influence of the magnetic field.

The evaluation of the concurrence in erms of the Berry phase follows from the following
consideration. For the Bell state

W =altl) —bltT) (3)
where g and b are complex coefficients, the concurrence is given by
C = 2ja||b|. (4)

In this formalism, as entanglement 1s considered o be caused by the deviation of the
magnetic ux line from the quantization axis in the presence of the other particle, we may take
|a| and |b] as functions of this angle of deviation & and thus we wrile

1 Inl)_(ﬂﬁ'}) &
2 (|b: ~\e@ ) 2

The angle & here just corresponds to the deviation of up (down) spin under the influence of
the other and thos represents the same angle @ associated with the Berry phase acquired by
the spin as given by equation (2). For the maximum entangled state (MES), we have @ =7
as it corresponds to the maximum deviation of a spin from the z-axis when the spin direction
15 reversed. For this state, we have la| = [b] = # and C = 1.
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Agam for the disentangled state 8 = 0 and we have C =10,
These constraints satisfy

_.F{H}lr.l:'r = g‘.ﬁ}lri=:r = flfl::l

and,
either f{@))s=o =10 or E(@)a=0 = 0. (7)

5

From these constraint equations, for the positive definite norms 0 £ |a] < 1 and 0 £ 5] = 1
we can have a general solution

R rm)_ f’{ﬁ'})_ m-;%) )
V2B T \g@)) T \sin® 2

with n being an odd integer. Itis noted that according to equation (8) the relation |ﬂ|!+|f?|! =1
issatistied only inthe case of @ = 7 implying the MES. So to have the probability interpretation
the generalized state may be defined by incorporating the normalization factor W in
equation (3). The Berry phase corresponds to the half of the solid angle ! swept out by the
magnetic lux line and is given by 7(1 — cos#d ). The system under consideration sugpests that
the range of & lies between 0 £ |#] £ 7 where @ = 7 comesponds to the maximum deviation
of the spin when the spin direction s reversed. 50 in expression (8) we should take n =1 for
our present system. We find that the particular solution with n = 1 relates the concurrence 1o
the Berry phase and s given by

lis

- %{1—1.'{15&'}:—. 9

& w3
C = 2|al|b| =5~
2T

I |

We may remark here that the concurrence (as it isa measure of entanglement) is a function
of an instantaneous state, whereas the Berry phase s related o the periodic rotation of the
system. The relationship between these two entities in the present framework follows from
physical aspects. Here, entanglement is caused by the deviation of the magnetic flux line
associated with one fermion in the presence of the other and the Berry phase of an entangled
spin system s related o this deviation. This is the novelty of studying spin entanglement from
Berry phase approach.

3, Spin entanglement of two delocalized fermions

In our framework, we consider two electrons in two different spatial regions A and B.
Entanglement is produced when two mitially unentangled (sepamted) electrons in wave packets
approach each other, interact and then again become well separated into distinet regions A and
B. The spin properties of such a fermmionic system can be realized in spin correlation functions
for the two domains. In fact, the spin measunng apparatus could measure spin correlation
functions for the two domains A and B rather than two distinguishable spins. We may consider
spin entanglement of two-clectron states on a lattice of the form

N
¥ Geon it s
I} = Z E[‘ﬁa;f"f},"’ v c'j'c'_f..][{]'} (1

i, j=I

where ¢ creates an electron with spin s on site i and N is the total number of sites. Here
1,&‘_5."{11!-":;_ ) is the amplitude {}!' Fr{}l'{uhilify V] I?m.l the two-clectron state with one huvi_ng spin
t m region A and another with spin | in region B, The whole set of probabilities gives the
waveluncton for the two-electron system in the continuum limit.
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The system 1s relevant in representing a light binding lattice containing two vakence
electrons occupying two non-degencrate atomic orbitals or two electrons in the conduction
band of a semiconductor for which the site represents finite gnd points.

To study the concurrence associated with the entanglement of such a system in terms of
the geometric phase acquired by the spin of one electron in the presence of the other electron,
we consider a rotation of the spin around the z-axis under an angle & at each site

plit = plt e (11)
when the angle # vanes from 0 w 7. The Berry phase acquired by the spin may be realieed
through the expression

Dy = —if (W13} e (12)

Jo
which on the lattice takes the form

®p =222yl wlt. (13)
i

This follows from the differentiation of expression (11) with respect to # and replacing the
mntegration in the continuum case by the summation on the latice. The relationship between
concurrence and the Berry phase can be generalized for the system of two indistinguishable
particles and from equations (99 and (13) we can wnle

[Ds]

e~y W
ij

This may be identified with the formula obtained by Ramsak et al [15] for the entanglement
of the two electron stales on a lattice (given by equation (107). The concumrence of the system
can be expressed in terms of the operators

SL.H:- =i {Szrm}: = Z CigCiy (13)

TEA(B)

and for the state with §%, = 0, we have

C=2|Sisa)| =2 vt vl (16)
i, j

Indeed, this can be formulated in a more familiar form by considenng the state in analogy o
the Bell state

oF = L(plt £yl a7
over all pairs [7] suchthat i € 4 and § € B. The expression for concurrence of the system is
given by [15]

2 2
€= [[(®3)" - (@5)]] as)
[ii]

which is equivalent to expression (16). From our analysis we note that this result s identical
with expression (14) obtained from the relationship of Berry phase with concurrence.
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4. Entanglement of iwo delocalized electrons in the Hubbard model

As the study of generation of entanglement in the solid-state environment is an active field
of research in recent tmes, for an application for our formalism we have picked up the
well-studied Hubbard model [ 18].

To compute the concurrence for the entanglement of two electrons in two different spatial
regions in the Hubbard model, let us consider two interacting electrons in a one-dimensional
lattice with N — oo, The corresponding Hamiltonian is

H=—i E (c},cis +he) + E Usinign jy (19)
if i 5.8

where 1 is the hopping parameter, 7 represents the onsite repulsion and n;, s the number of
electrons at the site § with spin 5. Let the situation be such, that one electron with spin
is initially confined in the region A and the other elecron with opposite spin | in region B.
The imitial state 15 defined by two wave packets, the left with momentum £ and the nght with
momentum —g. After collision, the electrons move apart with non-spinflip amplitnde f, and
spin flip amplitude ry,,. For sharp momentum resolutions we take kK = —g = ky. We would
like to study the entanglement of these two electrons in terms of the Berry phase acquired by
the spins in this system. We know that for strong coupling and at half filling, the system with
Hamiltonian (19) reduces tw the Heisenberg antiferromagnetic chain and the Hamiltonain is
given by

H=7)[58;+8]8+85] (20)
with J = 4r!|."U. In the § = 0 sector] § = wtal spin), the mtational symmetry of the
Hamiltonian implics

(757} =1{578}) = s75])- 21
In the antferromagnetc chain for spin-1,/2 system,

{s75) < - (22
If & be the deviation of the spin at the site @ from the quantization axis e, z-axis under the
mnfluence of the spin at the site § then we can wrile

ceel 1o

{8785} = geosd. (23)
We consider collision of the two clectrons imitially at regions A and B. After the collision the
clectrons move (o the final states in these two regions either with spin flip or non-spin flip
configurations. The Berry phase acquired by the up (down) configuration is given by

Qg (P ) =m(]l —cosd)m(]l +cosd)).
Howvever after the collision, the initial spin positions get changed so that for spin flip and spin
nonflip cases we have the two phases

P =mil —cos8)o—s and $p=mil +cos8)s—y (24
respectively.
The generalized expression for the Berry phase is
$g =mil + |cosd)]). (25)
When the spin flip and spin nonflip amplitudes coincide the concurrence is given by
P 1
C= [©el = —(1 +|cosf)lls—g - = 1. (26)
27 2 2
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Our result is identical with another definition of concurrence [ 15]

C=2fpryl=1 (27)
when the spin flip and spin nonflip amplitude coincides 1e. 1y, = ry, This comesponds Lo
Ky o~ 0, . However, when the spin flip and non-spin-flip amplitudes do not coincide 1.e.
By #F Py, We can measure the concurence from an estimate of the angle & in terms of
momentum &k = —g = &g). This can be achieved from an analysis of the energy relations
in the Hubbard model and Heisenberg antiferromagentic chain in the ground state with sie
i A, j e B . Inthe Hubbard model, when no particles meet at a lattice point, the many
particle energy is given by

E=-X Zuu«;i‘, ; (28)

In the Hesenberg antiferromagnetic chain with the correlation given by equation (23), the
energy per site 1s given by

E = J3cosd. (29)
Since in the Hubbard model, the occupation number of each species of spin {(n,,} = l, we
find that with J = q%, the energy of one particle can be related to the energy per site in the
antiferromagnetc chain by the relaton

3

4 3
teos ky = —— = cos A, (3
L4
Fort = [J, we find
cosd = _lauus Ky (31

So the concurrence for different values of &y att = U can be obtained in terms of the Bemry
phase acquired by the spin through the relation

C=21i{l+cosd|lsap. = %{1 + _‘I;|L'05-ktr|}hl (32)

2 £0,m°

From this, we can have a numerical estmate of concumrence for different values of k.
In fact, we find for ky = 74, /2,37 /4, C = 062,035, 0.62, respectively. Again, from
equation (26) we note that for Ay = 0.7 we get © = 1. It 1s found that the results are
in good agreement with the values of concurrence obtained by Ramsak et af [15] from an
analysis of the spin flip and nonflip amplitudes of two-clectron imteraction for wave packets
with well-defined momentum.

5. Summary and conclusion

Tor summarize, the present analysis shows that the spin entanglermnent of two identical fermions
at two different spatial regions can be desenbed by the Berry phase acquired by the spins
in the two domamns. We have considered two identical fermions, localized in two different
spatial regions whose spins interact through magnetic coupling. As the study of entanglement
in the solid-state environment 1$ mmportant, W substantate our denvation, we have considered
two electrons in two different spatial regions in the Hubbard model. We have derived the
concurrence for therr spin entanglement in terms of the Berry phase acquired by their spins.
We have found that the results obtained in our method (value of the concurrence in the Hubbard
model) are in good agreement with the existing resulls in the literature [15].

We may conclude by mentioning that it is difficult [ 19-23] to have any directly measurable
observable which corresponds o entanglement of a given arbitrary quantum state. In this
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novel approach, the value of concurrence, which is a degree of measure w0 guantify spin
entanglement of two fermions, can be estimated by the observed Bery phase acquired by
ther spins. Furthermore, as we have already shown that the concurrence for the entanglement
of distingwshable spins in a spin system can be related w the Berry phase acquired by their
sping [16], the present approach generalizes the relationship between entanglement of two
distinguishable and mdistinguishable fermions.
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