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Ahstract

Tsirelson showed that 242 is the maximum value that CHSH expression can take for quantum correlations [ B.S. Tsirelson, Lett. Math. Phys. 4
{1980} 93]. This bound simply follows from the algebra of observables. Recently by exploiting the physical structure of quantum mechanics like
unitarity and linearity, Buhrman and Massar [H. Buhrman, 5. Massar, Phys. Rev. A 72 (2005) 052103] have established that violation of Tsirelson’s
bound in quantum mechanics will imply signalling. We prove the same with the help of realistic joint measurement in quantum mechanics and a
Bell’s inequality which has been derived under the assumption of existence of joint measurement and no signalling condition.

1. Introduction

There exists quantum mechanical states shared between two
parties which exhibit nonlocal character. This nonlocality s
quantified by using ‘Bell’s expression’. This is an expression
which is bounded by a certain value for ‘Local Hidden Variable
(LHV) models’; but can exceed this value in case of gquantum
correlations. Consider for example a setting of two parties, Al-
ice and Bob; sharing a quantum state p and each has a choice
of two local measurements. Alice can measure the observables
A and A" whereas Bob's observables are B and B'. The mea-
sured values of all the observables can be 1 or —1. One relevant
Bell’s expression in this case is the Clauser-Hom-Shimony-
Holt (CHSH) expression [ 1]. For local hidden variable models,
this expression is bounded by 2 but in case of entangled quan-
turm systems, this bound can be violated. For example, on the
singlet state of two qubits there exist observables (A, A" B B')
for which value of the above expression is 24/2.

In fact as shown later by Tsirelson [2] that 242 is the
maximum quantum value of the CHSH expression. Tsirelson’s
bound is a simple mathematical consequence of the axioms

of quantum theory, but it would be interesting o know that
whether there 15 some deeper reason why a violation greater
than 2+4/2 is unphysical. It i known in this connection that a

violation greater than ,l',-"% == 327 would imply that any com-
munication complexily problem can be solved using a constant
amount of communication [3]. But this does not answer the
question that what odd would have happened for a violation
just greater than 24/2.

Recently by exploiting the physical structure of guantum
mechanmies hike unitary dynamics and hneanty; Buhman and
Massar [4] have shown that exceeding Tsirelson’s bound by
quantum méechanics will imply signalling in quantum mechan-
ics. Here we provide a simple proof of the same by exploiting
nice results of existence of joint measurement for spin along
two different directions in guantum mechanics [5-9] and a
Bell’s inequality derived under assumptions different than that
of the local-realism.

2. Joint measurement, no signalling and Bell’s inequality

Usually, Bells inequality is derved under the notion of
local-realism. So. its violation by a theory will imply that the
theory is incompatible with the notion of local-realism. For ex-
ample, quantum mechanics violates it and so we conclude that
quantum theory 15 not local-realistie. Tsirelson observed that
for gquantum mechanical states and observables, Bell's expres-
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question that what unphysical would have happened if quantum
mechanics had violated Tsirelson™s bound. One cannol answer
this question on the basis of a Bell’s inequality derived under
the notion of local-realism. Bell's inequality in this context can
only tell that quantum mechanics 15 not local-realistic, it cannot
tell more than this.

Recently Andersson et al. [ 10] have denved Bell's inequality
by assuming the existence of joint measurement (nol necessar-
ily revealing the pre-existing value) and no signalling condition.
This is not a trivial assumption. In case of classical system it is
always possible o measure two different observables jointly,
but it 1s not always the case with quantum systems, where there
exist noncommuting observables. Al the moment, we do not
need w think about how o achieve this joinl measurement,
rather we simply assume that this can be achieved.

In the framework of a general non-signalling probabilistic
theory, we consider a physical system consisting of two subsys-
tems shared between Alice and Bob., The two observers (Alice
and Bob) have access 1o one subsystem cach. Assume that Bob
can measure two observables B or B on his subsysiem and Al-
ice can measure A and A" on hers. The measured values of all
the observables can be 1 or —1. We further assume that Al-
ice can measure the observables A and A" joindy. Let us now
consider a situation where the system s always prepared in the
same state and Alice measures A and A" jointly (we shall use
the subscript J o denote the joint measurement) and Bob mea-
sures the observable B.

The probability that Alice will obtain the result Ay = A
can be writlen as

2. Here anses an inleresting

p(A;=A4:B)=p(A;=A, =B)+ p(A; =A, =—B).
(1)

As these probabilities are non-negative, hence:

= |p(As= A} =B) - p(A; =4, =-B)|. (2)

MNow the term in the right hand side can be written as
|p(4; = A} = B) — p(A; = A} =—B)|

- %|E{A;. B)+ E(A}, B)|, (3)
where the correlaton function E{A, B) 1s defined as
E(A.B)=p(A=8B)— p(A=—-B)=AB.

The above three equations finally give us

r - ]' £
p(A; =A}: B) 2 5|E(4;, B) + E(A), B)|. (4)

Similady, if we assume that Bob measures for the obsery-
able B, we will obtain

1

p(A;=—A}; B) 2 S |E(A;, B) — E(A}, B)]. ()

Adding inegualities (4) and (5) we get:
plA;=AB)+plA;=—A: B)
> §[|E{A;, B)+ E(A}, B)|
+ |E(A;, B — E(AT, B)|]. (6)

Because of the no signalling constraint the probability of Alice
getting Ay = —A’, must be independent of the fact that Bob
measured spin along 8 or 8, ie.

plAr=—A4 B)=p(A; =—-A}: B'). ()

Futting for p(A; = —A';; B') from Eg. (7) into inequality (6),
we get:

p(A;=A}B)+ p(A; =—A): B)
| ’
>3 [|E(As. B) + E(4). B)|
+ |E(A;.B) — E(A), B)[]. )

Now, noting that, p(A; = A"; B) + p(A; = —A'; B)= l;in-
equality (8), ulumately reduces to:

|E(A;, B) + E(A)), B)| + |E(A;, B) — E(A}, B)| < 2.
(9)

One should note that the above inequality is an usual Bell's
inequality but derived under the assumptions that there exists
Joint measurement and there can be no superluminal signalling.
So, violation of this inequality in a physical theory will imply
that some or all of the assumptions used in the derivation of it
are inconsistent with that patticular theory. For example if joint
measurement really exists in a physical theory then violation of
this mequality will imply signalling in that physical theory.

It 15 well known that there are quantum mechanical states
which violate this inequality. Now, in this particular context of
Bell’s inequality, if no-signalling is considered 1o be a principle,
then violation will imply that there can be no jomnl measurement
in quantum mechanics. On the other hand o address the ques-
tion of signalling in quantum mechanics with the help of Bells
mnequality, one will have to consider a situation in gquantum me-
chanics where joint measurement exists. The next two sections
deal with this situation.

3. Quanium measuremenis

Usual quantum measurements am projeclive measurements
which project the initial state of a system to one of the eigen-
states of the observables being measured. For example in a
measurement for spin along direction @ the projectors onto the
eigenstates are:

1 T
E{:l:&}:-_}-[f:l:a.frl. (107

But further progress had shown that the most general quantum
measurements are posilive operator valued measures (POVM ).
These generalized measurements allow us to deseribe any mea-
surement that can be performed within the limits of gquantum
michanics.
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In this more general framework of quantum theory, the states
of a gquantum system are represented by positive trace class
operators. Most general observable 1s represented by a collec-
tion of positive operators {E;} where 0< E; = [ for all i and
3 E; = I, I being an unit operator on the Hilbert space. In a
measurement for this observable for the state o (say), the prob-
ability of occurrence of the ith result is given by Tr[p E;]. In
the case of spin-1/2 particles, P. Busch [7,8] had first introduced
collection of positive operators with the above said properties in
a particular form which can be mterpreted as unsharp spin ob-
servables. This particular unsharp observables are represented
in the following form:

Ei(@ = 511 +1d .61, (11

where 00 = A< 1 and & is a unit vector. Here o = (ay. ay, 0;)
denotes the usual Pauli spin operator. The spectral decomposi-
tion of £; (&) is given by

- 1+ 431 - 1—4%1 -
Eia)= ( 5 )2[f+a.al+ ( 5 )i[f—a.al.
(12)
Here '1[1' + @ . o) and é[f — & . ] are the one dimen-
sional orthogonal spin-projection operators on H2. From this
representation it is clear that the POVM [ E; (o), E(—a)} is a
smeared version of the projective measurement {.l_,[f +a.qa],
111 —é .7}, This is the formal sense in which the former repre-
sents unsharp spin measurement in the direction . Noteworthy
here is that for & = 1, it represents the usual sharp (projective)
spin measurement along @. The eigenvalues v and w of E;{a)
where

1 1
r=5{1+)-.}|::-—

and

Pk | =

1
1!:5{1—}.}{

are interpreted respectively as reality degree and the degree of
unsharpness of the spin propeny along o.

Keeping the above interpretation for unsharp measurement
in mind it is easy o show that expectation value of an unshamply
measured spin observable with respect o an initial state o 18
proportional to the expectation value of the cormesponding spin
observable when measured sharply over the same stale o, the
coefficient of proportionality being equal o the unsharp para-
meter (for example A in this case), as

Tr[p(@.a)u] = (+ D Tr[p Ex(@)] + (—1) Tr[p Es(—a))]
=ATdpa.5] (13)

4. Existence of joini measurement in quanium mechanics

Frojective measurements are oo restrictive. In the frame-
work of projective measurements, there are observables which
cannot be measured jointly. This distinguishing feature of quan-
tum méechanies 15 popularly known as complementanty. Exam-
ples of complementary observables are position and momentum

observables, spin observables in different directions, ete. But
in the more general framework, it has been shown that certain
complementary observables (in standard measurement) can be
measured jointly if they are represented by a particular form of
POVM (having an interpretation in terms of unsharpness) in-
stead of being represented by projection operators [5,6].

Joint measurement of spin observables in different directions
has been extensively studied by P Busch [7]. He, by exploiting
the necessary and sufficient condition for co-existence of two
effects as given by Kraus [3], showed that a pair of unsharp
spin properties Ey | (@) and Ej,(d2) are co-existent (i.e. can be
jointly measured) if and only if:

(R + hada)| + [(hadn —hodo)| €2, (14)
For &) = k2 =4, ie. for equal unsharpness for both the spin
properties, the condition reduces to:

1@ + dal + &1 — éal] 2. (15)
The term in brackets has maximum value 24/2. Hence the co-

existence condition is satisfied for all pairs of directions & and
é if and only if A < TI

5. Violation of Tsirelson bound in guantum mechanics
implies violation of causality

Now we consider a situation where the system consists of
two, lwo level quantum systems in a state o (say). Out of the
two observers Alice and Bob, Alice, on her subsysiem, mea-
sures for the unsharp spin observables Ay or A}, (whose joint
measurement 15 possible in quantum mechanics) where

1 =
Au:;[f +Ahi.a]
and

;o1 g
Ay =51 +2a .a].

We will denote the sharp counterparts of these observables by
Aand A" respectively.
Bob on his subsystem measures either

1 i
b= ;[f +b.a]
or
i A s o
B=-[I+8 .0l
2
For these observables mequality (9% will read as

|E(Ay, B) + E(Ay,. B)|+ |E(Ay. B)— E(A}, . B')| <2,

(16}
here E(A , B) stands for Tr(p Ay B), E(A},, B) for Tr(pA;, B)
and so on.

Now from Eq. (13) as Tr{p Ay B) = ATripAB). hence we
can wnte E{Ay, B) =AE(A, B) where E(A,B)=Tr{pAB).
Similardy E{A},, B) = LE(A’, B) and so on. It is noteworthy
here that E(A, B), E{A", B), ete., denote the usual gquantum
mechanical expectations.
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With the help of above analysis, inequality (16) can be re-
wrillen is

ME(A, B)+ E(A', B)| + |E(A, B) —E(A',B)|] £2. (17)

As we have seen in the previous discussion that value of L can
20 MAXTTIUm up 1o é in order 1o make joint measurement of
spin along any two different directions possible within quantum
mechanics. Hence, for no violation of the ‘no signalling condi-
tion’ the term in the parentheses of inequality (17) should be
either less than or equal Lo 24/2: i.e. there will be no superiumi-
nal signalling in quantum mechanics as long as

[|E(A.B)+ E(A', B)| +|E(A, B) — E(A’, B)|] < 2V2,
(18)

i.e. as long as quantum correlations satisfy Tsirelson’s bound.
6. Discussion

In the present work, we have shown that violation of
Tsirelson’s bound in quantum mechanics will result in sig-
nalling. This we have shown with the help of (a) POVM for-
malism of quantum mechanics which limits to what extent one
can simultaneously measure two noncommuting observables
in quantum mechanics and (b)) an ineguality due o Anderson
et al. [10] derived under the assumptions of existence of joint
measurement and nonexistence of superluminal signalling in a
physical theory.

Fortunately, the bound on correlaton function under this
newer (than the original local-realistic) assumptions and the
bound on corelation function under the assumption of local-
realism, come oul o be same; i.e. both of these assumptions
lead to the same inequality (the Bell’s inequality).!

This new derivation of Bell's inequality can be exploied o
search oul whether a theory permits signalling or not, for it's
violation in a theory will imply that either there can be no joint
measurement in that theory or if it (joinl measurement) exists,
then the theory 15 signalling.

The generalized formalism of quanum mechanics allows
joint measurement of certain unsharp observables (not neces-

I The original assumption of local-realism and this newer assumption of joint
measunzment together with no signaling may seem identical prima facie, but it
isnot the cose as the later is silent over the issue of measurement reveal ing pre-
existing values, But interestingly these two different types of assumptions lead
to the sume bound on correlation function for the case considered in the Letter.
However, there may he cases where the condition for joint measurement to exist
(together with the no signalling constrint) may not lead to the local-realistic
bound on carrelation functions because this assumption is not equivalent to the
assumption of local-realism. Example of this sort is Gisin's Bell ineguality for
three coplaner measurement directions where the inequivalency of these two
types of sssumptions can be seen (vide [11]).

sarily revealing the pre-existing value) provided the degree of
sharpness is sufficiently small. I such cases where joint mea-
surement exists are considered in gquantum mechanics then vi-
olation of Bell's mequality will imply signalling in quantum
mechanics. As ils consequence, we have found that violation of
Tsirelson’s bound by quantum mechanical comrelation functions
will result in signalling in quantum mechanies.

Generalized observable in quantum mechanics, ie. POVM
formalism of observable captures features of quantum mechan-
ics in g more comprehensive way. In this context it would be
worth mentioning that Bell could construct a Hidden Variable
Theory for two dimensional quantum system by using standard
observables but it has been shown recently that if one uses for-
malism of generalized observables (i.e. the POVM formalism),
then even for two dimensional quanm system, Gleason's the-
orem as well as Kochen-Specker theorem hold true [12,13]
Furthermore, this formalism creates the possibility of certain
joint measurements of complementary observables like posi-
tion and momentum; spin along two different directions, ete. In
particular, joint measurement of spin along different directions
are possible if standard (sharp) measurements are replaced by
their unsharp counterpans. In our case we have used this feature
of POVM formalism and it, together with a new derivation of
Bell’s inequality has manifested its power by answering an im-
portant question that the CHSH expression should be bounded
by 2+/2 for quantum systems o avord superluminal signalling
in quantum mechanics.
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