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Abstract

Using the method of multiple scale we have studied the nonlinear stability of a travelling wave
solution of an evolution equation for the viscoelastic fluid fowing down a vertical plane.
Bifurcation analysis of first and second order Benney equations ( BEs) for the viscoelastic fluid
shows that the first order BE gives both suberitical unstable and supercrtical stable zones
depending on the Reynolds number greater or smaller than is eritical value and the supercritical
stublefsuberitical unstable region decreases/inereases as the viscoelastic parumeler increases.
However, the second order BE exhibits only supererntical bifurcation and this stable region
increases with the increase in either the Reynolds number or the viscoelastic parameter. The
spatially uniform solution of the complex Ginzburg-Landaw equation for sideband disturbances

15 also investigated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Liguid films are encountered both in nature and o many
technoblogical applications swh as the flow of molen
lava/metal, in the cooling system and coating process. It is
well known that the waves that develop on the surface of a
thin film ¢nhance the tansport of heat, mass and momentum
across the iguid-gas and hguid—solid interfaces. So, for a
better modelling of devices such as distillation, adsorption
columns, evaporators, condensers and noclear emergency
cooling system, one needs a clear understanding of the low
development and its finite amplitude behaviour A great deal
has been leamed about the onset of the film waves and their
weikly nonlinear evolution, but often their observed strong
nonlinear character remains o be understood quantitatively.
The viscous film flow on an inclined plane has been widely
studied since the pioncenng expenmental observation of
the development of waves on the surface by Kapitea and
Kapitza [1].

Benjamin [2] and Yih [3] first mvestigated the linear
stability analysis of the liquid film Aowing down an inclined
plane. They determined the criical Reynolds number as
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a function of the angle of inclination.  Finile amplitode
stability analysis was mitiated by Benney [4] and he denved
an evolution equation referred w as the Benney equation
(BE} in terms of the flow depth fi, by using a perturbation
expansion technigue in terms of the long wave parameter o.
Later nomlinear analysis was perfformed by Lin [ 5], Gjevik [6],
Nakaya [7] and others. A comprehensive review on the works
on Mewtonian fluid can be found in [8]. Pumir ef al [9],
Oron and Gotthieb [10] and many others have pomnted oul
that in spite of a successful desenption of the dynamics of
falling liquid films the BE has a serious drawback. It tums
out that there exists a subdomain in parmmeter space in which
the BE manifests solutions that may have growing unbounded
amplitude. In this case the BE loses its physical relevance. To
overcome this blow-up property of the BE, several attempts
have been made [11-14] by devising altemative approaches
and finally denving an approprate evolution equation for the
same physical problem. Mainly these allernative approaches
are nothing but the refinements of the integral methods
presented in [1,15].

Recently, substantial effort has been devoted towards
analysing the nonhnear solutions of the evolution egqua-
ton governing non-Newtonian fluids and their stability
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characteristics [16-19]. The nonlinear stability of the thin
micropolar hiquid film Aowing down a vertical wall and a ver-
tical cylinder has been analysed by Hung et af [20] and Cheng
etal [21] and their results show that the micropolar parameter
plays an important role in stabilizing the film flow. The visco-
elastic fluid exhibits certain viscoelastic effects on normal and
shear stresses and several investigations have been reported
on the flow and stability of a falling film of viscoelastic fluids
[22=24]. For these classes of fluds, (1) the cument state of
stress 15 a function of the history of past motion; (it) the pheno-
mena of elastic recoil creep and stress relaxaton oceur and
(i) the relation between the stress and velocity field s highly
nonlinear, even in situations where the history of the strain is
highly repetitive. The stability of a thin viscoelastic film Qow
travelling down a vertical wall has been exammed by Cheng
et al [24] and the influence of the viscoelastic parameter on the
equilibrium finite amplitude has been obtained. The weakly
nonlinear stability analysis of a thin viscoelastic liguid film
flowing down the outside surface ofa vertical eylinder has been
investigated by Cheng ef af [21]. The results show that both
subcritical instability and supercritical stability conditions are
possible in a viscoelastic film flow system and that the degree
ol instability in the film fow 1s further intensified by the lateral
curvature of the cylinder. The stability charactenstics of the
system have been shown to be influenced by the viscoelastic
parameter and the mdius of the curvature of the eylinder. The
study of Cheng ef al [24] was based on the first order BE in
which they have shown that there exists an explosive region
in which both linear and nonlinear analyses give instability.
As mentioned above in the case of the Newtonian liguid film
this explosive zone leads to a numerical inconsistency and one
miy expect the same type of numerical inconsistency that may
occur in the viscoelastic film lowing down a vertical plane
also. Further the nonlinear stability analysis of the thin visco-
elastic film has not received proper atlention. Here, we are
interested in studying the bifurcation analysis of the second
order BE that arises due to the viscoelastce ligquid film.

2. Mathematical formulation

Consider the steady fow of an incompressible second order
fluid flowing down a vertical plane. Using the postulate of
gradually fading memory, Coleman and Noll [25] derived the
constitutive equation for the fluid as

Ty = —Pdy + po Ay, +BoAny, Ay, +mgdp,,, (1)
where 7;; 15 the stress wensor, P s an indelerminate pressure
and prg. Gy and mg are material constants, The rate of strain

tensor Ay, and the acceleration lensor Ay, are defined by

Ay =t U4,
A|]:|._. = +d;;+ 2:I-'.'.lr.a:l-'.'.lr._.i1

where v;s are the velocity components, a;% are the acceleration
components given by vy + vy and T oas the time. It
15 worth pointing out that such a fuwd shows normal stress
differences in the shear flow (which is a charactenistic property

of g viscoe lastic fluid) and (1) 15 applicable to the flow of some
dilute polymer solutions (e.g. polyvethylene oxide in agueous
solution (POLYOX), polyisobutylene in cetane), which ane
only slightly viscoelastic, and may have a beanng on the study
of fluids with drag-reducing properties (Toms phenomenon),
my being negative from thermodynamic considerations. The
goveming equations can be expressed in terms of Carlesian
coordinates (X, Xa) as

iy it s
—_— =
aX,  aX;
it I iy dryy dry2 )
— U —tr— | =prr —+—, (2
Bler ey e [T R T e, Tax

[Eilug e 12 ] A1y AT

Pl —Fs—— |=——+ 5

a7 dX d.X s dX, X

where (1, w2 are the velocity components of the viscoelastic

fluid following vertically downwards and normal to the vertical

directions, respectively, and the disturbance s are assumed o be

two-dimensional. The comesponding boundary conditions are

as follows: forthe no-slip condition at the wall at X2 = 0 and at

the free surface X = H(X,. T), the shear stress vamshes and

the normal stress balances with surface tension Limes curvature,

where H{X |, T') is the deflection from the mean depth of the

fluid film. Further the kinematic condition at the free surface is
d i
ﬁ + I

at Xo = Hi{X,.T).

Introducing the stream function
dd

i =
aX,

d

= R
aXx,

mnto the above equatons and their comresponding boundary

conditions, we then express these sets of equations into their

dimensionkess form by using

o X Xa wigl H g g
B, TRy gy e Y g
D P—p; 2why iy
s gy = F'I!(!, B A 2 QTE;

where g = ghﬁﬁv 15 the basic Nuosselt velocity and
Aoand by represent the perturbed wavelength and the mean
undisturbed film thickness, respectively. The paramelers R
and M denole the Reynolds number and the viscoelastic
parameter, respectively. The dimensionless equations and the
boundary conditions can be wntlen as

By = 2+ aR[p. +dhy +hih, — dohy,
— M by teyy — yyythey + Dothyyy — @ty )]
— 0y O RM(PyPrrry +Pysrce — Iy Prcy
— Petprayy + 2becPon ). (3)
Py = —aR ™ oy + & (s + Prbus — Puchey
+ M (3¢, ey + D ytherry — Drathyrs
— ooy — 2oy )] — 0 R oy

+ aqlw {_¢.LJ'¢!I.I.I + ¢.L.t¢.t.t_1' + ¢'_1'¢'.|..|:.|:.|: ) ¢.L¢.t.l..l:_1'.:l-
(4)
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For the boundary conditions on the wall at v = (0 we have

=, =, =0. (3

For the boundary conditions on the free surface at v = hix, 1),
wie have

dyy = a RM[2(1 — o’h2) 67 hy + by
— ey + 20,30y ] +0 [ hoc + M1 — 7R3 poyhe]
+a  RMIH1 — a*h®) (=i + Pty D
= ytpr s + ooy + 2]
—a'[2RM(1 — &Ry @2 h, ), (6)
p=—20S R0 (1 +a* )77 —a[2(1+a’h?)™!
x R\ @yyhe + ¢0y)] —a? [2M(1 +a’h]) !
X[(@y ey — Detheyy N hT —1)
—(Pyeyy — Betryy + 2byy ey ] — B
+ ey — M7 |+’ [2(1 +a*h])!
% R (oo + doyh})] — 2Ma* (1 +0h;) ™!
X[pucthihy — 97, + (D1fisc — Pebony
R L
B+ ¢h, + ¢, =0. (8)

(7

For long wave stability analysis, we expand the dependent
vanables ¢ and the pressure p oin terms of the wave number
o as
¢ = do+ap +a’d: + 0,
(9)
p=po+ap +a’p+0(@).

Substituting (9 into the governing equations (337}, and
collecting the terms of different orders in @ and finally solving
these equations up Lo G{a"}l cwe can obtain the solution of the
above system of equations. Using the solutions so obtained,
in the kinematic equation (8) one can oblain the BE for the
viscoelastic liquid film falling down a vertical plane as

h+ Ath)h, + @[ B(h)h +C (hh o) +a [ DUNA]

+ E(hhge + F )y + GO o + H (WK,

+ 1 h, ), + 0@’) = 0, (10)
where

Alh) =247, B(h) = R (£h%+ L MhY),

C(h) = §S,0*h R34,

Dihy = 2R 0%+ 2EMAT + BEM0% + Uhd,

E(h) = 3R*%h'" + LB Mh® + ZM20% + 204, (11)

Fih) = (5h"+2MR*) RV3810°,
G(h) = (3h® + 2 MR*) R385 02,
H(h) = 2h®RY§a?,

32

1(h) = $H°RS1%,

The above procedure is lengthy but straightforward and for
details one can refer o either Dandapat and Gupta [16] or
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Figure 1. Variation of ¢, with respect to the aspect ratio «. The
solid curve represents the first order BE and dashed and dotted
curves represent that second order BE with M = 0.01 and

M = 0.1, respectively, when§ =1L R = 1.

Cheng et al [24]. Here the parameter o denotes the aspect
ratioand §, = (§)/2*go’ v = (Fi/4)'? = WR*A, where
Fi = (5)/go’v") is the film number and W = S, /ogh is the
Weber number. & and g denote the surface tension and gravity,
respectively. i = hix, 1) represents the nondimensional film
thickness depending on the dimenswonless vanables x oand 1,
denoted as the spatial and temporal variables, respectively.
Equation { 10} s derived under long wave approximation, with
the assumption §) o 22 CH 1y and we denote 5.113 = 5§ as the
modified surface wnsion parameter.

3. Linear stability analysis

The lineanzed stability of equation (107 15 studied by assuming
asmall disturbance at the interface as h = 1 +(x, 1), where
iix, 1) 1% the deviation from its flat film solution fig = 1. The
linearized evolution equation becormes

ih + -'!’-In.l: + ‘I{BIH.:.: + CI n.l:.l..l:.l:}

+0(E1 s + Fijoca) + 0(@), (12)
where
Ay =Alh =1), By =Bih=1)
Ci=Clh=1), Eyz=Eh=1), FA=Fh=1).
Equation ( 12) has a tavelling wave solution of the form
mx, 1y = Texplifx —ef)] + l:'uxp[—i{.r — )], (13

where bars denote the complex conjugates. T' s a complex
wive amplitude and the complex wave celerity ¢ = ¢, +1ic;.
The dispersion relation is given by

i[A| —c+a’(F|— E\)] —a(B, —C) =0,

which yields the long wave linear stability result as

o =A +ai(F — E), c=alB) —C).  (14)

Here, o, and o are regarded as the linear wave speed and the
linear growth rate of the ampliwde, espectvely. Itis to be
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Figure 2. Neutral curves 1 and 11 represent the variation of & with
respect to the viscoelastic parameter M for different values of B/ W,

noted here that there 15 no difference in the expression of o
between the present result and that of Cheng et af [24]. Bul
according to them the wave speed is constant and fixed at 2,
while in the present case o, contains an extra terma? (F, — E|)
which yields dispersion of waves. This difference 15 due to the
consideration of the second order comrection of the evolution
equation.  Figure | depicts the vanation of the two mesults.
The solution A(x, 1) = 1 is asymptotically stable or unstable
ife; = 0ore; = 0. Thisisequivalentto By = Cyor B = C).

For neutral perturbations, assuming o; = (0 we oblain 1wo
relations:
a =, 1
{4 .\ R (15)
CI!:CI!HZ‘J §+:u'r'f W, 11

which yield two branches of a neutml curve.  The flow
instability takes place in the region between the two
branches 1 and 1T of the neutral curves. It is evident from
figure 2 that as M mcreases the flow mstability increases. The
Reynolds number at the neutral curve becomes

5 3
R= —) _
(4;5+5M

Itischear from equation ( 16) that for the viscoelastic parameter
M =0, the present result coincides with the results for the
Newtonian fluid given by Lin [5].

(16)

4. Nonlinear stability analysis

In this section we are interested in studying those small-
amplitude waves which develop immediately just after the
breakdown of the flat film solution (3 = ) by assuming
¢ = O(g'), which is equivalent to (B, — ) = 0{&?).
To study the growth of the weakly nonlinear evolution of
waves, we need to consider two or more charactenstic time
scales of different orders of magnitude. As a rule, problems of
this kind cannot be solved by means of classical perturbation
methods and the method of matched asymptotic expansions
15 also insufficient. This gap is filled up by introducing the

method of multiple scales considering small variables as

X =egx, N =&t

where £ 15 the measure of the difference in B from s enticality.
Under this scale we have

I R B

— — +E—+E — 17
3 a1 Can | ° ar (17
and il i i
s B (18)
ax ax aX
Expanding the solution
Ao, xt X T, B)=1+emo,x.1, X, T, 1)
= 1+&m +a‘2m + f:"i]_a +--- (19}
and vsing (17319 in (10}, we get
(Ly+el+ f;'ﬁL_: + - MEm + a‘jr;g +--:)
= nonlinear tenms, 20
where
i il i i i
Ly = ._+*“-I._+‘1._ B|‘—+C|ﬁ
it dx dx ix i
d s a4
+ﬂ'!:— .E|:—,|+F|:— ]
dx dx2 dxd
g q q il i
Li= — + Ay e | 2B — +4C1—5
a7 X aX ix ix-
.8 - R - it o
to°— [3E|—+5F —|. 2
T8 e TR T
, i i " i
= —+0— + "
T T i
a? ] a
+ot——|3E—+10F— |
aX- ix ix-
The terms of order £ in (20), give
L(pl’“ = (L {22}

The solution of equation (22) has the fom
im = Fexplilx —c,1)] + f'l:xp[—i{.r — o],

where T(X. T, T3) 1s the complex amplitude and [ is the
complex conjugate of . The next higher order equation in
£ gives

il il
Lo =— | — + Ha— | T expli(x —c,t
02 (E!T. 'E]X) plif A

+ @ Tl exp[2ilx — o1)] +c.c., (23)
where c.o. denotes complex conjugate and the notations A
and @y are defined as
h = Ha, +iHy = Ap+ 07 (5F, — 3E) ) +ia(2B, — 4C)),
0 =—iA] +2[a(B] — C}) 24
+ie’(Dy + E} — F, — G1 — H)l.
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We get the solution of (23) after elimmation of the secular term:
b ) . =
e = H T exp[2ilx — o 1) +cc., (25)

where

o
2a[2(4C — B)) + 3 (5F, — E)]

ﬁl = -'iflr+ iﬁl. =

Substituting »y and 572 in the equation of third order in & and
elimination of its secular term gives
2

LN | . trscsl }a-r
— +iV — — +i{J,+id)—
T T g
+ (L+id)TPr =0, (26)
where
¢ =&, V =2a(B —2C)&! <0,
J“- =CI!{B| —ﬁl:'ﬂl, .f“ =ﬂ‘!_’{3E| —1{}F|}|,
Ji=—AHy; +a [_l,{c’,’ — B)+(1C; —B’,}.Lf.,]
(27)

+a3ﬁ|,2,
Ji= A\Hy, + AT +aH; (1C] — B))
+a2[ D= 3(E] - F) = G} +3H] — I - ZH,],

and
£ = =4y +.":u‘£',r - 1?F;+ 10, — 8H,.

It s to be noted here that the second term in equation (26)
15 absent in the analysis of Cheng et af [24].  Momover
the coefficient of the diffusion term is not real as given in
equation (539) of Cheng et al [24]. The present analysis has
a correction in the imaginary component at e’} of this
term. The coefficients J» and Jy also have correctuons at
f}{a'\}l. Equation (26) can be transformed into the standard
complex Ginzburg-Landau equation (CGLE) by using the
trans formation

V
NiX. 1) =cxpligh )T (X, T2, -
{ 2) =expligX )T ({ 2l q T+
(28)
in {260 and, finally, we oblain
: 2 42
Lid L T i +{J’|,.+iJ’|,}l—d n{
T A0, +1dy) : o X-=
+ (0 + iJ’;}lITI"T = (L (29)

Itis to be noted here that the coefficients of linear and spatially
homogeneous terms are complex. To find the linear stability of
the amplitude in equation (26), we first inearieed the equation
at about T’ = O and then followed the normal mode analysis.
Substituting I' = const x expl(eds + ic X)) in the lincanzed
equation, we finally armved at the dispersion relation

w=c +xV+(d, +id;

Here, e 15 the complex growth rate and & s the wave number.
The disturbance will grow with time of about T =014
w=c+xV+Juxt =0, (30)

where o = m, + ;.
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Figure 3. Variation of J» obtained from the first order BE with
respect to the Reynolds number R for different values of viscoelastic
parameter when o = (0.1, solid line for M = 0, dashed line for

M = 0.1, dotted line for M = 0.5,

Case I: f_f'c'; = (). Eguation {30} has two roots & and &2 where

2c]
K| = 3
T VAR -
(31)
2]
K=

—/VI—a4f,.c—Vv
It is clear from (31) that k3 = 0 <= &y, Therefore the unstable
zone lies in the regions & > & while in the other region

0 = & = &y the disturbance is stable.

Case II: I[f ¢, = (. Inthis case the two roots of equation (3() are

T
kK| = 5
LT VI—and+V
32)
-2
oy o= :

VVI—al,d+V

Both roots are negative, implying the system s stable in this
case.  The nonlinear stability of the perturbation dynamics
depends solely on the sign of J». If /o = 0 then the
bifurcation is supercritical while for suberitical bifurcation
o= 0. Bifurcation analysis of the first order BE for the
viscoelastic fluid is depicted in figure 3. This figure shows
that the supercritical stable zone at a small Reynolds number
changes to the subentical unstable zone by nereasing either
the Reynolds number or the viscoelastic parameter.

5. Stahility analysis of the first order BE

In the case of the first order BE we consider the terms up to
e ). Then equation (10} 15 reduced 1o

hy+ Alh)h, +e[B(h)h, + C(h)h, ]+ 0@’ )= 0. (33)
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The corresponding equation (26) reduces Lo

ar _ ar air ; )
E+|Vﬁ — T+ Jip=—=5 ] +(B+IITFT =0, (34)
where

¢ =g, V =2aiB —2C)",

J =alB) —6C,),

Ji=—AH; +a [_;{c’,’ By (0 = B’,}H.,] C3s)

Jo= A\Hy, + AT +aHy; (7C] — B)),
. B —C] « —A]

= Hj; = —— i R
2(4C, — By)’ dai{dCy — By)
Itis to be noted here that an imaginary, apparently ‘convective’,
V-term appears in equations (26) and (34) which are different
from equation (59) of Cheng er af [24]. This extra term
appears due o the fact that (B — C)) ~ G{fe‘"}l Wik nob
properly taken into account while deducing theirequation (59).
Substituting the comesponding values of the coefficients given
in equation (11 and using relation (16) w replace the surface
tension § in the above equation (35), we gel
5 -4
*T I R(E/15+ 10M/3)
o £
_GR{192f23+ 12EM /3 + 100M I."‘J}1 (36)
G815+ 10M/3)
—B/5—-00M/3
T T 8/5+10M

.. E+znuw)+c.e.';r 8+ M) er: (L 4
2 \5 3 15

BR? 237RY 1081 .. M
+i{—+ M ——— |+ | 50R M —
7 14 315 3
I8 s5372R° 328
—6+302 | = — 0y © ol s
3 1575 3

Now, J, = 0 gives

5
R V2 — =R,. 37
48 32M  25M°
Ky o+ ———
¥ 25 3 9

Itisevident from the above equation (37 ) that as M increases R,
decreases, implying the destabilizing effect of the viscoelastic
parameter M. This result was reported earlier by Gupta [22],
Dandapat and Gupta [16] and Cheng et af [24]. It is chear from
(36) that bifurcation is possible for the first order BE and it
will be supercritical if f2 = (); in other words for

.
R<R = —— “C — (38)
[48  32M  25M°
—+—
2 E TR 9
and for J_
i
R>R = - - (39)
|43 M 25M°

"r 35 3 7 9
bifurcation s subentical. It 15 also clear from (38) and
(39} that the supercritical stablefsuberitical unstable region
decreases/ine reases as the viscoelastic pamameterinereases. By
setting M = 0 1n (37), (38) and (39) one can get the resalts
obtained by Oron and Gottlieb [ 10].

6. Stability analysis for the second order BE

Following the above procedure of nonlinear stability analysis
i equation (26) we get the corresponding valoe of Jy as

li}M) 8 o li}M)
3 5 3

[
e
+

14524 965K
M -
315 15

3l

II}M _2_3?;#
b —

8

15

[m 15576.'?.-_'_(416 15508
3

l (5

1575 3 3

) A o (19736
115 6

A 2
_ _}iﬁ_}.) + (sorem - 200 _ 2)
315 3

11898

)]

(40}

B lOMY [8R? 237RY 1081 3207
_+_) —+M —__)+ 5{}Rf,w3—_—z)
5 7 14 315 3
H li}M' BR? 237RY 1081 32 M .
—_ la —+, MO ok i SoRM: - T—— 3
15 14 315 3
2 5 E 2 250K 52 :
i w _1_R+MR E_JE?ER - 328 250R )+M 14::4_%5:'e )
15 3 o 1575 3 3 315 15
1 e : 71 2 3
o 1(}_}?_ " s.i:._- _— 237R* 1081 il sy JaM° 2)
14 315 3
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Figure 4. Variation of J; with respect to the Reyvnolds number R.
The curves (11, 21} and (12, 22) represent first and second order
BEs when (M =0, o = 0.1} and (M = 0.1, & = (0. 1), respectively.

Figure 4 represents a comparison of the behaviour of J,
that was obtamed separately from the analysis of the first and
second order BEs. It is evident from figure 4 that the second
order BE predicts a supercntical stable region irmespective of
the increase in either the Reynolds number R orthe viscoelastic
parameter M, while the first order BE gives a supercritical
stable zone at small values of B and M and crosses o the
suberitical unstable region when the Reynolds number B or
the viscoelastc parameter M increases.

7. Sideband stability analysis

In this section we shall study the sideband instability of the
spatially uniform solution of the CGLE (26) with respect to the
infinitesimal sideband disturbances. The spatial uniformity of
solutions implies that for a filtered wave, there is no spatial
modulation and the second and fourth temms of equation (26)
vanish. Following Lin [5] we take

FaclT3) = [Tac|exp(—1QT3),

where @ = Juc) /s, Tl = o,/ Jrand g (T2 ) is the limiting
selution of equation (26) as Ty — o0 for the filtered wave. This
solution 1% perturbed by small spatal sideband disturbances in
the form

I'=TadT2) + [dT () expliK X)

+8T_(T)exp(—iK X)] exp{—iQTs). (41)

where K is the modalation wave number. This s substituted
in (26), and neglecting the terms contaiming nonlinearities of
a0, 8T . we obtain

‘5"‘:?1_"" =0T iQ+ VK +¢, — 2(h+iJy)| T |
dfs
+ (i + 1)K} = 8T {(J2 +iJ0) [T | (42)
Y 2
:_._ =4 _{—iQ—VK +£‘:—2{J_:a—i-fq}irx|-
T
+ (S — i) K3} — 8T {( —id)IT ). (43)

Equation (42) and (43) can be wrtten in the matrix form as

aa I,

:'E _A(JJT'J,) _ (ﬂ” ﬂ._:) (.’.'?1"+)

AT _ 8T axy an) \ST_J7
where
ap =10+ VK+cf+K-’{J.,+iJ.,}—2{J; +HiJOIT=el?,

apy = —(h+iJ )M ay = —(y — i) T,
an=—i@ — VK +¢/ + K2(Ji, —idip)
—2{S, — i)l

(44)

We seck the soluton in the form

ary fan
(.’.‘i_l"__ ) - (c'_) exp(ATa),

where & 15 the eigenvalue. The eigenvalues are given by
A= zla +an) + {(an +an)’ —Hayan —ana)}'’),

hy = :!.[{ﬂll +an) — {(a) +an)® —4a a2 —az @)} )

(45)
The condition for stability of the sideband disturbances is that
A = 1) Itean be readily seen that

tr(A) = @iy +an = —2¢, + 2K° 1y,

is real and negative provided ¢ = 0. This shows that at
keast one of the eigenvalues” real part 15 negative implying
the linear stable sideband mode. The other cigenvalue may be
cither positive or negative real part depending on the values
of the purameters responsible for the sideband stability. For a
particular case V' = (), it can be seen from (44) that a.x = @y
amd this will reduce the

det(A) = (K 0y, — 26K, + (K 0y — 200K 0 (46)

o be real. The first term on the right-hand side in (46) is
positive as long as the sideband is supercritical {¢] = ) and
the wave number is nol zero. But the second term on the
rnght-hand side may take any sign. Thus the spatially uniform
solution of (CGLE) leading to (26) may become sideband
stable or unstable for positive and negative signs of det(d),
respectvely. It s to be recalled that Jy; 15 nonzero in the case
of the second order BE, and assuming V'~ o(e) one can show
that detiA) = O provided

47)

This shows that in the supereritical case sideband instability
may be possible iof i, + (S0 /) = 00 This s nothing but
the well-known condition for Benjamin—Feir instability [26].

8. Stability analysis for truncated bimodal
dynamical system

In this section we are interested in showing the coincidence of
the Hopl bifurcation curve for bimodal and unimodal systems.
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Consider the solution of equation (33} in a truncated Fourer
SEeTICS:

b
hix.h=1+ E[E,, (thexpiiny) + z, expl{—inx)],

n=|

(48)

where f,, 15 complex conjugate of Z,. Now substiluting (48)
in {33) and keeping terms up to N = 2 the coefficients of
expiix) and exp{—ix ), give

Zy=[mnZi+pm Z1Za+ Zi(ps | 2P + sl 2oL

Zs = [p211Z2 + pan Zi + Zalpan | 21 + pansl Za1H)],

(49}
where the coefficients pg; g are given by
i =a(By —C))—24,
fan = a(dB) — 160) — 4,
20M R )
iz =a | 68 — 3 —21C; | — &,
A0M R :
Hay = o DBI_T_(]C' — 4y, (50)

iy = a(l3B) —30MR - 3C)) — 24,
payg = a(1208; —240M R —960C) — Bi.
iz = w308 —dMR — 60, ) — 44,
oy = a(60B) — 140M R — 48C ) — 4.

For convenience we wrile (49 i polar notation using
£, = a,exp(¥, ), where both a,, and 8, are functions of time.
Assuming the phase relation ¢ = 28, — 52, we gel

ap = fm + (fi2) cosgp — dsinghaaz

+ay(fiia; + Piaas), (51)
dy = [y a + (fn cos ¢+ 4sin ¢}nf
+aa(faai + fhyaad), (52)

ér = ({—2f2 singy — Beosglar + (—fHay sin ¢r+4uus¢r}lz—_'
3

—4a3 — a), (53)

where ;. = Help ).

Travelling waves of the modal system corresponding Lo
a fixed point with a constant nonzero phase difference are
obtained by considering a, = @2 = ¢ = 0. If we assume
modal amplitudes are small and are of omder a)
a» — &°as then the phase evolution is governed by the second
term on the right-hand side of (33). From (33) we get the phase
component of the fixed point as

— Eddy,

4
tangr = —— = const + f}{{!}l.
8|

Using the above relation in (51) and (52) we obtain explicit
relations for ﬂf and ﬂi Qs
By +yas+ fina; =0 (54)

and

}"ﬁ_ﬁﬂlﬂj + el oy — fiafan +pdl+ gipd =10, (55)

where

¥ = fi2 cosd— dsin g, 4= flacosg +dsing.

(56)
Al neuatral stability, we have 8) = O, which gives gy, =1L
Therefore the amplitude of the nonzero ravelling wave is
given by
s Biaifan — yd
yha
Itis to be noted here that the zero amplitude in (57 ) corres ponds
tor the threshold for the subentical travelling waves, which gives

(57)

as

frafan = fio foy — 1060 (38)

Substituting the value of f;;; in the above equation, we get

V2

R= = =R..
fﬂ.a DM 25M2
+ S el

Kaf =— +
Y 25 3 g9

(39)

This result coincides with the result for the unimodal system
given in equation (37).

9, Conclusion

In this analysis we have camied out the bifurcation analysis of
the first and second order BEs for the viscoelastic fluid and
found that the first order BE gives both suberitical unstable
amd supercntical stable zones depending on the Reynolds
number greater or smaller than its eritical valoe. Further, it
5 observed that the supercritical stablefsuberitical unstable
region  decreasesfinereases as  the  viscoelastic  parameter
mereases.  However, the second order BE exhibits only
supercritical bifurcation and this stable region increases with
the increase in either the Reynolds number or the viscoelastic
parameter M. We have also shown that the eritical Reynolds
number of the runcated bimodal system coincides with the
unimodal system of the analysis for the first order BE. It is
also observed that the side band disturbance of the spatially
uniform solution for the complex Ginburg-Landau equation
may be either stable or unstable.

We would like to make a comment regarding the validity
of the model of the second order fAuid in our analysis. If the
disturbance time scale is large compared with the charmcteristic
time scale (relaxation tme) of the lmd, then the second order
fluid model 15 intemally consistent with the stress-relaxing
fluid dve to Oldroyd [27]. As pointed out by Porteous and
Denn [28], this would happen if M < 1.
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