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Abstract The quantum mechanical phase disuibution and the quantuim oscillations of pop-
ulation are studied for a cavity field togetherwith a driven classical field. The atom is sent
through the cavity and driven by a classical field. Also the time evolution of the system
including decay is obtained. The graph showing the Rabi oscillations for this system is
changed into a bit pattern from the system without decay. The phase probability function is
also affected due to the presence of cavity decay.
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1 Introduction

It is well-known that electromagnetic field at resonance with a two-level guantum mechan-
ical system gives rise to coherent oscillations in the populations of the two levels known
as Rabi oscillation [1]. Rabi-Aopping concept stands for a basic model on which virtually
all subsequent theories and experiments on coherent optical pulses interacting with two-
level atoms [2] depend. Again, quantum bits (gubits) are the fundamental building blocks of
quantum information processors, such as quantum computers. A qubit which can be manip-
ulated with a high-speed voltage pulse controls the energy and decoherence of the system.
As the ability to produce Rabi oscillations in a given system indicates whether that system
is a candidate for more elaborate coherent manipulation or not, we are interested to study
the quantum collapse and revival phenomena in details.

Recently, Deng et al. [3] proposed a scheme for generating the n-gqubit W state in the
presence of cavity decay by resonant interaction between atoms and the cavity with initial
single-photon cavity field and all atoms initially in the ground state. We take into account this
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idea and apply it to find owt the influence of cavity decay on different physical properties
of an atom-field system. Theoretical studies of Rabi oscillations have already been made
[4-6]. But they did not take into account the effect of cavity decay. Conditioned on no
photon leakage from the cavity, we analyze the influence of decay to the Rabi oscillation.

Here atwo-level atom is sent through the cavity and driven by aweak classical field. The
atom interacts with the cavity field. The frequency for atomic transition is to be tuned in res-
onance with the frequency of the classical field and it can be observed that Rabi oscillations
can occur subject to some constraints. Also we have investigated the effect of cavity decay
onto the Rabi flopping.

Pegg and Barnett ( 1989) constructed a Hermitian phase operator [7], the eigenstates of
which, in an appropriate limit, generate the correct phase statistics for arbitrary states. The
phase distribution provides a useful insight into the structure of quantum states. Though
several authors investigated the phase properties of different states but less attention has been
paid to the influence of cavity decay on phase distribution. We discuss here this interesting
feature for the atom-field interaction for both without and with decay of the field according
to Peng and Li's approach [E]. We observe that the cavity decay term leads to some changes
tothe probability density function.

The paper is organized as follows. In Sect. 2, we discuss the entanglement withowt decay.
In Sect. 3, we study the same with decay of the field. And finally we give conclusion and
discussion in Sect. 4.

2 Entanglement without Decay

We first consider a two-level atom interacting with a single mode cavity and driven by a weak
classical field in the absence of any decay. The Hamiltonian (assuming fi = 1) describing the
atom-field interaction in the rotating-wave approximation is [9]

H=aqS. +ana'a+gia' S +asTi+e(5Te™ 4+ 57

where a' and a are, respectively. the creation and annihilation operators for the cavity field,
5., 8%, 8 are the inversion, raising and lowering operators for the atom respectively, g isthe
coupling constant between the atom and the cavity field. € is the coupling constant between
the atom and the classical field. wq, o, and e are the frequencies for atomic transition, cavity
mode and classical field respectively.

If the reference frame of the system is rotated with respect to the driving field frequency
s, the Hamiltonian is given by

H =AS. +8a'a+p(a'S +aS) +e(St +87) in

where A = ag — e, § = a1, — e For the sake of simplicity, taking A =10, the Hamiltonian
in the interaction picture is

HI A eé ”"::.‘ Hrle_j I.l'.-l:l.l
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,=8a'a+e(§T+85) (3
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where the dressed states |[£) = ‘,.-U-!?:' + |e}) are eigenstates of (87 + §7) with eigenval-
ues £1. In the strong driving regime € 3= {4, g}. So the terms that oscillate with high fre-
quencies can be eliminated. The effective Hamiltonian under the rotating-wave approxima-
tion is [ 10]

! , ;
Her= Zg(I+H+| — |-H{~1ae™ +a'e™)
1 . _
= ;}.g{a5+e"“+n'5'e"“'} (5)

We are now going to solve the Schridinger equation of motion

o '3
r'% = Hl (1))

for any arbitrary state W) [11]. The equations of motion for the probability amplitudes ¢, ,
and €, 4 are

i B e
r.r..u i € CA n+1
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These equations can be solved exactly subject to certain initial conditions. If the atom enters
the cavity inits excited state |¢) then

rr..u{ﬂ} = r.u‘.ﬂ} and Cyon+1 {ﬂ} =0

where ¢, () is the probability amplitude for the field alone. With these initial conditions, a
general solution for the above system is
LT S - B =

Cen () =, (0) cn\T - s_Tu\mT ez (T

and

igv'n

.ﬁu et )

rj;..u+|{-r} = —(‘"{ﬂ}

where 2 =824 g%(n +1).
2.1 Phase Distribution

Here we investigate the phase-probability distribution of the radiation field in the model we
discussed above using the formalism of Pegg and Bamnett.
For the exact resonance case, (7) and (2) change into

n 0 —ippd iYed
Cenll) = #{e e o A4l (9)

callly
2

Conp1 (1) = —— fe 7! — gTn'} (10)
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where y” = "‘;—Jrln +1).
With the help of (9) and (10}, the evolution of the state vector is described in the interac-
tion picture. We change it into the Schridinger picture as

W) =3 [eenlt)e.n) + cqupr(t)g.n + 1)]expl—i(n +1/2ew,t} (11)

a=(}

The Pegg-Bamett phase operator operates on an (s + 1) dimensional subspace spanned
by the number states [0}, [1).....|s). The value of s can be made arbitrarily large. A com-
plete orthonormal basis of the (s + 1) phase state is defined on the finite subspace by

|6} = 5+ 10712 ) expling,,)in) 12)
n=(]
with
o=y +2mrfis+1), m=0 12 ...
The value of &, is arbitrary. These states form a complete orthonormal set on the tnncated

(s + 1) dimensional Hilbert space. These states are the eigenstates of the Pegg—Barnett
Hermitian phase operator

4= Zam |am:|{'-qm| (1 3‘}

=[]

One should take the limit s — oo and recover an Hermitian phase operator on the full Hilbert
space. Thus the state vector W (1)) of the atom-field coupling system is spanned as

W) =3 e Bl (t))le. 6} + (8. Oul W (1))Ig . 6)] (14)

m=(]
We assume that the radiation field is initially in coherent state. Then

-2
a2

V!

oyl =

where
—.1,/2 il
X = {H }” Em"

fi is the mean photon number and &, is the phase angle of . For large |o|?, we may use the
Caussian approximation for a Poisson distribution

.}
) s (P —-1/4 _{”_lﬂ'”_ inil, 15
€ (0) == (2mi) Exp[ S i (13)
Recalling the saddle-point approximation method, we get
g2 gn
= 'I_:.”'i']}x_ {]ﬁ}
L 4
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We now use (15)and ( 16) to write the phase-probability distribution as

P(6. 1) = |le, Gu W N + {8, Bl )

1 2x (4,-?)'-"3 ,)_( i gt )
= Em E expy —=n En'_ ..\M—LI.I‘M.r—4_‘.....,‘ﬁ
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+exp{—2i (Ha—u!?m— Wt + —) I:| (1T
pI T uE

When s — oo, &, 15 a continued variation.
The phase-probability distribution is normalized as

s+ 1
fmﬁ.r} A dig=1
I

where % is the density of the states.
If we consider %= < o, then we can neglect the term = compared to w,. Using (17).

we obtain the phase Auctuation as in [§]

3 gl 3 ]
(AD) ={d°) — (@) = ¥r

If the photon number disribution is Poissonian we have
{ANY =7

s0 that the uncertainty product is
2 2 ]
ﬂ.':b - ﬂ..l"lr =
{ADY{AN)" = -

i.e. neglecting the influence of the atomic Rabi oscillation on the phase-probahility distribu-
tion we can show that the field which is initially in a coherent state remains coherent.

2.2 Population Inversion

The population inversion Wir) which is very useful in probing the effect of the quantum
nature of the driving field is related to the probability amplitudes . , (1) and ¢, 42} by the
expression

Wit) =3 [lecalt))® = egultF]

L

& o 1
= ?ﬁu.’ﬂﬂ}[ﬁ + %Cmﬁuf (18)

where p,, (0) = |e, (0} is the probahility that There_m'e n photons present in the field at
time = (). For an initial coherent state, p,,(0) = E":!'" where i is the mean photon number,
o = (i)',

In Fig. 1. Wit)is plotted as a function of time for an initial coherent state. Each term in
the summation { 18) represents Rabi oscillations for a definite value of n. At the initial time,
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Fig. 1 Time-dependence of the population inversion Wir) for an initially coherent state with i =25, 4 =10,
g= 1, nranging from O ta 1K)

t =1, the atom is prepared in a definite state and therefore all the terms in the summation are
correlated. As ime increases the Rabi oscillations associated with different excitations have
different frequencies and therefore become uncomelated leading to a collapse of inversion.
As time increases the Rabi oscillation collapses to zero and revival occurs. This behavior of
collapse and revival of inversion is continued with increasing time, with the amplitude of
Rabi oscillations decreasing and the time duration in which revival takes place increasing
and ultimately overlapping with the earlier revival.

3 Entanglement with Decay

MNow we introduce the cavity decay. As long as there is no photon decay from the cavity, the
evolution of the system is governed by the non-hermitian Hamiltonian [ 3]

y ik
H =H—?aa

where k is the cavity decay rate.
In strong driving regime. the effective Hamiltonian as in Sect. 2 is given by

! e = g
Ha=cgaS e +a's ™) (19)

where §' =8 —ik/2.
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Solving the equation of motion for any arbitrary state

') = [deale,n) +dy alg.n)]

a=l)

and simplifying we get the equation for 4. , as

gE{n + 1)

3{' Ul Iﬁj‘jf' M
a1t m T 3

dy=0 (20)
This is a second order equation with complex coefficients. Assuming that the atom is initially
in the excited state we obtain

d.u{ﬂ} --:1-7'-'

deull) =T{DI€H + D27 e 21

and

W i s
gV +1da(0) [ Dyt EY  Dre0-T0
2 2 Liw+s)  @=-%)

d.u.u+|‘.-r} iy 22)

where
gl - .
Dy =1+ iegir
D, =1 &2
']
w2
2

5 3 (23
o= (42 + 82V }

U=

H:tan"q%}
2 3

e 2
Jl.u =T ﬂ.u

For exact resonance case we get finally

honl N eal )} 24)

_& ko
de.uU}=é‘ Td.um}[fm\h( 3 )+2\,."'jl_usmh( 3

and

d,(0) & | A
dy g1 ()= —ig'n+1 \.-'EJ:_}E%— smh(g) 25)

3.1 Phase Distribution

Using Pegg and Barnett formalism we now investigate the phase-probability distribution of
the radiation field in the model discussed above.
For exact resonance case we use the approximation

- pp——

T R ey ig—.
¥ & 4g2(n+1) ‘f”zJﬁ
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With this approximation, (24) and (25) change into

—i 4 (D) , gt gnt
d. (1) = "”"—|: (— —)+ ( —— 27
alf) =g 3 exp :4 = exp 1'4 = )
and
g g (0 . gnt gt
ki . _
d]-:..u+|{-r} =g 2 [ P( 14\."";_‘!) EKP( 4\{}.— {28}

Assuming that the radiation field is initially in a coherent state and using the Gaussian
approximation as in (15) we finally obtain the phase probahility as
P (. 1) = He. 6 W ()F + (g 6 W (1))
pxr (2w~ 2
l:: "} I:e —ifAl- i ]
s+ 1 4
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where

J“-=5'a—5'm—%f —

4«"
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4t
If we choose J' <% e, then we can neglect the term T compared to a,. Hence
1l 2x 4y - 3 g I
Pif,. N=- ki — 2ty —ty —e ¥ T (et — 2} 10
st 4{.9+]]|( ) . = (30)

Proceeding as in Sect. 2, we obtain that for presence of cavity decay. the phase fluctuations
are changed and the ﬁeld, which is initially in a coherent state, does not keep the phase-
number product.

If further we take the interaction time to satisfy r = ﬁ then cormesponding success prob-
ability is

1 2 Air ot LR L
P(6,.1 — 2, — Oy —eag d 31
( )= 4{?+ ]}( ) e (31)
and we have
4 1
f C* D p6,nde=1 32)
2w

Thus we see that the phase probability increases with the increase of & in general bt for
a certain interaction time, the cavity decay rate & has no effect on the distribution.
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Fig. 2 The population inversion W () versus the interaction time for an initiall y coherent state with @ = 25,

d=10, g=1, k=001 » mnging from { to 100

3.2 Population Inversion

We are now interested in the atomic population inversion considering the decay of the field.
Under the condition of exact resonance, a closed expression for Wir) can be calculated as

Wi(r) = Ep,mm}[e-*:’ Icmh( "Ji”r) + 4\;‘_ s'mh( if) I

_ gin+ ]}e!f' x.mh_j( ;r ):| (33)

'l

where 4, is given by (23). Each term of (33) represents Rahi oscillations for adefinite value
of n. The photon distribution function g,,(0) stands for the relative weight for each n.

Figure 2 shows the comparison between the population inversion Wir), considering the
decay effect, and the time period. This figure exhibits the existence of periodic spontaneous
collapse and revival for the above model.

4 Discussion and Conclusion

We have studied phase distribution of the radiation field through the Pegg-Barnett phase
formalism. We have investigated the effect of cavity decay on a two-level atom interacting
with a single-mode cavity and driven by a classical field. The general expression shows the
dependence of the phase probability on the cavity decay but for a particular interaction time,
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Population inversion as a function of cavity decay

g ' ' ' [===z]]
Oy gy . |
-
= _10 - 4
y
~,
—aok ‘.:
_30 y 2 -
-2 =1 0 1 2 3
k
50 T T T
S ———. e p—— ——. A _
ofF e . 1
50 .
- - ‘ -
= .
-100} % o
*
i L *
150 "
-200 . : - . -
-2 =1 1] 1 2 3
k

Fig. 3 The population inversion W versus the cavity decay rate & for an initially coherent state with 7 = 25,
d=11, g=1, » mnging from (I 1o 100

this phase probability is tuned with the phase probability of without decay case. Another
point we would like to mention that, in absence of cavity decay, the field which is initially
in a coherent state, retains coherence with time development if one neglects the influence of
the atomic Rabi oscillations on the phase probability distribution. But the presence of cavity
decay leads to phase fluctuation of the radiation field i.e. the coherent field cannot keep its
phase-number-minimum-uncertainty product.

While studying the population inversion we have observed that the decay term makes a
contribution to the population inversion, thus changes the ideal Rabi oscillation into a bit
pattern. We have numerically calculated equation (33) for some particular values and shown
the dependence of population inversion on cavity decay rate k in different cases in Fig. 3.
For a certain time, the population inversion decreases, slowly when & =2 and rapidly after
k = 2, with increase of &, implying that we spend more time to achieve the inversion in
the decay case than in the ideal case. The plotted graph clearly demonstrates that the curve
corresponding to t = 4 drops more sharply than that of ¢ = 2. Therefore the cavity decay has
larger impact on the curve as time increases.

In conclusion, our approach presents analytical expressions for the influence from cav-
ity decay on phase distribution and population inversion. Our study would be helpful for
experimental work dealing with problems of cavity decay.
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