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In this paper we have studied the nature of kinematical and dynamical laws in �-Minkowski spacetime
from a new perspective: the canonical phase space approach. We discuss a particular form of
�-Minkowski phase space algebra that yields the �-extended finite Lorentz transformations derived in
[D. Kimberly, J. Magueijo, and J. Medeiros, Phys. Rev. D 70, 084007 (2004).]. This is a particular form of
a deformed special relativity model that admits a modified energy-momentum dispersion law as well as
noncommutative �-Minkowski phase space. We show that this system can be completely mapped to a set
of phase space variables that obey canonical (and not �-Minkowski) phase space algebra and special
relativity Lorentz transformation (and not �-extended Lorentz transformation). The complete set of
deformed symmetry generators are constructed that obeys an unmodified closed algebra but induce
deformations in the symmetry transformations of the physical �-Minkowski phase space variables.
Furthermore, we demonstrate the usefulness and simplicity of this approach through a number of
phenomenological applications both in classical and quantum mechanics. We also construct a
Lagrangian for the �-particle.
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I. INTRODUCTION

Evidence (see [1] for discussion and references) of ultra-
high energy cosmic ray particles that violate the Greisen-
Zatsepin-Kuzmin bound have compelled theorists to gen-
eralize the conventional energy-momentum dispersion law
of particles,

 p2 � m2; (1)

based on principles of special theory of relativity (SR). The
extension requires another observer independent dimen-
sional parameter, apart from c, the velocity of light. The
second parameter (�) is expected to be related to Planck
energy. Based on this idea Amelino-Camelia [2] has pio-
neered an extended form of SR, popularly known as de-
formed (or doubly) special theory of relativity (DSR). It is
very important to emphasize that the fundamental tenet of
SR, i.e. equivalence of inertial frames of reference is kept
intact in DSR whereas the Poincare algebra of SR is
elevated to quantum (Hopf) �-Poincare algebra in DSR.
The effect of � appears in the explicit structures of Lorentz
transformations (LT) in DSR, referred to here as �-LT,
which are nonlinear for momenta and momenta-dependent
for coordinates. Also DSR fully reduces to SR for energies
much smaller that Planck energy, (or equivalently in the
limit �! 1).

DSR is intimately connected to another area of topical
interest: noncommutative (NC) geometry [3,4], where ca-
nonical Poisson bracket structure of phase space variables
is replaced by a more extended algebra. This is indeed
satisfying because existence of a fundamental length scale
(� Planck length) is needed to deal with quantum gravity

ideas [5] and Black Hole physics [6] in a sensible way. This
additional length scale can be implemented by an NC
spacetime via generalized uncertainty relation [7].
Exploiting the notion of duality in the context of quantum
group ideas [8–10] or from a physical point particle
Lagrangian perspective [11], it has been demonstrated
that a DSR dispersion law is the Casimir invariant of a
particular �-deformed Poincare algebra and the latter is
connected to an NC phase space in a unique way. It is
important to note that in these examples the NC extension
of the spacetime algebra is operatorial in nature,

 fx�; x�g � ����x�; p��;

(p� being the momentum), in contrast to NC spaces of
recent interest in high energy physics, where the extension
is not operatorial [4],

 fx�; x�g � ���:

In the present paper we will dwell on the NC phase space
aspect of DSR. Our approach [11] is more familiar to a
physicist than the more mathematically oriented previous
studies [8–10]. We will focus on a particular form of NC
spacetime, known as �-Minkowski spacetime (and the
associated phase space). In the sense of classical Poisson
Brackets, the NC �-Minkowski spacetime is defined as

 fxi; x0g �
xi

�
; fxi; xjg � 0: (2)

It should be mentioned that, even if one imposes the
restrictions that Jacobi identities have to be maintained
and that the structure should reduce to canonical algebra
for �! 1, the full �-NC phase space algebra is not
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uniquely determined. There are distinct (and possibly in-
equivalent) representations that are connected by nonlinear
transformations [10]. The particular �-NC phase space that
we will use here was first studied in [12] and was further
developed in [13] (in a restricted set up of 1�
1-dimensional toy model). In fact this phase space can be
extracted from very general deformations considered by
Lukierski et al. (see the last reference in [8]). In [12,13] the
idea of a suitable definition for velocity of a particle, with a
Magueijo-Smolin form [9] of modified dispersion relation

 p2 � m2

�
1�

E
�

�
2
; (3)

E being the particle energy, led to this NC phase space.
Interestingly enough, this same phase space was embedded
in a more general structure in an earlier work of one of us
[11] where it was induced in a specific gauge that was used
to fix the reparametrization invariance. (Similar framework
has been used in various other contexts [14] to generate NC
phase space.) We will follow the method used in [15] and
obtain the expressions for finite �-LTs. We will start from
the infinitesimal �-LTs induced by Lorentz generators in
�-space by explicit usage of the �-NC algebra proposed
here. The finite �-LTs will be composed out of them by
integration [15]. These specific �-LTs were first derived in
[16] from a different perspective. Also they were generated
in [13] in the symplectic framework. We, on the other
hand, will demonstrate that compatibility with the �-NC
phase space and associated �-LTs necessarily lead to the
generalized MS dispersion relation [9],

 p2 � m2

�
1�
��p�
�

�
2
� m2

�
1�

E
�

�
2
; (4)

now written in a covariant form with �0 � 1, ~� � 0. We
also show that the SR LT invariant interval has to be
replaced by an expression that is DSR or �-LT invariant
[13].

In generalizations of relativity theory in the form of
introducing more than one observer independent scales,
(e.g. in DSR there are two scales), generally the schemes
are dominated by algebraic constructions based on the
quantum (Hopf) �-Poincare algebra [8,10]. This is a de-
formation of the normal Poincare algebra of SR that is
applicable in conventional phase space.1 �-Product, an
essential tool in the construction of quantum field theory
in NC space, for the �-NC spacetime has appeared in [18].
This aspect of our model will appear elsewhere [19] and in
the present work we will provide a thorough analysis of the

deformed symmetry generators and their effects on the
degrees of freedom.

Now comes the major part of our work where we in-
troduce a mapping between �x�; p��—the physical
�-Minkowski NC phase space and �X�; P��—a com-
pletely canonical phase space that obey normal Poisson
Bracket algebra. We also show that �X�; P�� obey SR LTs
whereas �x�; p�� are ruled by �-LTs. Similar ideas have
appeared before in 1� 1-dimensions in [13] and also in
partially restricted ways in either coordinate space [20] or
in momentum space [21]. However, the full canonical
phase space, as has been constructed in the present work
via the mapping, becomes a powerful tool. The idea of
covariant phase space has also been applied [22] in some
�-extended field theory models to identify the conserved
quantities.

On the one hand, existence of the associated canonical
phase space is very intriguing and requires serious think-
ing, whereas on the other hand, it has a great practical
utility in describing �-LT kinematics and dynamics. It will
also play an important role in quantization of the
�-particle. The idea is to write down SR or quantum
relations in terms of �X�; P�� and then use the inverse
map to get corresponding relations in terms of �x�; p��
variables, which (although NC) are the relevant physical
degrees of freedom. However, we also show that one has to
be careful in extending SR kinematic relations to DSR
relations since for interacting particles, the dynamic be-
havior becomes entwined with kinematics and isolated
kinematic identities (as in SR case) are allowed only for
free particle. Incidentally, even for the free �-particle, the
equation of motion (Newton’s law) _p� � 0 is true but it is
not at all obvious and we prove this from an action prin-
ciple for the �-particle. In the quantum case, we show from
explicit examples that �-effects are not observable in non-
relativistic situations.

We provide a first order phase space Lagrangian for the
�-point particle and its geometric counterpart in coordinate
space that has a higher derivative structure. (Higher de-
rivative terms have also appeared in other DSR particle
model [23].) Our model includes the two stand out features
of DSR systems: NC spacetime and the modified disper-
sion relation, (taking �-Minkowski spacetime and MS
dispersion law as an example).2 As we will show, here
also the natural starting point is the normal relativistic
point particle model in terms of �X�; P�� which is rewrit-
ten in terms of NC coordinates �x�; p��. We believe that
the usage of this equivalent canonical framework, de-
scribed extensively in the present work, to construct the
deformed symmetry generators and the MS point particle
Lagrangian, is new.

1The construction of quantum field theories on a canonical NC
space, (where ��� is a constant in fx�; x�g � ���), has received
a great impetus from the works of [17], that demonstrates the
invariance of the theory under twisted Poincare algebra. This
means that the representation content of NC x� remains the same
as there commutative counterpart. This assertion is very impor-
tant from phenomenological model building point of view [17].

2The present model is a minimal construction in the sense that
the previous model constructed by one of us [11] had a more
elaborate phase space algebra.
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The paper is organized as follows: In Sec. II we intro-
duce the �-Minkowski phase space, the infinitesimal
Lorentz generators and construct the finite �-LTs for the
phase space coordinates, i.e. x� and p�. The �-LT invari-
ant MS dispersion law and coordinate interval are also
identified. Section III is the main content of our work. In
this section the canonical �X�; P�� phase space is con-
structed out of �x�; p��, the �-NC phase space. The SR
LT of the set �X�;P�� are also shown explicitly. In Sec. IV
we provide a thorough analysis of the set of deformed
symmetry generators, comprising of generators of trans-
lation, rotation, dilatation and special conformal transfor-
mation, using the canonical approach. In Sec. V, we discuss
kinematics in the � DSR context. Section VI is devoted to
the construction of an action for the free �-particle that is
the starting point of all dynamical studies. The quantiza-
tion problem is briefly touched upon in Sec. VII. The paper
ends with a conclusion in Sec. VIII.

II. NONLINEAR �-LORENTZ
TRANSFORMATIONS

Let us start by introducing the �-Minkowski phase
space. We are in the classical framework and will interpret
the phase space algebra as Poisson brackets. The general
consensus is to refer a phase space as �-Minkowski if it
contains the following sector,

 fxi; x0g �
xi

�
; fxi; xjg � 0;

fxi; pjg � �gij; fp�; p�g � 0:
(5)

Our metric is diagg00 � �gii � 1 and � is the NC pa-
rameter. The rest of the phase space algebra is given below,

 fx0; pig � pi=�; fxi; p0g � 0;

fx0; p0g � �1� p0=�:
(6)

The above is rewritten in a covariant form,

 fx�; x�g �
1

�
�x��� � x����;

fx�; p�g � �g�� �
1

�
��p�; fp�; p�g � 0;

(7)

where �0 � 1, �i � 0. This algebra appeared in [12] and
partially in [13]. Detailed studies of similar types of alge-
bra are provided in [10]. This algebra has emerged before
in an earlier work of one of us [11] where it was embedded
in a more general algebra. For �!1 one recovers the
normal canonical phase space.

The angular momentum is defined in the normal way as

 J�� � x�p� � x�p�: (8)

This is motivated by the fact that spatial sector of �-NC
algebra in (7) remains unaffected. Furthermore, using (7)
one can check that the Lorentz algebra is intact,

 fJ��; J��g � g��J�� � g��J�� � g��J�� � g��J��:

(9)

However, Lorentz transformations of x� and p� are indeed
affected,

 fJ��; x�g � g��x� � g��x� �
1

�
�p��� � p����x�;

fJ��; p�g � g��p� � g��p� �
1

�
�p��� � p����p�:

(10)

Notice that the extra terms appear only for J0i and not for
Jij so that only boost transformations are changed.

From now on we will use the �x; y; x; t� notation (instead
of the covariant one), which is more suitable for compari-
son with existing results. We define the infinitesimal trans-
formation of a generic variable O by

 	O � f12!��J��;Og; (11)

and only the parameter !0x � 	u is nonvanishing.
Let us start with the Lorentz transformation for energy-

momentum vector �E; px; py; pz�. The above considera-
tions yield the following differential equations [15],

 

dE
du
� �px �

Epx
�

;
dpx
du
� �E�

p2
x

�
;

dpy
du
�
pypx
�

;
dpz
du
�
pzpx
�

:

(12)

We rewrite the E and px equations as

 

d�E� px�
du

� ��E� px� �
px
�
�E� px�;

d�E� px�
du

� �E� px� �
px
�
�E� px�;

(13)

which reduces to

 

d
du

�
ln
�
�E� px�
�E� px�

��
� �2: (14)

Introducing the initial and final, respectively, as E, px for
u � 0 and E0, p0x, we obtain the following relation,

 E0�1� Ae�2u� � �p0x�1� Ae
�2u�; (15)

where the constant A is A � ��E�px�
�E�px�

�. This allows us to deal
with the E (or px) equation separately and for E we get

 

dE
du
� �px �

Epx
�
�

�
1� Ae�2u

1� Ae�2u

��
E�

E2

�

�
: (16)

The integration is trivial and we recover the finite Lorentz
transformation for E in �-Minkowski spacetime:

 E0 �

�E� vpx�

�
; � � 1�

1

�
f��
� 1�E� v
px�g:

(17)
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In the above we define,

 cosh�u� �
1��������������

1� v2
p � 
; sinh�u� � v
;

eu �
1� v��������������
1� v2
p � 
�1� v�;

where v is the velocity of the primed frame with respect to
the unprimed one. The relation (15) yields the px trans-
formation law,

 p0x �

�px � vE�

�
: (18)

For the transformation law for the transverse momentum
py we start from

 

dp0y
du
�
p0yp

0
x

�
� �

1

�
d�
du

p0y; (19)

where we have exploited the useful identity

 p0x � �
�
�
d�
du

:

This is integrated to yield

 p0y �
py
�
: (20)

We collecting the momentum transformation laws to-
gether:

 E0 �

�E� vpx�

�
; p0x �


�px � vE�
�

;

p0y �
py
�

; p0z �
pz
�
:

(21)

These transformations have been derived before in [16]
from different considerations and we have based our analy-
sis completely on the NC �-Minkowski phase space. Our
method was used in similar context by [15] but with a
different representation of �-Minkowski phase space
algebra.

Before proceeding to derive the �-LT for the coordinates
x�, let us first find out the new dispersion law that is �-LT
invariant. Scanning the following infinitesimal transforma-
tion rules,

 

�
1

2
J��; p2

�
�
p2

�
���p� � ��p��;�

1

2
J��; ��p�

�
� �

�
1�
��p�
�

�
���p� � ��p��;

(22)

we find the following combination to be invariant:

 

�
1

2
J��;

p2

�1� ��p�� �
2

�
� 0: (23)

The finite �-LTs also yields

 

�
p2 �m2

�
1�
��p�
�

�
2
�
0

�
1

�2

�
p2 �m2

�
1�
��p�
�

�
2
�
;

(24)

confirming that the new �-LT invariant dispersion law is

 p2 � m2

�
1�
��p�
�

�
2
: (25)

This is the MS dispersion law [9] mentioned at the begin-
ning (4). We recover all the conventional relations in the
�! 1 limit.

Now we discuss the generalized spacetime transforma-
tion relations. We follow the same procedure as before and
starting from (10) obtain the differential equations for t and
x,

 

dt0

dv
� �x0 �

t0p0x
�
� �x0 �

t0

�
d�
dv

;

dx0

dv
� �t0 �

x0p0x
�
� �t0 �

x0

�
d�
dv

;

(26)

which are reexpressed as

 

d
dv

�
t0

�

�
� �

x0

�
;

d
dv

�
x0

�

�
� �

t0

�
: (27)

A further differentiation separates the variables and we get

 

d2

dv2

�
x0

�

�
�
x0

�
;

d2

dv2

�
t0

�

�
�
t0

�
; (28)

giving rise to the solutions

 x0 � �
�x� vt�; t0 � �
�t� vx�; (29)

where the initial and final conditions, respectively, are x, t
for v � 0 and x0, t0. For the transverse coordinate y, the
differential equation

 

dy0

dv
� �

y0p0x
�
�
y0

�
d�
dv

; (30)

induces the transformation

 y0 � �y: (31)

Hence the �-LTs for spacetime coordinates appear as

 t0 � �
�t� vx�; x0 � �
�x� vt�;

y0 � �y; z0 � �z:
(32)

These �-LTs are precisely the ones derived in [16] in a
different way where imposing the invariance of x�p� was
the starting point and partially derived in [13] in a
Hamiltonian sysplectic framework. In the present paper
this derivation is more systematic and rests solely on the
new form of �-algebra (7) introduced here.

As in the dispersion relation, once again we look for an
invariant quantity that will generalize the conventional
distance and we find that under the �-LT (32),
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�
x2

�
1�
��p�
�

�
2
�
0

� x2

�
1�
��p�
�

�
2
: (33)

Hence the invariant length j S j is generalized to

 s2 � x2

�
1�
��p�
�

�
2
: (34)

This is one of the important results of the present paper. Its
1� 1-dimensional analogue was suggested in [13].

III. CANONICAL VARIABLES

In this section we will introduce a new set of phase space
variables which obey canonical Poisson brackets are trans-
form in the conventional way under SR Lorentz trans-
formation. Somewhat similar considerations in parts have
appeared before in [13,20,21] but exhaustive study of the
full canonical phase space as presented here is new. Indeed,
these variables are composites of phase space coordinates
will have to suitable ordered upon quantization. But, in the
classical framework they will prove to be very convenient
and they drastically simplify the computations while ana-
lyzing phenomenological consequences of the modified
Lorentz transformations. We will return to the quantum
case at the end.

The two invariant quantities that we derived in (4) and
(34) suggest the forms of these canonical avatars:

 X� � x�

�
1�
��p�
�

�
� x�

�
1�

E
�

�
;

P� �
p�

�1� ��p�� �
�

p�
�1� E

��
:

(35)

We remind that the variables on the right-hand side obey
�-LT laws. Using the NC algebra (7) it is easy to check the
following:

 fX�; P�g � �g��; fX�;X�g � fP�; P�g � 0: (36)

Hence the X, P phase space is canonical. The above
relations in (35) are invertible,

 x� � X�

�
1�
��P�
�

�
� X�

�
1�

P0

�

�
;

p� �
P�

�1� ��P�� �
�

P�
�1� P0

� �
:

(37)

Next we consider Lorentz transformations of the canonical
variables and find, for example,
 

T0 � t0
�
1�

E
�

�
0

� 
 ���t� vx�
�

1�


� ��
�E� vpx�

�

� 

�
t
�
1�

E
�

�
� vx

�
1�

E
�

��
� 
�T � vX�; (38)

where �� � ���v� and we have used the identity � ����1 �
�0. In an identical fashion we can show

 X0 � x0
�

1�
E
�

�
0

� 
�X� vT�;

Y0 � y0
�
1�

E
�

�
0

� Y; Z0 � Z:
(39)

Exploiting similar considerations we also ascertain that

 P00 �
E0

�1� E
��
0
� 
�P0 � vPx�;

P0x �
p0x

�1� E
��
0
� 
�Px � vP0�;

P0y �
p0y

�1� E
��
0
� Py; P0z � Pz:

(40)

To further convince ourselves about the validity of the
canonical variable approach let us study the group property
of these new Lorentz transformations. Consider, for ex-
ample, two successive �-LT’ on x,

 x � �01�C1x
0 � S1t

0�; t � �01�C1t
0 � S1x

0�;

x0 � �002 �C2x00 � S2t00�; t0 � �002 �C2t00 � S2x00�;
(41)

where

 C1 � cosh�u1� �
1��������������

1� v2
1

q � 
1;

S1 � sinh�u1� � v1
1;

�01 � 1�
1

�
f�1� C1�E0 � S1p0xg

and so on. We will also require the energy-momentum
�-LTs,

 E0 �
1

�002
�C2E

00 � S2p
00
x �; p0x �

1

�002
�C2p

00
x � S2E

00�:

(42)

Concentrating on the x-transformation, the above will lead
to
 

x � �01	C1f�002 �C2x00 � S2t00�g � S1f�002 �C2t00 � S2x00�g


� �00
�1�2�	C�1�2�x00 � S�1�2�t00
; (43)

where (1� 2) stands for (v1 � v2). However, in terms of
the canonical variables we should simply obtain

 X � C�1�2�X
00 � S�1�2�T

00; (44)

which, when expressed in terms of NC physical variables
yields
 �

1�
E
�

�
x � C�1�2�

�
1�

E00

�

�
x00 � S�1�2�

�
1�

E00

�

�
t00 ) x

�
�1� E00

� �

�1� E
��
C�1�2�x00 � S�1�2�t00

� �00�1�2��C�1�2�x00 � S�1�2�t00�: (45)
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This is the same as (43). Hence the group property is
established for �-LTs and also the fact that the canonical
X�, P� variables obey SR LTs.

The important lesson that we learn from the above
discussion is that the �X�; P�� phase space is truly canoni-
cal in the sense that it satisfies canonical Poison brackets
and moreover obeys normal (�! 1) SR LTs. Hence, as
far as classical physics is concerned, we can directly
borrow the SR kinematical laws, by writing them in terms
of �X�;P��, and subsequently deduce the laws in �-NC
spacetime by rewriting them in terms of �x�; p��, using the
mapping (35). We will put this idea in immediate use in the
next section where we obtain the deformed symmetry
generators. However, as we will discuss in later sections,
one has to be more careful while establishing dynamical
laws, even though the basic approach remains the same. In
the last section, we will briefly comment on the quantiza-
tion problem, which is very interesting.

IV. DEFORMED SYMMETRY GENERATORS

Let us understand the fate of the conventional symmetry
principles in the �-extended particle model. We will see
that we need deformed symmetry generators.

In the conventional case, the phase space algebraic
structure of the point particle is invariant under the follow-
ing symmetry transformations: translation, Lorentz rota-
tion, dilation and special conformal transformation. On the
other hand, the particle dispersion relation P2 �m2 � 0
enjoys invariance under translation and Lorentz rotation,
and the mass term m breaks the symmetry under dilation
and special conformal transformation. Finally, the symme-
try generators satisfy a closed algebra among themselves.

In the �-particle model our aim is to construct the
generators in the �-NC space that preserve invariances of
both the �-NC phase space algebra (7) and the structure of
the algebra among generators [see below in (46)]. Then we
will check how the �-modified dispersion relation [MS
relation (4) in the present case] is affected. Once again the
canonical �X�; P�� variables will do the trick. The idea is
to first write down the generators in terms of �X�; P��
degrees of freedom using the conventional form of the
generators, (i.e. that of normal particle in normal phase
space). They will obviously satisfy the standard closed
algebra among generators:
 

fJ��;J��g�g��J���g��J���g��J���g��J��;

fJ��;T�g�g��T��g��T�; fJ��;Dg� 0;

fJ��;K�g� 2D�g��X��g��X���X2�g��T��g��T��;

fT�;T�g� 0; fT�;Dg�T�;

fT�;K�g� 2Dg���2J��; fD;Dg� 0;

fD;K�g�K�; fK�;K�g� 0; (46)

where J��, T�, D and K� stand for generators of Lorentz

rotation, translation, dilation and special conformal trans-
formation, respectively. Their structures are given by

 J�� � X�P� � X�P�; T� � P�;

D � �XP�; K� � 2�XP�X� � X
2P�:

(47)

Next we exploit the map �X�; P�� ! �x�; p�� given in
(35) to rewrite the generators in the �-NC spacetime:

 j�� � x�p� � x�p�; t� �
p�

1� ��p�=�
;

d � �xp�; k� � �1� ��p�=��	2�xp�x� � x2p�
:

(48)

By construction, the generators in (48) will satisfy the same
algebra (46) provided one uses the �-NC algebra (7).
These are the deformed generators. The infinitesimal trans-
formation operators are

 j �
1

2
a��j�� �

1

2
a���x�p� � x�p��;

t � a�t� �
�ap�

1� ��p�=�
; d � a�xp�;

k � a�k� � �1� ��p�=��	2�xp��ax� � x
2�ap�
;

(49)

where generically a denotes the infinitesimal parameter.
Using the definition of small change in A due to trans-
formation 	b as

 	bA � f	b; Ag; (50)

we compute the explicit forms of transformations:

 	jx� � a��
�
g��x� �

1

�
p���x�

�
;

	jp� � a��
�
g��p� �

1

�
p���p�

�
;

(51)

 	tx� �
a�

1� ��p�=�
; 	tp� � 0; (52)

 	dx� � a�1� ��p�=��x�;

	dp� � �a�1� ��p�=��p�;
(53)

 	kx� � �1� ��p�=��
�

2�ax�x� � x
2a� �

2

�
x����xp�

� �a�� � ��p��ax� � ��x��ap��
�

;

	kp� � 2�1� ��p�=��
�
��ap�x� � �ax�p� � �xp�a��

�
1

�
p���xp��a�� � ��p��ax� � ��x��ap��

�
:

(54)

Clearly the variations differ from their commutative space-

SUBIR GHOSH AND PROBIR PAL PHYSICAL REVIEW D 75, 105021 (2007)

105021-6



time counterpart. Next we want to ascertain that the �-NC
algebra (7) is stable under the above symmetry operations.
This is done by checking the validity of the identity

 fA;Bg � C) 	bfA;Bg � 	bC; (55)

or more explicitly,

 f	bA; Bg � fA; 	bBg � 	bC: (56)

In the above we refer to (7) for fA;Bg � C and (51)–(54)
for 	b. A straightforward but tedious calculation shows
that the above identity is, indeed, valid. This assures us
about the consistency of the whole procedure.

Regarding the behavior of the MS dispersion law (4) we
have already checked that it is �-Lorentz invariant. It is
also trivially translation invariant. The variation under
dilatation is given by

 

	d�p2 �m2�1� ��p�=��2� � �2�1� ��p�=��
�
p2

�m2�1� ��p�=��
��p�
�

�
� �2p2; (57)

where the MS relation is imposed on the right-hand side. In
fact this variation is structurally identical to that of the
normal particle showing that in �-NC spacetime also the
mass terms breaks dilation invariance in the same way.

For special conformal transformation, the variation is
given by

 

	k�p
2�m2�1���p�=��2� � 2�1���p�=��

�
��ax�p2

�
1

�
�p2�m2�1���p�=��2�

� ��xp��a��� ��p��ax�

� ��x��ap��
�
: (58)

If we impose the MS law on the right-hand side of (58) we
find the variation to be

 	k�p2 �m2�1� ��p�=��2� � �2�1� ��p�=���ax�p2;

(59)

which very clearly mimics the normal particle
characteristics.

The above results indicate how the �-extension modifies
the mathematical structure of the normal (special theory)
relativistic particle. At the same time we have explicitly
constructed the full set of deformed symmetry generators
in �-spacetime that have all the attributes of these gener-
ators in normal commutative spacetime.

V. �-LORENTZ TRANSFORMATION
PHENOMENOLOGY

Let us start by discussing an important issue: the �-LT of
velocity, that will lead to the velocity addition theorem. In
our canonical setup, the three velocity (in the primed
frame) can be defined in the conventional way,

 

~U 0 � U0Xî�U
0
Yĵ�U

0
Zk̂; U0X �

dX0

dT0
; . . . : (60)

Hence, in terms of these variables, the velocity (in an
unprimed frame, moving with velocity v in X-direction)
will obey conventional special theory relations,

 

~W � WXî�WYĵ�WZk̂; WX �
dX
dT

; . . .

WX �
U0X � v
1�U0Xv

; WX �
U0X � v
1�U0Xv

;

WY �
U0Y

1�U0Xv
; WZ �

U0Z
1�U0Xv

:

(61)

Let us now map this relation to NC �x�; p�� space. From
the mapping (35) it is clear that the velocity components
are unchanged,

 

dX
dT
�
dx
dt
; . . .

dX0

dT0
�
dx0

dt0
; . . . : (62)

which means that the velocity transformation laws will not
change in the �-spacetime and, in particular, the velocity
addition law will remain unchanged.

However, in reality the analysis is more tricky and so far
as we have discussed, its validity is restricted only to free
�-particle. In fact this statement also needs to be proved
which we do in Sec. IV by considering a specific model for
a �-particle. To understand the problem let us follow the
derivation of the velocity addition rule more closely. From
�-LT the velocity components are related by
 

x � 
�0�x0 � vt0� )
dx
dt
� 
�0

dt0

dt

�
dx0

dt0
� v

�
�  ) wx

� 
�0
dt0

dt
�u0x � v� �  : (63)

The piece  can come from �dE�=�dt� if the particle is
interacting. Note that the �dE�=�dt� term will contribute to
O�1=��. For free particles we will show in Sec. V that
�dE�=�dt� � 0 and so it will not affect (63). Hence, for free
particles we have

 wx � 
�0
dt0

dt
�u0x � v�: (64)

In a similar way, for the free particle we will have

 

dt0

dt
�


�0
�1� vwx�; (65)

where we have taken px to be time independent, which we
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prove later. Substituting (65) in (64) we get

 wx �
u0x � v
1� u0xv

: (66)

Similar results will follow for other velocity components.
In the case of �-LT for acceleration components (ax) for

the free particle we find

 ax �
1

�0
a0x

�
2�1� u0xv��
3 : (67)

Hence the �-LT law for acceleration is changed even for
the free particle, in contrast to the velocity relation, which
remains unaltered. The �-modification for the other com-
ponents of acceleration are the same in nature.

From the structure of �-LT invariants (25) and (33) and
the mappings (35), it is clear that the phase space variables
x� and p� get mixed up in an inseparable way. This is the
reason why kinematic laws are not isolated from the dy-
namical behavior of the particle. In case the particle is not
free, the simplest possibility is that it is under the influence
of an external force ~F. In that case we should use

 

dE
dt
� ~F: ~w; (68)

and so there will O�1�� corrections, depending on the force,
in all the relations.

We can also study Lorentz contraction. We find that

 X2 � X1 � 
�X02 � X
0
1� ) x2 � x1 � 
��02x

0
2 � �

0
1x
0
1�;

(69)

where 2 and 1 refer to two spacetime positions and �2 and
�1 are the values of � at positions 2 and 1, respectively.
Once again for a free particle we use

 E2 � E1; �px�2 � �px�1; (70)

and find the modified Lorentz contraction law for length l
as

 l0 �
l



�
1�

1

�
f�1� 
�E� v
pxg

�
; (71)

applicable to the free particle.
It is curious to see that in the normal (�! 1) case,

 l0 �
l


� l

�
1�

v2

2

�
�O�v3�;

and in the �-spacetime, keeping terms up to O�v� in the
nonrelativistic limit, we have

 l0 � l
�
1�

vpx
�

�
� l

�
1�

mv2

�

�

for px �mv.
In the next section we will formulate an explicit model

of a point particle that has a �-Minkowski NC phase space
(7) and Magueijo-Smolin dispersion law (25). This will

help us to understand how, some of the assumptions that we
have made in this section, regarding the particles energy
and momentum, are concretely realized.

VI. LAGRANGIAN FOR �-PARTICLE

In this section we construct a Lagrangian for the
�-particle. This has been a topic of recent interest and
several authors [11,14] have proposed models for particles
with NC phase space of different structures. However, the
model we propose here for �-NC phase space is quite
elegant and can be expressed in a closed form.

Again the canonical variable approach becomes conve-
nient since we are sure that the relativistic free particle
action in terms of canonical �X�; P�� degrees of freedom
will be

 L � �P� _X�� � ��P2 �m2�: (72)

We now convert this L to a function depending on physical
�-NC phase space coordinates:
 

L �
�

p�

1� ��p��

��
x�

�
1�
��p�
�

��
:
�
�
2

�
p2

�1� ��p�� �
2
�m2

�

� �p _x� �
�px��� _p�

��1� ��p�� �
�
�
2

�
p2 �m2

�
1�
��p�
�

�
2
�
; (73)

where we have redefined the arbitrary multiplier �. Our
claim is that the symplectic structure in (73) will induce the
�-NC phase space algebra and the �-term will obviously
impose the MS mass shell condition. A slightly different
form of symplectic structure in 1� 1-dimensions is given
in [13]. We now proceed to demonstrate the former in
Dirac’s Hamiltonian constraint analysis scheme [24].

In the above first order Lagrangian (73) x� and p� are
treated as independent variables. The conjugate momenta
are

 
x� �
@L
@ _x�
� p�; 
p� �

@L
@ _p�

� �
�px�

��1� ��p�� �
��:

(74)

The only nontrivial Poisson brackets are

 fx�;
x�g � fp�;

p
�g � �g��: (75)

The momenta equation (74) shows that there are two sets of
constraints:

  1
� � 
x� � p� � 0;

 2
� � 
p� �

�px�

��1� ��p�� �
�� � 0:

(76)

In the terminology of Dirac constraint analysis [24], the
noncommutating constraints are termed as second class
constraints (SCC) and the commutating constraints, that
induce local gauge invariance, are first class constraints
(FCC). In the presence of SCCs � 1;  2� that do not
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commute (as Poisson brackets), f 1;  2g � 0, the modified
symplectic structure (or Dirac brackets) are defined in the
following way,

 fA;Bg� � fA;Bg � fA; igf i;  jg�1f j; Bg; (77)

where f i;  jg refers to the constraint matrix.
For the set of constraints (76) the constraint matrix is

 f i�;  
j
�g �

0 g�� �
p���

��1���p�� �

�g�� �
p���

��1���p�� �

x����x���
��1���p�� �

0
@

1
A: (78)

The inverse matrix is computed to be

 f i�;  
j
�g
�1 �

1
� �x��� � x���� �g�� �

1
� ��p�

g�� �
1
� ��p� 0

 !
:

(79)

Exploiting the definition (77) we obtain the Dirac brackets,

 fx�; x�g �
1

�
�x��� � x����;

fx�; p�g � �g�� �
1

�
��p�;

fp�; p�g � 0;

(80)

which is nothing but the �-NC phase space introduced at
the beginning (7). Hence L in (73) correctly reproduces the
�-NC symplectic structure.

It is also very useful to have the Nambu-Goto form of
action comprising only of coordinate space variables for
the �-particle. This can be recovered by eliminating p�
and � from L given in (73), which we now proceed to do.

The variational equations of motion from (73) are
 

_x� �
�� _p�

��1� ��p�� �
x� �

�px�:

��1� ��p�� �
��

� �
�
p� �

m2

�

�
1�
��p�
�

�
��

�
� 0; (81)

 _p� �
�� _p�

��1� ��p�� �
p� � 0: (82)

Rewriting (82) in the form

 _p�

�
g�� �

��p
�

��1� ��p�� �

�
� _p�G�� � 0;

we observe that G�1 exists and hence (82) yields

 _p� � 0: (83)

This condition considerably simplifies (81) to

 

_x� �
�p _x�

��1� ��p�� �
�� � �

�
p� �

m2

�

�
1�
��p�
�

�
��

�

)

�
1�
��p�
�

�
�

1

�

���������
�p _x�
�

s
: (84)

We find the following solutions,

 p� �
_x�
�

; � �

�����
_x2
p

m
�

1

�
�� _x�: (85)

Consistency of the computation is checked by noting that
the solutions (85) satisfies the correct dispersion law we
have imposed,

 p2 �
�p _x�
�
� m2

�
1�
��p�
�

�
2
: (86)

Finally we obtain the cherished Nambu-Goto Lagrangian
for the �-particle:

 L �
m

�����
_x2
p

�1� m�� _x�

�
����
_x2
p �

�
1�

m
�
�� _x�

�
�x _x������

_x2
p

�
:
�
: (87)

Notice that (87) is a higher derivative Lagrangian.
Hamiltonian analysis of it will yield the �-NC phase space
algebra.

The equation of motion _p� � 0 in (83) is very impor-
tant. It is the analogue of the free particle equation of
motion in normal spacetime (Newton’s law) showing that
momentum is conserved for the free �-particle as well. We
have already exploited this condition in Sec. III.

VII. QUANTIZATION

In this brief section we will try to argue through a few
applications that the canonical coordinate approach is very
convenient for quantization of the �-particle. We recall
from (37) the mapping between NC �-coordinates
�x�; p�� and canonical coordinates �X�; P��:

 x� � X�

�
1�
��P�
�

�
; p� �

P�

�1� ��P�� �
:

It is straightforward to elevate the classical Poisson brack-
ets in �X�; P�� to quantum commutation relations,

 	P�; X�
 � ig��; 	X�; X�
 � 	P�; P�
 � 0: (88)

In quantum theory the mapping has to be between opera-
tors

 x̂ � � X̂�

�
1�

P̂0

�

�
; p̂� �

P̂�

�1� P̂0

� �
: (89)

However, notice that only the mapping between x0 � t and
X0 � T needs operator ordering. Clearly there is no opera-
tor ordering ambiguity in nonrelativistic quantum me-
chanical problems and since P0 commutes with all the
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relevant variables ~P and ~X and one can replace P0 by a
number m, the particle mass in the nonrelativistic limit.
Hence the mapping becomes

 x̂ i � X̂i

�
1�
�m�
�

�
; p̂� �

P̂�
�1� m

��
: (90)

The advantage is that the operators P̂i and Xi can be treated
in the conventional way.

Let us use the above ideas in the simplest problem, i.e.
(nonrelativistic) harmonic oscillator in �-spacetime. The
Hamiltonian is
 

H �
~p2

2m
�
K
2
x2 �

~P2

2m�1� �m�� �
2
�
K
2

�
1�
�m�
�

�
2
X2

�
~P2

2 ~m
�

~K
2
x2: (91)

This shows that the frequency

 ! �

����
~K
~m

s
�

����
K
m

s
; (92)

and hence energy levels will remain unchanged.
We can consider the Hydrogen atom problem where the

Hamiltonian is

 H �
~p2

2m
�
Ze2

r
�

~P2

2m�1� �m�� �
2
�

Ze2

R�1� m
��

�
~P2

2 ~m
�
Z~e2

R
: (93)

Once again there is no change in the energy levels. This is
actually obvious since the only effect of � in nonrelativistic
physics turns out to be a numerical scaling of the operators
which is not observable.

VIII. CONCLUSION AND OUTLOOK

Let us summarize our work. We have concentrated on a
particular Doubly Special Relativity model that has an
underlying novel form of �-Minkowski noncommutative
phase space structure along with a Magueijo-Smolin form
of modified dispersion law. The novel and attractive feature
of our work is the construction of (invertible) mapping
between the noncommutative �-Minkowski phase space
and a completely canonical phase space the latter obeying
normal Poisson brackets. We further show the canonical
degrees of freedom transform under special theory Lorentz

transformations whereas the original physical variables
transform under �-extended Lorentz transformations.
Following this approach we have developed the complete
structure of �-deformation of the symmetry generators.
These modified generators obey an undeformed algebra,
keep the �-noncommutative phase space algebra stable
under symmetry operations but induce deformed transfor-
mations on the phase space variables. Furthermore, the
canonical construction simplifies the study of particle be-
havior in this particular DSR framework tremendously
since the existing results of special theory directly appli-
cable in the artificial canonical space. But from the explicit
relation we have provided, these results can be mapped to
the physical �-Minkowski phase space, the latter having a
much more complex noncommutative Hamiltonian struc-
ture and generalized Lorentz transformations. Using our
scheme, the free �-particle action developed here can be
extended to include interactions in a straightforward way.
An outcome of our analysis is that �-effects will probably
not be visible in nonrelativistic quantum systems.

As the next step in our program we plan to investigate
two problems:

(i) Behavior of �-particle in the presence of interac-
tions. We expect kinematical relations will change
as we have indicated. We will introduce interaction
term in the free particle Lagrangian in the canonical
space since in canonical coordinates the interaction
terms will have normal relativistic structure.
Subsequently they can be mapped to �-phase space
coordinates and the dynamics can be studied.

(ii) Construction of field theory in �-NC spacetime. This
is a very important issue and requires immediate
attention. Our aim is to exploit the canonical ap-
proach once again. We intend to consider the field
map ’�x� ) ��X�. Notice that field theoretic
Poisson brackets among ’�x� and its momentum
field will be noncanonical, [induced by �x; p� �
�-NC algebra], but brackets among ��X� and its
conjugate momentum field will be canonical. In
this way it will be possible to map a field theory in
�-NC spacetime to a field theory in normal space-
time with normal fields. This construction should be
compared with the (to be constructed) conventional
�-product formulation of NC field theory.
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