Berry phase effects in the dynamics of Dirac electrons
in doubly special relativity framework
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Ahstract

We consider the Doubly Special Relativity (DSR) generalization of Dirac equation in an external potential in the Magueijo—Smolin base. The
particles obey a modified energy-momentum dispersion relation. The semiclassical diagonalization of the Dirac Hamiltonian reveals the intrinsic
Berry phase effects in the particle dynamics.
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1. Introduction

Evidence (see [1] for discussion and references) of ultra-high energy cosmic ray particles that violate the Greisen—Zatsepin—
Kuzmin bound have compelled theorists o generalize the conventional energy—momentum dispersion law of particles,

pzzml, (1)

based on principles of Special theory of Relativity (SR).! The extension requires another observer independent dimensional para-
meter, apar from ¢, the velocity of light. The second parameter (i) is expected 1o be related 1o Planck energy. Based on this idea
Amelino—Camelia [2] has pioneered an extended form of SR, populady known as Doubly Special theory of Relativity (DSR). The
effect of x appears in the explicit structures of Lorentz transformations in DSR, which are non-linear for momenta and momenta-
dependent for coordinates. Al the same time « induces a Non-Commutative (NC) spacetime structure [3], which is referred Lo as the
ic-Minkowski spacetime [4]. Generally the scale of « is associated with Planck energy, and all «-induced modifications smoothly
disappear in the low energy sector (or equivalently in the imil & — o¢). In the present Letter we take b = (1 /x) as the NC parameter
and for & =0 one recovers the commutative limit.
A particular form of DSR extension of (1) that we will be concemed with in the present Letter is given by

p? =M1 —LE)?, (2)

* Comesponding author.
F-mail address: subin_ghosh2 @rediffmail.oom (5. Ghosh).
I However, it should be pointed out that very recent data from the Auger cosmic ray ohservatory does not quite support the observation of ultra-high energy cosmic
ray particles although results on the ultra-high energy cosmic photons is still awaited.
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with E being the particle energy. This form is known as the Magueijo—Smolin (MS) construction [3] of DSR. The comresponding
i -Minkowsks NC spacetime [4] 15

% =ity &) =0 (3)

We will comment on the classical nature of NC spacetime algebra, that is being considered here, a little later. In the present article
we will focus on the DSR generalization of Dirac equation [6] in MS base [5]. (For altemative constructions of DSR Dirac equation
see [7].) We will take up directly the issue of (semi-classical) quantization of the DSR Dirac particle by exploiting the generalized
Foldy-Wouthuysen (FW) approach [8]. This exiension amounts o a semiclassical Q{h) quantization of the Dirac particle in the
presence of external interactions and in previous works of some of us [9] this idea has been successfully employed to reveal intrinsic
Bemry phase [10] effects in the particle dynamics (see [11] for a review). The appearance of Berry phase effects is very natral in
FW formalism. The Berry potential is induced by the electron spin coordinates which are reated as “fast” varables as compared
to the position coordinates which are considered as “slow™ degrees of freedom. The same phenomena was discovered eardier [12]
when molecular dynamics was studied in the Bom—0Oppenheimer approximation. In this context let us emphasize the novelties in
the present work: The DSRE Dirac equation will be derived in an algebraic formalism which is mathematically very simple and
it exploits ideas studied in detail in a previous work of one of the present authors [13]. Interestingly this formalism allows us 1o
introduce interactions in the DSR scenario in a consistent way. Indeed interactions in a DSR framework generally have not appeared
in the literature. Lastly the study of DSR Dirac model in FW scheme is entirely new and (not surprisingly) the results oblained by
us can indicate new directions in this area.

The Letter is organized as follows: In Section 2 we derive the DSR Dirac equation in Magueijo-Smolin (MS) [5] base. Section 3
is devoted to the FW analysis of the DSR Dirac equation constructed in Section 2. In Section 4 we introduce the external interaction
and reveal the intrinsic Beny phase contribution in the present case. The Letter ends with conclusions and areas of future siudies in
Section 5.

2. DSR Dirac equation in Magueijo-Smolin base

Let us first put our approach in its proper perspective in the context of quantum NC DSR theodes. Owr aim is to exploil the
canonical framework [13] in constructing the theory and subsequently consider its quantization. For this reason our analysis is
completely classical, at least for the time being. Thus we use (classical) Poisson brackets in place of (guantum) commutators. On
the other hand, the authors of [14] discuss & quantum DSR theory from the very beginning and consider the spacetime as quantum
in nature. However, the classical nature of the field variables are retained in [ 14] in the sense that products of fields are not replaced
by their #-product. In this section we will construct the DSR Dirme equation in MS base (see Appendix A). To motivate the present
derivation, we have 1o introduce the full x-Minkowski Non-Commutative {NC) phase space,

{.r‘.,.r“} =ix': {.r‘.,_r-"'} =} {_r", p-"'} = —g'l; {p"‘,p“} =) i)
{.1'“, p"} =Aip'; {.r", p“} =0 {.r“, p“} =—14xp". (3)
We are in the classical framework and will interpret the phase space algebra as Poisson brackets. Our metric is diag g™ = —g' = 1.

For convenience it is expressed in a covardant form,

{-r_f.h-rl'} = )'-{-rp: e _-rl'n_fi}~ {-r;h Pul = —Epuv +)'-i]‘;1 Pu- {P_f.h pul =10, i6)

where o = 1, iy = (. For completeness we mention that the Lomente generator

-r;n' =Xp e — XpPus (1)

satisties the undeformed Lorentz algebra,
i‘ﬂw"'ruﬁ} =H“ﬂj“" +H'Hu-fﬂll +Kujrsja;1 +Hua;;1f$1 (%)

but induces deformations in the transformation laws. The energy-momentum dispersion law, consistent with the form of Jy,, given
in (7) 1% the MS relatuon (2),

2

pP =M1 —iEP = M*[1 - i(yp)] ¥

Indeed in all the above computations one uses the NC phase space algebra (6).

It s quite obvious that a direct generalization of the physical laws in the NC phase space 15 complicated, both mathematically
as well as conceplually [6.7]. However, there 1s an easy way out [ 13] which we now explain. We can mtroduce a map (X, P )=
£ (X, ) [13] between (x,, p, )—the physical o-Minkowski NC phase space and (X . P, )—a completely canonical phase
space. Explicitly the ransformation rules are the following:

i e __ Pu __ P
X, =x,(1 —A(gp)) =x,(1-AE); B, = T I (10)
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The (X . P, ) variables obey canonical Poisson Bracket algebra
[Xp. Pul = —guu: [Xp. Xul=1{P. P} =00 (11)

We have also shown in [13] that (X, Py) have conventional (Special Theoretic) Lorente transformation properties whereas, as
mentioned before, (1, po) obey x-deformed Lorentz transformation laws [ 15].
The above relanons in ( 10) are invertible,

PP
S +AmPY  (1+AR)

We note that the above relations are classical and one has to order them appropnately under quantization. However, we will show
these mappings survive under some restrictions and in the present work that is sufficient.

Our framework of generalizing physical laws 1o w-Minkowski phase space is the following: Stat with the known form of a
relation in the (auxiliary ) canonical phase space (X, Py ). Now simply map the relation using (10) to the physical NC L-vanables
{xy. pu). This yields the cherished A-deformed physical law. Indeed it is not obvious that the procedure will work but we have ex-
plicitly shown its validity in various instances in [ 13] in the context of point particle models. We will demonstrate (see Appendix A)
that this principle works for the Dirac equation as well.

Tor this end, we start with the momentum space Dirae equation in canonical phase space:

.r,-;=X;;{1+}.{11P}}=X;;{1+)-ﬂ]}: Pii (12)

(¥" Py — M)u(P) =0, (13)

where p# are the standard *y matrices™. We now provide the one line derivation of the DSR Dirac equation in MS base:

(yf‘“_p—f_w} - M)u{ﬁ} = (14)

This is the d-extended Dirac equation in MS basis. This is a new resull. In Appendix A, we substantiale the validity of our claim by
comparing (14) with existing results in the literature [6].
For applying the FW transformation on our MS-Dirac equation { 14) we express it in Hamiltonian form,

{E—E.ﬁ—ﬁM{l—lE}}u:ﬂ. (15)

After rearranging ( 15) we oblain,

E{(l + M =io.p+ M)u, (16}
_1—-iMg) .
En = —1 o0 (. p+ M. (17}

Quite surprisingly we find that the Hamiltonian H {or E in (17)) has a non-Hermitian structure:

H=A+ BB +Cap, (18)
where
A AN (19)
T 1-A2ZME
M

R 20
1 —A2mM2 0
1 —AM

L':%. (21)
1 — AZM2

This is a new result. This feature was not revealed in previous analysis [6,7] since a proper quantum treatment of the DSR Dirac
equation was not attempted. This problem is tackled by pedforming a similarty wansformation on H with the matrix D,

12 Il' M
D=C"P=\[1+—p=atbp. (22)
where
: 1(1+ 1 MI) b= | M (23)
= - __I s = | —_— - it
\ 2 | \ 220 +,/1- 2
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This keads to the final Hermitian form of H:

TR |
M* 3
H:D{A+Bﬁ+C&ﬁ}D"=A+Bﬁ+(1——j) @.p. (24)

This H is suitable for the conventional FW procedure with similarity transformation performed by the unitary matnix U,

fo_ 1 =3 2 1 =
. V (iomplpr+ B +B+ mﬁa . p -
[_B 20 [ __B 2 12 B
2y o + B/ o + B2+ B))

which can also be wntlen as,

i (V(1—22M2)p? + M2+ M + /1 —12M?fa . p) (26)
2y (1 =3IM%) P + M2/ (1 = M) P+ M2+ M) )

In this way we see that I is very similar to the usual FW transformation Uy for a free particle of momentum p° which is

(VPr+ M4 M+ fa . p)

=t S S - @n
(242 + M2/ 2 4+ M2 + M))12
Indeed, U in (26) reduces o Ug for A = 0.7 The energy cigenvalues of H are:

/ M7 —aM? }f 1 . M *

Es=Ax |1l —— “+ B = = = = ot | ——m—
H,'( x-) P 1_A2M? ‘,'(I—JL—M?)F (1—)L?M‘1)
]' 2 .'r 3 L e ] 3

- m{—lﬁd"ﬂ:f (1 -22M%)p2 + M2). (28)

Clearly they satisfy the MS dispersion law (2). This can be considered as an aliernative way of obtaining the MS dispersion law
starting from the MS extension of Dirac equation, in the spirt of [18]. We emphasize the framework adopted by us, i.e. construct-
ing the MS-Dirac equation by exploiting the canonical phase space coordinates and subsequently utilizing the FW formalism o
compute the energy eigenvalues that are identical with the MS energy values, is quanium mechanical in nature and is totally new.

We would like to make a comment on the particle and anti-particle spectra comresponding to the MS dispersion law, although this
is not directly relevant for the present work. For the normal Dirac particle in commutative spacetime, the particke and anti-particle
spectra, Ex = 4/ pf + M7 are symmetrically placed with respect o the zero-energy kevel. This is obtained by putting & = 0
in (28). At the same time it is evident that this feature is absent for the MS spectra (28) with 8 non-zero . However, we can restore
this symmetry simply by shifting the zero level of the energy value by the constant amount ﬁ% in (28). Thus the particle and
ant-particle sector energy levels are given by

'y T2 gte =T o]
Al — =M=y p= + M-
Ep=2t— b — (29)

3. Physical position operator and Berry curvature effecis on particle dynamics

It is well known that (in the nomal commutative spacetime) the position operator v in Dirac equation does not represent the
physical coordinate of the particle simply because the magnitude of the particle velocity obtained from taking time evolution of ¥
is ¢, even for & massive particle. On the other hand the FW formalism provides a natural prescription for a physical position
operator 7o that correctly reproduces the particle velocity, Incidentally 7. operators are non-commutative in nature and as we
shall see below, this feature can be atributed o a Berry phase effect. Phenomena of a similar have been observed before [19] in
condensed matter systems. In the present case we find that the Berry curvature effect is further modified by the A -comrections.

We now limit ourself to the dynamical evolution of a positive energy particle whose energy is formally the projection (we denote
the formal projection operation by 7P of the Hamiltonian on the positive energy subspace. Physically, we thus consider the adiabatic
approximation which allows 1o neglect the interband transition, by identifying the momentum degree of freedom as slow and the
spin degree of freedom as fast, similarly to the nuclear configuration in adiabatic treatment of molecular problems. To be coherent
with this projection on the positive energy subspace, the same projection has to be done for all dynamical operators. Therefore the

2 Once again, in an al gebmic way, £ can be computed directly from L by the change of variable p— /1 — AEME B This is simply becmse in our equation

i
{24) the factor (1 — 27 M7 2 appears in front of & . .
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physical position operator v is oblained as
Fe=P(UDFD-'UT)=P(UFUT) (30)

with the MS position operator ¥ = if Fﬂﬁ Notice that we are using the canonical representation of the position operator (valid
for commutative spacetime) for the J-variables as well. This is allowed if one recalls from (4), (3), (6) that the spatial sector
remains unaffected in this NC spacetime. This can also be justified in a more rigorous way by going 1o the canonical phase space
framework (10). This leads to the following explicit form of r

F.::fﬁ‘.'l'—"(U:—]_,U*) =fﬁ:—]_,+'.'l'-"({.-’fﬁtm_, )EF-FAU-] (31)
dp dap dp

where we have introduced 4, the so-called Berry connection. The (r) in 4, indicates that this Berry conneclion accompanies
the position r. (In general, Berry connections can appear both in coordinate and momentum.) Indeed the state space of the Dirac
electron is spanned by the basis of plane waves of the form [p, ge) = | phlee), where g 1s 2 zero-momentum spinor, such that
U{pilge b = |ug(p)) which is a spinor solution of the Dirac equation. For g, = (1,0,0,0) and gl = (1,0,0,0) the malrix
elements of A4, are then

au+ 3
(Ag))ap = il U (p)- --E-]-;;P'} leg) = ih{uy(p) | i |ug(p))-

This is the definition of the Berry connection. The explicit structure of 4, in the present contexl is

VI =2IMI)(p x 7)

A =P(UFU ) =h : (32)
’ ( ) 2001 =22Mp2 + M (1 = R2MY)pr + M2+ M)
with @ being the Pauli matrices. Note that for a free particle the momentum is FW invanant, ie. po =P(U pU~") = p.
As we have mentioned before, the physical position operators v are no longer commutative:
TN T ) . ‘- : :

[ry ri] =i ey =i ((VipAiny — VipAn) + [ A Ain]):

[F'. pi]=0. [p'.rl]=—ins" (33)
with the non-Abefian Berry curvature defined by

2 i 5 1— M) (p.a)p

g . ,1;( o )Np.o)p ) (34)

(1= A"M)p= + M=) VI =22M)p2 - M2+ M

The dynamics is generated by the Hamiltonian equations of motion,

0 =ilH. 0]. (35)
where (} is a generic operator and H is the Hamiltonian. In the present instance with £ representing H |, we find,

- A 7=0. (36)

V1= 2IMO)pI+ MT
Also one finds that the non-relativistic expression for velocity is obtained for M = 1 /3 which in fact corresponds to the upper bound
of mass {or energy) available for the particle. In the next section we will study the dynamics of the MS Dirac particle in presence
of external interaction.

4. DSR dynamics in presence of scalar interaction and Berry curvature effects

In general it is not possible 1o perform the FW transformation exactly when interactions are present but one can always resort
to a perturbative study for a “small” potential term. But here instead of a perturbative expansion we consider a semiclassical
approximation { @A) and in additon kmit ourself to O L) effect only.

Onee again we start with the free MS-Dirac equation ( 14) in canonical phase space and introduce an interaction potential VI(R).

[y" Py — M — y"V(R) Ju(P) = 0. (37)
This interaction can be thought of as scalar component of [7{1) interaction, in a particular frame where the vector potential vanishes.

Translated 1o A-variables this equation reads

e —T—;np}} — M —yV(F(1 —AE)) bu(p) =0. (38)
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Let us consider the & inits lowest non-trivial omder. Hence to O0L) the Dime equation s

(1 +AVFE)HAF . VV(D)) Eu(p) = (A + B B+ Cl@. p) + V() )u(p) (39)

with B'= B — AMV(r)and A, B, C givenin Egs. (1921}
To fit in the FW scheme (39) is rewrillen as

Eu(p)=(1—-AV(F)—AF . VV(A))(A+ B B+ Cla.p)+ V(O))u(p). (40)

The same procedure as in the free case is needed o render this H Hermitian and we obtain a Hamilionian that is Hermitian in ({4
and fi:

H=D(1 —AVFE—AF . VV(O) A+ BB +Ca.j+ V(i)D"
= (1 —AV(F)— AF.VV(®)D(A+ B'p+ Cap+ V() D"

1
2y —x%

— 1 —M{F}—H.vﬂ?}}(ﬂ+ B'p+ (1 - %)

a.p+ V{F}). (41)

In Ref. [20] we have shown how 1o diagonalize Dirac like Hamiltonians in the presence of external fields at the semiclassical
order (1o get comections beyond the semiclassical order see Ref. [21]). During this process of diagonalization, we have shown
that in general (in the presence of electromagnetic or gravitational fields), both position and momentum operators acquire & Berry-
phase contribution making the coordinate and momentum algebra non-commutative. Note that in the presence of interactions, the
projected (on the positive energy subspace) dynamical operators emerge naturally during the diagonalization, without resorting 1o
the adiabatic approximation.

Therefore applying this diagonalization procedure in our case leads for the positive energy sector Lo the following semiclassical
diagonal Hamiltonian

H, =P(UHUY) (42)

where [7 is the same matrix as in the free case with M replaced by an effective mass M (1 — AV (r)). This leads to

Ho=(1- AV{F;}—HJV{F+}}{1.,a“'ﬁl (1= V(D) M2 =AM + VED) + oy A2+ #7) (43)

where Fe = F 4.4 with A, the same as in the free case with the effective mass M (1 — AV (7). We observe a renormalization
of the energy through the em

(1 —AV@E)—AFy . VVF).

Note that the momentum get also a Berry potential correction which at the order considered is negligible g = p + O{Lh). The
commutation relations are also unchanged except for the mass renormalization. Hence, the dynamics in presence of the potential is
denved to be,

f;._:=v[p]H.l._;ix(;: ;i=_v[_|'l]H.|.., f44::|

where @ is givenin (34) (with M replaced by an effective mass M(1 — AV (F))). Note that the effect of Berry curvature is manifested
very directly once an inleraction is present. Indeed, the equation for the velocily contains an anomalous velocily tenm p x & of
order A which causes an additional displacement of the electrons orthogonally to the momentum p. This phenomenon depends on
the particle spin through the Berry curvature. Typically, in canonical spacetime, with V' being an electrostatic potential, this is the
well studied spin Hall effect. In fact it should be mentioned that the topics of spin Hall effect of electrons or photons, gravitational
Hall effect for photons, that have become areas of intense research, all owe there existence Lo this type of Berry curvature effect.
However, as we point out below, modelling the analogue of spin Hall effect for MS panicle is probably more complicated.

5. Concluding remarks

In this Letter we have considered particle dynamics in x-Minkowski spacetime which is a patticular form of non-commutative
spacetime. Indeed quantization of the particle model is tricky because of the operatorial form of non-commutativity involved in
the phase space commutation relations. The novelty of our work lies in the fact that we have been able o bypass this problem by
exploiting a semiclassical approach of the Foldy=Wouthuysen formalism. Indeed this makes our analysis semi-classical in nature
with quantum effects in ( O{h) wken into account. We then have shown that the dynamics of MS particles in the presence of an
external field should be influenced by the «-parameter but also by the presence of a Berry curvature which is itself x dependent.

In this connection, ket us pause o mention the significant {and possibly more ambitious ) work [22] that atempts o deal with the
full «-Minkowski quantum field theory. Considering the s-product for the fields, the authors of [22] demonsirate that if properly
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interpreted, the interaction vertices have the requisite symmetry under the interchange of momenta of identical incoming partic kes.
Indeed, the x-Minkowskn #-product 15 much more involved that (Moyal) s-product that appears when the non-commutativity 1s
constant in nature. 1t is tue that we have so far only looked at the gquanm mechanics of a8 DSR model but the nature of the
energy-momentum conservation laws [ 13] inherently possess the above mentioned symmetry. This seems to indicate that the DSR
in Magueijo—Smolin base might be a better altemative that DSR in other bases in the context of formulating the DSR quantum field
theory.

The next task we wish to pursue is the effect of full electromagnetic interactions on the DSR particle model considered here.
This 15 a non-trivial extension since electromagnetsm mvolves a U7(1) gauge symmetry and one has to appropnately generalize the
concept of gauge invariance in non-commutative spacetime. This feature probably did not show up in the present restricted setup.
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Appendix A

We will compare the MS Dirac equation obtained here in (14) with that derived in [6]. It is 1o be noted that [6] uses the
bicrossproduct base whereas we have used the MS base.

It is well known in the DSR community that there are distinet formulations (or bases) of the DSR regarding the modified
dispersion relation, transformation properties and phase space algebra. The most popular are known as bicrossproduct base [4], MS
base [5] and standard base [ 16]. The different bases are connected by non-linear ransformation and [17] but the different bases are
inequivalent with drastically different physical consequences due to the non-linearity in the tansformations.

The DSE Dirac equation obtained in [6] is

(y*“Dy —w)u =0, (A1)
where
&E — cosh(i
Dy = L—m{w} (A.2)
Smh{f}l
£
e ]
Di=—p. (A3
"= ksinh(ra) }
Here (E', p;) are energy and momenta in bicrossproduct basis and they satisfy the dispersion law [4],
2 Vi
ﬁ cosh(LE") — (p')?e*f = 2«7 coshihmw). (A.4)
The relations connecting the above set o the MS set of variables (that we have used) are [17],
F W 1 3 =3 1 —-ME F =7
pl=pi; E = . log(l —20LE + A*p7), E= i{l —e M 435 Jum = tanhi Am). (A.5)

1t is straightforward to check that using (AS5) on (A1) will generate (14), the MS-Dirac equation derived in our Letter.
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